1
|
Yang Z, Zhang Y, Zhao Q, Du S, Huang X, Wu R, Yan Q, Han X, Wen Y, Cao SJ. HbpA from Glaesserella parasuis induces an inflammatory response in 3D4/21 cells by activating the MAPK and NF-κB signalling pathways and protects mice against G. parasuis when used as an immunogen. Vet Res 2024; 55:93. [PMID: 39075605 PMCID: PMC11285476 DOI: 10.1186/s13567-024-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Glaesserella parasuis is usually a benign swine commensal in the upper respiratory tract, but virulent strains can cause systemic infection characterized by pneumonia, meningitis, and fibrinous polyserositis. The intensive pulmonary inflammatory response following G. parasuis infection is the main cause of lung injury and death in pigs. Vaccination has failed to control the disease due to the lack of extended cross-protection. Accumulating evidence indicates that the heme-binding protein A (HbpA) is a potential virulence determinant and a promising antigen candidate for the development of a broader range of vaccines. However, it is not yet known whether HbpA contributes to G. parasuis virulence or has any potential immune protective effects against G. parasuis. Here, we show that HbpA can induce the transcription and secretion of proinflammatory cytokines (IL-6, TNF-α, and MCP-1) in porcine alveolar macrophages (PAM, 3D4/31). The HbpA protein is recognized by Toll-like receptors 2 and 4 on 3D4/21 macrophages, resulting in the activation of MAP kinase and NF-κB signalling cascades and the transcription and secretion of proinflammatory cytokines. HbpA contributes to virulence and bacterial pulmonary colonization in C57BL/6 mice and plays a role in adhesion to host cells and evasion of the bactericidal effect of pulmonary macrophages. In addition, mice immunized with HbpA were partially protected against challenge by G. parasuis SC1401. The results suggest that HbpA plays an important role in the pathogenesis of disease caused by G. parasuis and lay a foundation for the development of a subunit or chimeric anti-G. parasuis vaccine.
Collapse
Affiliation(s)
- Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - San-Jie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Liu G, Wang K, Yang Z, Tang X, Chang YF, Dai K, Tang X, Hu B, Zhang Y, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Wen X, Wen Y. Identification of a Novel Linear B-Cell Epitope of HbpA Protein from Glaesserella parasuis Using Monoclonal Antibody. Int J Mol Sci 2023; 24:8638. [PMID: 37239984 PMCID: PMC10218323 DOI: 10.3390/ijms24108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glaesserella parasuis (G. parasuis.) is the etiological pathogen of Glässer's disease, which causes high economic losses to the pig industry. The heme-binding protein A precursor (HbpA) was a putative virulence-associated factor proposed to be potential subunit vaccine candidate in G. parasuis. In this study, three monoclonal antibodies (mAb) 5D11, 2H81, and 4F2 against recombinant HbpA (rHbpA) of G. parasuis SH0165 (serotype 5) were generated by fusing SP2/0-Ag14 murine myeloma cells and spleen cells from BALB/c mice immunized with the rHbpA. Indirect enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence assay (IFA) demonstrated that the antibody designated 5D11 showed a strong binding affinity with the HbpA protein and was chosen for subsequent experiments. The subtypes of the 5D11 were IgG1/κ chains. Western blot analysis showed that mAb 5D11 could react with all 15 serotype reference strains of G. parasuis. None of the other bacteria tested reacted with 5D11. In addition, a linear B-cell epitope recognized by 5D11 was identified by serial truncations of HbpA protein and then a series of truncated peptides were synthesized to define the minimal region that was required for mAb 5D11 binding. The 5D11 epitope was located on amino acids 324-LPQYEFNLEKAKALLA-339 by testing the 5D11 monoclonal for reactivity with 14 truncations. The minimal epitope 325-PQYEFNLEKAKALLA-339 (designated EP-5D11) was pinpointed by testing the mAb 5D11 for reactivity with a series of synthetic peptides of this region. The epitope was highly conserved among G. parasuis strains, confirmed by alignment analysis. These results indicated that mAb 5D11 and EP-5D11 might potentially be used to develop serological diagnostic tools for G. parasuis. Three-dimensional structural analysis revealed that amino acids of EP-5D11 were in close proximity and may be exposed on the surface of the HbpA protein.
