1
|
Hyperosmolarity adversely impacts recombinant protein synthesis by Yarrowia lipolytica-molecular background revealed by quantitative proteomics. Appl Microbiol Biotechnol 2021; 106:349-367. [PMID: 34913994 PMCID: PMC8720085 DOI: 10.1007/s00253-021-11731-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022]
Abstract
Abstract In this research, we were interested in answering a question whether subjecting a Yarrowia lipolytica strain overproducing a recombinant secretory protein (rs-Prot) to pre-optimized stress factors may enhance synthesis of the rs-Prot. Increased osmolarity (3 Osm kg−1) was the primary stress factor implemented alone or in combination with decreased temperature (20 °C), known to promote synthesis of rs-Prots. The treatments were executed in batch bioreactor cultures, and the cellular response was studied in terms of culture progression, gene expression and global proteomics, to get insight into molecular bases underlying an awaken reaction. Primarily, we observed that hyperosmolarity executed by high sorbitol concentration does not enhance synthesis of the rs-Prot but increases its transcription. Expectedly, hyperosmolarity induced synthesis of polyols at the expense of citric acid synthesis and growth, which was severely limited. A number of stress-related proteins were upregulated, including heat-shock proteins (HSPs) and aldo–keto reductases, as observed at transcriptomics and proteomics levels. Concerted downregulation of central carbon metabolism, including glycolysis, tricarboxylic acid cycle and fatty acid synthesis, highlighted redirection of carbon fluxes. Elevated abundance of HSPs and osmolytes did not outbalance the severe limitation of protein synthesis, marked by orchestrated downregulation of translation (elongation factors, several aa-tRNA synthetases), amino acid biosynthesis and ribosome biogenesis in response to the hyperosmolarity. Altogether we settled that increased osmolarity is not beneficial for rs-Prots synthesis in Y. lipolytica, even though some elements of the response could assist this process. Insight into global changes in the yeast proteome under the treatments is provided. Key points • Temp enhances, but Osm decreases rs-Prots synthesis by Y. lipolytica. • Enhanced abundance of HSPs and osmolytes is overweighted by limited translation. • Global proteome under Osm, Temp and Osm Temp treatments was studied. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11731-y.
Collapse
|
2
|
da Silva LV, Coelho MAZ, da Silva MRS, Amaral PFF. Investigation of mitochondrial protein expression profiles of Yarrowia lipolytica in response to citric acid production. Bioprocess Biosyst Eng 2020; 43:1703-1715. [DOI: 10.1007/s00449-020-02363-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
|
3
|
Li P, Fu X, Chen M, Zhang L, Li S. Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:49. [PMID: 30899329 PMCID: PMC6408782 DOI: 10.1186/s13068-019-1390-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND The thermotolerant yeast Kluyveromyces marxianus is a potential candidate for high-temperature fermentation. When K. marxianus was used for high-temperature ethanol fermentation, a fermentation arrest was observed during the late fermentation stage and the stress responses have been investigated based on the integration of RNA-Seq and metabolite data. In order to bring new insights into the cellular responses of K. marxianus after the fermentation arrest during high-temperature ethanol fermentation, quantitative proteomic profiling and integrated analysis with transcriptomic data were performed in this study. RESULTS Samples collected at 14, 16, 18, 20 and 22 h during high-temperature fermentation were subjected to isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic profiling and integrated analysis with transcriptomic data. The correlations between transcripts and proteins for the comparative group 16 h vs 14 h accounted for only 4.20% quantified proteins and 3.23% differentially expressed proteins (DEPs), respectively, much higher percentages of correlations (30.56%-59.11%) were found for other comparative groups (i.e., 18 h vs 14 h, 20 h vs 14 h, and 22 h vs 14 h). According to Spearman correlation tests between transcriptome and proteome (the absolute value of a correlation coefficient between 0.5 and 1 indicates a strong correlation), poor correlations were found for all quantified proteins (R = - 0.0355 to 0.0138), DEPs (R = - 0.0079 to 0.0233) and the DEPs with opposite expression trends to corresponding differentially expressed genes (DEGs) (R = - 0.0478 to 0.0636), whereas stronger correlations were observed in terms of the DEPs with the same expression trends as the correlated DEGs (R = 0.5593 to 0.7080). The results of multiple reaction monitoring (MRM) verification indicate that the iTRAQ results were reliable. After the fermentation arrest, a number of proteins involved in transcription, translation, oxidative phosphorylation and fatty acid metabolism were down-regulated, some molecular chaperones and proteasome proteins were up-regulated, the ATPase activity significantly decreased, and the total fatty acids gradually accumulated. In addition, the contents of palmitic acid, oleic acid, C16, C18, C22 and C24 fatty acids increased by 16.77%, 28.49%, 14.14%, 26.88%, 628.57% and 125.29%, respectively. CONCLUSIONS This study confirmed some biochemical and enzymatic alterations provoked by the stress conditions in the specific case of K. marxianus: such as decreases in transcription, translation and oxidative phosphorylation, alterations in cellular fatty acid composition, and increases in the abundance of molecular chaperones and proteasome proteins. These findings provide potential targets for further metabolic engineering towards improvement of the stress tolerance in K. marxianus.