Collapse
Affiliation(s)
- Geyan Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Kang Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xiaoyu Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, New York, NY 14850, USA;
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xinwei Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Bangdi Hu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| |
Collapse
|
3
|
Wu J, Nan W, Peng G, Hu H, Xu C, Huang J, Xiao Z. Screening of linear B-cell epitopes and its proinflammatory activities of Haemophilus parasuis outer membrane protein P2. Front Cell Infect Microbiol 2023; 13:1192651. [PMID: 37207184 PMCID: PMC10189045 DOI: 10.3389/fcimb.2023.1192651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Haemophilus parasuis is a commensal organism of the upper respiratory tract of pigs, but virulent strains can cause Glässer's disease, resulting in significant economic losses to the swine industry. OmpP2 is an outer membrane protein of this organism that shows considerable heterogeneity between virulent and non-virulent strains, with classification into genotypes I and II. It also acts as a dominant antigen and is involved in the inflammatory response. In this study, 32 monoclonal antibodies (mAbs) against recombinant OmpP2 (rOmpP2) of different genotypes were tested for reactivity to a panel of OmpP2 peptides. Nine linear B cell epitopes were screened, including five common genotype epitopes (Pt1a, Pt7/Pt7a, Pt9a, Pt17, and Pt19/Pt19a) and two groups of genotype-specific epitopes (Pt5 and Pt5-II, Pt11/Pt11a, and Pt11a-II). In addition, we used positive sera from mice and pigs to screen for five linear B-cell epitopes (Pt4, Pt14, Pt15, Pt21, and Pt22). After porcine alveolar macrophages (PAMs) were stimulated with overlapping OmpP2 peptides, we found that the epitope peptides Pt1 and Pt9, and the loop peptide Pt20 which was adjacent epitopes could all significantly upregulated the mRNA expression levels of IL-1α, IL-1β, IL-6, IL-8, and TNF-α. Additionally, we identified epitope peptides Pt7, Pt11/Pt11a, Pt17, Pt19, and Pt21 and loop peptides Pt13 and Pt18 which adjacent epitopes could also upregulate the mRNA expression levels of most proinflammatory cytokines. This suggested that these peptides may be the virulence-related sites of the OmpP2 protein, with proinflammatory activity. Further study revealed differences in the mRNA expression levels of proinflammatory cytokines, including IL-1β and IL-6, between genotype-specific epitopes, which may be responsible for pathogenic differences between different genotype strains. Here, we profiled a linear B-cell epitope map of the OmpP2 protein and preliminarily analyzed the proinflammatory activities and effects of these epitopes on bacterial virulence, providing a reliable theoretical basis for establishing a method to distinguish strain pathogenicity and to screen candidate peptides for subunit vaccines.
Collapse
Affiliation(s)
- Jingbo Wu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Wenjin Nan
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
- *Correspondence: Wenjin Nan,
| | - Guoliang Peng
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Honghui Hu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Chongbo Xu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Jianqiang Huang
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Zhengzhong Xiao
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| |
Collapse
|
4
|
Zhang X, Cai X, Qi Y, Liu Y, Cao Q, Wang X, Chen H, Xu X. Improvement in the efficiency of natural transformation of Haemophilus parasuis by shuttle-plasmid methylation. Plasmid 2018; 98:8-14. [PMID: 30003899 DOI: 10.1016/j.plasmid.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
Some Haemophilus parasuis strains display resistance to transformation with Escherichia.coli-derived plasmids. This property limits the application of genetic approaches previously developed for H. parasuis. The present study showed that natural transformation with the shuttle plasmid pS2UK led to allelic exchange in H. parasuis strains SH0165 and CF7066. Furthermore, natural transformation with pS2UK yielded allelic exchange mutants in 10 of 17 H. parasuis strains, similar to results using the suicide plasmid pK2UK. Subsequently, 17 H. parasuis strains were transformed with pS2UK by electroporation and 13 obtained the transformants harboring the complete plasmid molecules. As a result, natural transformation of homologous blank strains with the H. parasui-derived plasmids significantly improved the transformation efficiency targeted at obtaining allelic exchange mutants. In addition, shuttle plasmids pS1UG and pSHUK that carried the different homologous arm sequences also displayed the increased transformation efficiency after they were replicated in homologous H. parasuis cells. The approach described here not only improved the efficiency of natural transformation of H. parasuis, but also enlarged the range of transformable H. parasuis strains, thereby enabling application of H. parasuis-specific genetic manipulation techniques in a wider range of isolates.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yi Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Yunbao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Qi Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiaojuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Characterization and Vaccine Potential of Outer Membrane Vesicles Produced by Haemophilus parasuis. PLoS One 2016; 11:e0149132. [PMID: 26930282 PMCID: PMC4773134 DOI: 10.1371/journal.pone.0149132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structures has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.
Collapse
|
6
|
Zhang L, Wen Y, Li Y, Wei X, Yan X, Wen X, Wu R, Huang X, Huang Y, Yan Q, Liu M, Cao S. Comparative proteomic analysis of the membrane proteins of two Haemophilus parasuis strains to identify proteins that may help in habitat adaptation and pathogenesis. Proteome Sci 2014; 12:38. [PMID: 25057263 PMCID: PMC4107730 DOI: 10.1186/1477-5956-12-38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/29/2014] [Indexed: 01/03/2023] Open
Abstract
Background Haemophilus parasuis is the causative agent of Glässer’s disease characterized by polyserositis, arthritis, and meningitis in pig, leading to serious economic loss. Despite many years of study, virulence factors and the mechanisms of the entire infection process remain largely unclear. So two-dimensional gel electrophoresis and mass spectrometry were used to search for distinctions at the membrane protein expression level between two H. parasuis isolates aimed at uncovering some proteins potentially involved in habitat adaption and pathogenesis. Results A comparative proteomic approach combining two-dimensional gel electrophoresis with mass spectrometry and tandem mass spectrometry was employed to explore the differences among membrane proteomes of a virulent Haemophilus parasuis strain isolated from the lung of a diseased pig and an avirulent strain isolated from the nasal swab of a healthy pig. Differentially expressed protein spots identified by mass spectrometry were annotated and analyzed by bioinformatic interpretation. The mRNA level was determined by quantitative real-time PCR. Proteins representing diverse functional activities were identified. Among them, the tonB-dependent siderophore receptor was a new discovery highlighted for its activity in iron uptake. In addition, periplasmic serine protease and putrescine/spermidine ABC transporter substrate-binding protein were given focus because of their virulence potential. This study revealed that the differentially expressed proteins were important in either the habitat adaption or pathogenesis of H. parasuis. Conclusions The outcome demonstrated the presence of some proteins which raise the speculation for their importance in helping in habitat adaption or pathogenesis within the host.
Collapse
Affiliation(s)
- Luhua Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Ying Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xingliang Wei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xuefeng Yan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xintian Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yong Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Qigui Yan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
7
|
Comparative proteome analysis of the extracellular proteins of two Haemophilus parasuis strains Nagasaki and SW114. Biochem Biophys Res Commun 2014; 446:997-1001. [DOI: 10.1016/j.bbrc.2014.03.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022]
|
8
|
Costa-Hurtado M, Aragon V. Advances in the quest for virulence factors of Haemophilus parasuis. Vet J 2013; 198:571-6. [DOI: 10.1016/j.tvjl.2013.08.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/20/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
|
9
|
Fluoroquinolone-resistant Haemophilus parasuis isolates exhibit more putative virulence factors than their susceptible counterparts. J Clin Microbiol 2013; 51:3130-1. [PMID: 23784118 DOI: 10.1128/jcm.01102-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence of 23 putative virulence factors among fluoroquinolone-susceptible and -resistant Haemophilus parasuis isolates was analyzed. Putative hemolysin precursor, fimbrial assembly chaperone, and type I site-specific restriction modification system R subunit genes were more prevalent among fluoroquinolone-resistant H. parasuis isolates than among fluoroquinolone-susceptible H. parasuis isolates. Fluoroquinolone resistance may be associated with an increase in the presence of some virulence factors.