Collapse
Affiliation(s)
- Pengsong Li
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Xiaofen Fu
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Ming Chen
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Lei Zhang
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
- Agricultural Utilization Research Center, Nutrition and Health Research Institute, COFCO Corporation, No.4 Road, Future Science and Technology Park South, Beiqijia, Changping, Beijing, 102209 China
| | - Shizhong Li
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
4
|
Zhang J, Weng H, Zhou Z, Du G, Kang Z. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. BIORESOURCE TECHNOLOGY 2019; 274:353-360. [PMID: 30537593 DOI: 10.1016/j.biortech.2018.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
5-aminolevulinic acid (ALA), an important precursor of tetrapyrroles, has various applications in medicine and agriculture fields. Several methods have been adopted to enhance ALA synthesis in our previous studies. In this study, systematic metabolic engineering strategies were implemented to further improve ALA production in Escherichia coli. Firstly, hemA and hemL with different strength of RBS from the artificially constructed mutation libraries were randomly assembled to balance metabolic flux. Then the expression of ALA dehydratase was rationally regulated by replacing promoter with fliCp to weaken ALA catabolism. Besides, the activity of glutamate-1-semialdehyde aminotransferase was increased through strengthening the native biosynthesis pathway of cofactor pyridoxal 5'-phosphate. Moreover, plasmid stability was improved by 21.4% by deleting recA and endA in the recombinant. Finally, stepwise improvements in ALA production were increased to 5.25 g/L with a pH two-stage strategy in a 3-L fermenter. This study proved the importance of metabolic balance in the pathway.
Collapse
Affiliation(s)
- Junli Zhang
- School of Life Sciences, Taishan Medical University, Tai'an 271016, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Huanjiao Weng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhengxiong Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Larroude M, Rossignol T, Nicaud JM, Ledesma-Amaro R. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol Adv 2018; 36:2150-2164. [PMID: 30315870 PMCID: PMC6261845 DOI: 10.1016/j.biotechadv.2018.10.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/11/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica shows great industrial promise. It naturally produces certain compounds of interest but can also artificially generate non-native metabolites, thanks to an engineering process made possible by the significant expansion of a dedicated genetic toolbox. In this review, we present recently developed synthetic biology tools that facilitate the manipulation of Y. lipolytica, including 1) DNA assembly techniques, 2) DNA parts for constructing expression cassettes, 3) genome-editing techniques, and 4) computational tools.
Collapse
Affiliation(s)
- M Larroude
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - T Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - J-M Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - R Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| |
Collapse
|
6
|
Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement. Metab Eng 2017; 44:313-324. [PMID: 29122703 DOI: 10.1016/j.ymben.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/29/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C6-C10, MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis.