Collapse
|
10
|
Cross-protective efficacy of recombinant transferrin-binding protein A of Haemophilus parasuis in guinea pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:912-9. [PMID: 23616407 DOI: 10.1128/cvi.00621-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The causative agent of Glasser's disease in swine is Haemophilus parasuis. Commercial bacterins are widely used for protection of the swine population. However, cross protection is limited because H. parasuis has more than 15 serovars. Transferrin-binding protein A has shown potential as a broad-spectrum vaccine candidate against homologous and heterologous strains. Here we amplified the full-length tbpA gene from an H. parasuis serovar 13 isolate and cloned it into a pET-SUMO expression vector. We then expressed and purified the TbpA protein by Ni affinity chromatography. First, the immunogenicity and protective efficacy of the protein were evaluated in guinea pigs by two subcutaneous immunizations with different doses of Montanide IMS 206 VG adjuvant. The immunized guinea pigs were, respectively, challenged on week 3 after a booster immunization with homologous strain LJ3 (serovar 13) and heterologous strain FX1 (serovar 4), and vaccine-inoculated groups were compared with nonvaccinated controls. All immunized groups showed serum antibody titers higher than those of negative-control groups. Furthermore, the cytokine and chemokine levels were evaluated at the transcriptional level by the real-time PCR analysis of six cytokines and chemokines. Gamma interferon and interleukin-5 in groups immunized with 100 μg were elevated more than 15-fold over those in negative-control groups. The protection rates were 80 and 60% after a challenge with strains LJ3 and FX1, respectively, in the groups vaccinated with 100 μg of recombinant TbpA protein. Subsequently, the data showed that guinea pigs immunized with a single dose (100 μg) were protected at levels of 80, 80, and 60% against LJ3, FX1, and another heterologous strain, SZ (serovar 14), respectively. The results indicate for the first time that TbpA protein cross protects guinea pigs against serovars 13, 4, and 14 of H. parasuis. Taken together, these results suggest that the recombinant TbpA protein is a promising vaccine candidate that needs to be confirmed in a swine population.
Collapse
|
11
|
Zhao M, Liu XD, Li XY, Chen HB, Jin H, Zhou R, Zhu MJ, Zhao SH. Systems infection biology: a compartmentalized immune network of pig spleen challenged with Haemophilus parasuis. BMC Genomics 2013; 14:46. [PMID: 23339624 PMCID: PMC3610166 DOI: 10.1186/1471-2164-14-46] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Network biology (systems biology) approaches are useful tools for elucidating the host infection processes that often accompany complex immune networks. Although many studies have recently focused on Haemophilus parasuis, a model of Gram-negative bacterium, little attention has been paid to the host's immune response to infection. In this article, we use network biology to investigate infection with Haemophilus parasuis in an in vivo pig model. RESULTS By targeting the spleen immunogenome, we established an expression signature indicative of H. parasuis infection using a PCA/GSEA combined method. We reconstructed the immune network and estimated the network topology parameters that characterize the immunogene expressions in response to H. parasuis infection. The results showed that the immune network of H. parasuis infection is compartmentalized (not globally linked). Statistical analysis revealed that the reconstructed network is scale-free but not small-world. Based on the quantitative topological prioritization, we inferred that the C1R-centered clique might play a vital role in responding to H. parasuis infection. CONCLUSIONS Here, we provide the first report of reconstruction of the immune network in H. parasuis-infected porcine spleen. The distinguishing feature of our work is the focus on utilizing the immunogenome for a network biology-oriented analysis. Our findings complement and extend the frontiers of knowledge of host infection biology for H. parasuis and also provide a new clue for systems infection biology of Gram-negative bacilli in mammals.