Collapse
|
7
|
Malek R, Bonnarme P, Irlinger F, Frey-Klett P, Onésime D, Aubert J, Loux V, Beckerich JM. Transcriptomic response of Debaryomyces hansenii during mixed culture in a liquid model cheese medium with Yarrowia lipolytica. Int J Food Microbiol 2017; 264:53-62. [PMID: 29111498 DOI: 10.1016/j.ijfoodmicro.2017.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022]
Abstract
Yeasts play a crucial role in cheese ripening. They contribute to the curd deacidification, the establishment of acid-sensitive bacterial communities, and flavour compounds production via proteolysis and catabolism of amino acids (AA). Negative yeast-yeast interaction was observed between the yeast Yarrowia lipolytica 1E07 (YL1E07) and the yeast Debaryomyces hansenii 1L25 (DH1L25) in a model cheese but need elucidation. YL1E07 and DH1L25 were cultivated in mono and co-cultures in a liquid synthetic medium (SM) mimicking the cheese environment and the growth inhibition of DH1L25 in the presence of YL1E07 was reproduced. We carried out microbiological, biochemical (lactose, lactate, AA consumption and ammonia production) and transcriptomic analyses by microarray technology to highlight the interaction mechanisms. We showed that the DH1L25 growth inhibition in the presence of YL1E07 was neither due to the ammonia production nor to the nutritional competition for the medium carbon sources between the two yeasts. The transcriptomic study was the key toward the comprehension of yeast-yeast interaction, and revealed that the inhibition of DH1L25 in co-culture is due to a decrease of the mitochondrial respiratory chain functioning.
Collapse
Affiliation(s)
- Reine Malek
- UMR 1319 MICALIS, INRA, AgroParisTech, CBAI, BP01, 78850 Thiverval Grignon, France.
| | - Pascal Bonnarme
- INRA, AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France
| | - Françoise Irlinger
- INRA, AgroParisTech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France
| | - Pascale Frey-Klett
- UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, 54280 Champenoux, France
| | - Djamila Onésime
- UMR 1319 MICALIS, INRA, AgroParisTech, CBAI, BP01, 78850 Thiverval Grignon, France
| | - Julie Aubert
- UMR 518 Mathématiques et Informatiques Appliquées, AgroParisTech, INRA, 16 rue Claude Bernard, 75231 Paris Cedex 05, France
| | - Valentin Loux
- INRA, Unité Mathématique, Informatique et Génome UR1077, 78352 Jouy-en-Josas, France
| | - Jean-Marie Beckerich
- UMR 1319 MICALIS, INRA, AgroParisTech, CBAI, BP01, 78850 Thiverval Grignon, France
| |
Collapse
|
8
|
Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin. Sci Rep 2017; 7:1459. [PMID: 28469159 PMCID: PMC5431097 DOI: 10.1038/s41598-017-01700-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/29/2017] [Indexed: 11/08/2022] Open
Abstract
Efficient biosynthesis of the plant polyphenol pinosylvin, which has numerous applications in nutraceuticals and pharmaceuticals, is necessary to make biological production economically viable. To this end, an efficient Escherichia coli platform for pinosylvin production was developed via a rational modular design approach. Initially, different candidate pathway enzymes were screened to construct de novo pinosylvin pathway directly from D-glucose. A comparative analysis of pathway intermediate pools identified that this initial construct led to the intermediate cinnamic acid accumulation. The pinosylvin synthetic pathway was then divided into two new modules separated at cinnamic acid. Combinatorial optimization of transcriptional and translational levels of these two modules resulted in a 16-fold increase in pinosylvin titer. To further improve the concentration of the limiting precursor malonyl-CoA, the malonyl-CoA synthesis module based on clustered regularly interspaced short palindromic repeats interference was assembled and optimized with other two modules. The final pinosylvin titer was improved to 281 mg/L, which was the highest pinosylvin titer even directly from D-glucose without any additional precursor supplementation. The rational modular design approach described here could bolster our capabilities in synthetic biology for value-added chemical production.