Collapse
Affiliation(s)
- Ming Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhao P, He Y, Chu YF, Gao PC, Zhang X, Zhang NZ, Zhao HY, Zhang KS, Lu ZX. Identification of novel immunogenic proteins in Mycoplasma capricolum subsp. Capripneumoniae strain M1601. J Vet Med Sci 2012; 74:1109-15. [PMID: 22673397 DOI: 10.1292/jvms.12-0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to obtain immunogenic proteins and potential proteins of interest that were isolated from Mycoplasma capricolum subsp. capripneumoniae (Mccp) by MALDI-TOF mass spectrometry. One-dimensional SDS-PAGE and two-dimensional gel electrophoresis of whole cell preparation were conducted, and membrane proteome maps were prepared by immunoblotting. One-dimensional SDS-PAGE identified three immunogenic proteins with molecular masses in the range 29-97.2 kDa, two of which were in the membrane protein fraction. After two-dimensional gel electrophoresis, 20 highly immunogenic proteins were identified in the whole cell protein preparation while 9 immunogenic proteins were identified in the membrane protein fraction. This indicated that membrane proteins were the principle immunogenic proteins in Mccp. These proteins may have potential for the development of improved diagnostic tests and possible vaccines.
Collapse
Affiliation(s)
- Ping Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Epizootic Diseases of Grazing Animals of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Engineering Research Center of Biological Detection of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Assavacheep P, Assavacheep A, Turni C. Detection of a putative hemolysin operon, hhdBA, of Haemophilus parasuis from pigs with Glässer disease. J Vet Diagn Invest 2012; 24:339-43. [DOI: 10.1177/1040638711435805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study was to investigate whether polymerase chain reaction amplification of 16S ribosomal (r)RNA and a putative hemolysin gene operon, hhdBA, can be used to monitor live pigs for the presence of Haemophilus parasuis and predict the virulence of the strains present. Nasal cavity swabs were taken from 30 live, healthy, 1- to 8-week-old pigs on a weekly cycle from a commercial Thai nursery pig herd. A total of 27 of these pigs (90%) tested positive for H. parasuis as early as week 1 of age. None of the H. parasuis–positive samples from healthy pigs was positive for the hhdBA genes. At the same pig nursery, swab samples from nasal cavity, tonsil, trachea, and lung, and exudate samples from pleural/peritoneal cavity were taken from 30 dead pigs displaying typical pathological lesions consistent with Glässer disease. Twenty-two of 140 samples (15.7%) taken from 30 diseased pigs yielded a positive result for H. parasuis. Samples from the exudate (27%) yielded the most positive results, followed by lung, tracheal swab, tonsil, and nasal swab, respectively. Out of 22 positive samples, 12 samples (54.5%) harbored hhdA and/or hhdB genes. Detection rates of hhdA were higher than hhdB. None of the H. parasuis–positive samples taken from nasal cavity of diseased pigs tested positive for hhdBA genes. More work is required to determine if the detection of hhdBA genes is useful for identifying the virulence potential of H. parasuis field isolates.
Collapse
Affiliation(s)
- Pornchalit Assavacheep
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (P Assavacheep)
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (A Assavacheep)
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Dutton Park, Queensland, Australia (Turni)
| | - Anongnart Assavacheep
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (P Assavacheep)
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (A Assavacheep)
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Dutton Park, Queensland, Australia (Turni)
| | - Conny Turni
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (P Assavacheep)
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (A Assavacheep)
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Dutton Park, Queensland, Australia (Turni)
| |
Collapse
|
14
|
Zhang B, Xu C, Zhou S, Feng S, Zhang L, He Y, Liao M. Comparative proteomic analysis of a Haemophilus parasuis SC096 mutant deficient in the outer membrane protein P5. Microb Pathog 2012; 52:117-24. [DOI: 10.1016/j.micpath.2011.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
|
15
|
Pina-Pedrero S, Olvera A, Pérez-Simó M, Bensaid A. Genomic and antigenic characterization of monomeric autotransporters of Haemophilus parasuis: an ongoing process of reductive evolution. MICROBIOLOGY-SGM 2011; 158:436-447. [PMID: 22075024 DOI: 10.1099/mic.0.052399-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genome of the highly pathogenic Haemophilus parasuis Nagasaki strain (serovar 5) was sequenced to 99 % completion. A genomic comparison with two other pathogenic serovar 5 H. parasuis strains identified six genes per genome (bmaA1-bmaA6) encoding β-barrel monomeric autotransporters, bmaA2 and bmaA3 being pseudogenes in at least one strain. The remaining encoded proteins were predicted to belong to the subtilisin (BmaA1 and BmaA4) and cysteine (BmaA5 and BmaA6) protease families. Allelic polymorphism was detected in other H. parasuis strains by comparative genomic hybridization using microarrays. Recombination events were observed, some of them leading to gene disruption in one of the three strains, although synteny around bmaA genes was conserved. These results suggest that bmaA genes are undergoing a process of reductive evolution. To evaluate their use as potential vaccine antigens, the products of the passenger domains of bmaA1, bmaA4, bmaA5 and bmaA6 were produced in Escherichia coli as recombinant proteins. They were detected by immunoblotting using sera of colostrum-deprived piglets recovering from a sublethal infection with H. parasuis (Nagasaki). The existence of specific antibodies after infection with H. parasuis also demonstrated in vivo expression. Using proteomics, only BmaA6 was detected in the in vitro-grown Nagasaki strain. Interestingly, the translocator domain was found in the outer membrane, while the passenger domain was located in supernatants. These results indicate that BmaA proteins could be considered as immunogen candidates to improve H. parasuis vaccines. However, their capacity to confer protective immunity needs to be studied further.
Collapse
Affiliation(s)
- Sonia Pina-Pedrero
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alex Olvera
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marta Pérez-Simó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Albert Bensaid
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Identification of the immunogenic outer membrane protein A antigen of Haemophilus parasuis by a proteomics approach and passive immunization with monoclonal antibodies in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1695-701. [PMID: 21832103 DOI: 10.1128/cvi.05223-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monoclonal antibodies (MAbs) against Haemophilus parasuis were generated by fusing spleen cells from BALB/c mice immunized with whole bacterial cells with SP2/0 murine myeloma cells. Desirable hybridomas were screened by enzyme-linked immunosorbent assay (ELISA). Neutralizing MAb 1D8 was selected in protection assays. ELISA results demonstrated that 1D8 can react with all 15 serotypes of H. parasuis and field isolate H. parasuis HLJ-018. Passive immunization studies showed that mice inoculated intraperitoneally with 1D8 had significantly reduced prevalence of H. parasuis colonization in the blood, lung, spleen, and liver and had prolonged survival time compared to that of the control group. Furthermore, the passive transfer experiment indicated that MAb 1D8 can protect mice from both homologous and heterologous challenges with H. parasuis. Using two-dimensional gel electrophoresis (2-DE), the immunoreactive protein target for MAb 1D8 was identified. The data presented confirm the protective role of MAb 1D8 and identify OmpA as the target of the protective monoclonal antibody. The data suggest that OmpA is a promising candidate for a subunit vaccine against H. parasuis.
Collapse
|
17
|
Zhang W, Shao J, Liu G, Tang F, Lu Y, Zhai Z, Wang Y, Wu Z, Yao H, Lu C. Immunoproteomic analysis of bacterial proteins of Actinobacillus pleuropneumoniae serotype 1. Proteome Sci 2011; 9:32. [PMID: 21703014 PMCID: PMC3148531 DOI: 10.1186/1477-5956-9-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 06/26/2011] [Indexed: 11/10/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae (APP) is one of the most important swine pathogens worldwide. Identification and characterization of novel antigenic APP vaccine candidates are underway. In the present study, we use an immunoproteomic approach to identify APP protein antigens that may elicit an immune response in serotype 1 naturally infected swine and serotype 1 virulent strain S259-immunized rabbits. Results Proteins from total cell lysates of serotype 1 APP were separated by two-dimensional electrophoresis (2DE). Western blot analysis revealed 21 immunoreactive protein spots separated in the pH 4-7 range and 4 spots in the pH 7-11 range with the convalescent sera from swine; we found 5 immunoreactive protein spots that separated in the pH 4-7 range and 2 in the pH 7-11 range with hyperimmune sera from S259-immunized rabbits. The proteins included the known antigens ApxIIA, protective surface antigen D15, outer membrane proteins P5, subunit NqrA. The remaining antigens are being reported as immunoreactive proteins in APP for the first time, to our knowledge. Conclusions We identified a total of 42 immunoreactive proteins of the APP serotype 1 virulent strain S259 which represented 32 different proteins, including some novel immunoreactive factors which could be researched as vaccine candidates.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Shao
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangjin Liu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Tang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Lu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Zhai
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Wang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongfu Wu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengping Lu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Gao X, Zhang X, Zheng J, He F. Proteomics in China: Ready for prime time. SCIENCE CHINA-LIFE SCIENCES 2010; 53:22-33. [DOI: 10.1007/s11427-010-0027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/28/2009] [Indexed: 12/27/2022]
|
19
|
Olvera A, Pina S, Pérez-Simó M, Oliveira S, Bensaid A. Virulence-associated trimeric autotransporters of Haemophilus parasuis are antigenic proteins expressed in vivo. Vet Res 2009; 41:26. [PMID: 19995512 PMCID: PMC2820231 DOI: 10.1051/vetres/2009074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/07/2009] [Indexed: 11/19/2022] Open
Abstract
Glässer’s disease is a re-emerging swine disease characterized by a severe septicaemia. Vaccination has been widely used to control the disease, although there is a lack of extended cross-protection. Trimeric autotransporters, a family of surface exposed proteins implicated in host-pathogen interactions, are good vaccine candidates. Members of this family have been described in Haemophilus parasuis and designated as virulence-associated trimeric autotransporters (VtaA). In this work, we produced 15 recombinant VtaA passenger domains and looked for the presence of antibodies directed against them in immune sera by immunoblotting. After infection with a subclinical dose of H. parasuis Nagasaki, an IgG mediated antibody response against 6 (VtaA1, 5, 6, 8, 9 and 10) of the 13 VtaA of the Nagasaki strain was detected, indicating that they are expressed in vivo. IgA production against VtaA was detected in only one animal. VtaA were more likely to be late antigens when compared to early (Omp P5 and Omp P6) and late (YaeT) defined antigens. Antibody cross-reaction with two orthologs of Nagasaki’s VtaA5 and 6, VtaA15 and 16 of strain HP1319, was also detected. No antibodies against VtaA were detected in the sera of animals immunized with a bacterin of the Nagasaki strain, suggesting poor expression in the in vitro conditions used. Taken together, these results indicate that VtaA are good candidate immunogens that could be used to improve H. parasuis vaccines. However, their capacity to confer protective immunity needs to be further studied.
Collapse
Affiliation(s)
- Alex Olvera
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona-Edifici CReSA, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
20
|
Zhou M, Guo Y, Zhao J, Hu Q, Hu Y, Zhang A, Chen H, Jin M. Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine 2009; 27:5271-7. [DOI: 10.1016/j.vaccine.2009.06.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
|