Collapse
|
9
|
Wu J, Zhang X, Xia X, Dong M. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab Eng 2017; 41:115-124. [PMID: 28392294 DOI: 10.1016/j.ymben.2017.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022]
Abstract
Medium-chain fatty acids (MCFAs, 6-10 carbons) are valuable precursors to many industrial biofuels and chemicals, recently engineered reversal of the β-oxidation (r-BOX) cycle has been proposed as a potential platform for efficient synthesis of MCFAs. Previous studies have made many exciting achievements on functionally characterizing four core enzymes of this r-BOX cycle. However, the information about bottleneck nodes in this cycle is elusive. Here, a quantitative assessment of the inherent limitations of this cycle was conducted to capitalize on its potential. The selection of the core β-oxidation reversal enzymes in conjunction with acetyl-CoA synthetase endowed the ability to synthesize about 1g/L MCFAs. Furthermore, a gene dosage experiment was developed to identify two rate-limiting enzymes (acetyl-CoA synthetase and thiolase). The de novo pathway was then separated into two modules at thiolase and MCFA production titer increased to 2.8g/L after evaluating different construct environments. Additionally, the metabolism of host organism was reprogrammed to the desired biochemical product by the clustered regularly interspaced short palindromic repeats interference system, resulted in a final MCFA production of 3.8g/L. These findings described here identified the inherent limitations of r-BOX cycle and further unleashed the lipogenic potential of this cycle, thus paving the way for the development of a bacterial platform for microbial production of high-value oleo-chemicals from low-value carbons in a sustainable and environmentally friendly manner.
Collapse
Affiliation(s)
- Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Xia Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
10
|
Wu J, Zhou P, Zhang X, Dong M. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 2017; 44:1083-1095. [PMID: 28324236 DOI: 10.1007/s10295-017-1937-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/12/2017] [Indexed: 12/18/2022]
Abstract
Resveratrol has been the subject of numerous scientific investigations due to its health-promoting activities against a variety of diseases. However, developing feasible and efficient microbial processes remains challenging owing to the requirement of supplementing expensive phenylpropanoic precursors. Here, various metabolic engineering strategies were developed for efficient de novo biosynthesis of resveratrol. A recombinant malonate assimilation pathway from Rhizobium trifolii was introduced to increase the supply of the key precursor malonyl-CoA and simultaneously, the clustered regularly interspaced short palindromic repeats interference system was explored to down-regulate fatty acid biosynthesis pathway to inactivate the malonyl-CoA consumption pathway. Down-regulation of fabD, fabH, fabB, fabF, fabI increased resveratrol production by 80.2, 195.6, 170.3, 216.5 and 123.7%, respectively. Furthermore, the combined effect of these genetic perturbations was investigated, which increased the resveratrol titer to 188.1 mg/L. Moreover, the efficiency of this synthetic pathway was improved by optimizing the expression level of the rate-limiting enzyme TAL based on reducing mRNA structure of 5' region. This further increased the final resveratrol titer to 304.5 mg/L. The study described here paves the way to the development of a simple and economical process for microbial production of resveratrol.
Collapse
Affiliation(s)
- Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, People's Republic of China.,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Peng Zhou
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, People's Republic of China.,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xia Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, People's Republic of China.,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, People's Republic of China. .,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Vong WC, Au Yang KLC, Liu SQ. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Int J Food Microbiol 2016; 235:1-9. [PMID: 27391864 DOI: 10.1016/j.ijfoodmicro.2016.06.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022]
Abstract
Okara, or soybean residue, is a soy food processing by-product from the manufacture of soymilk and soybean curd (tofu). In this study, solid-state fermentation of okara was conducted over 5days using yeast Yarrowia lipolytica, and the changes in proximate composition, antioxidant capacity, non-volatiles and volatiles were investigated. Yeast metabolism of okara significantly increased the amounts of lipid, succinate and free amino acids and enhanced the antioxidant capacity. In particular, there was a marked increase in important umami tastants after fermentation, with 3-fold increase in succinate and a 20-fold increase in glutamate. The final fermented okara contained 3.37g succinate and 335mg glutamate/100g dry matter. Aldehydes and their derived acids in the fresh okara were catabolised by Y. lipolytica mainly to methyl ketones, leading to a reduced grassy off-odour and a slightly pungent, musty and cheese-like odour in the fermented okara. Amino acid-derived volatiles, such as 3-methylbutanal and 2-phenylethanol, were also produced. Overall, the okara fermented by Y. lipolytica had a greater amount of umami-tasting substances, a cheese-like odour, improved digestibility and enhanced antioxidant capacity. These changes highlight the potential of Yarrowia-fermented okara as a more nutritious, savoury food product or ingredient. Y. lipolytica was thus demonstrated to be suitable for the biovalorisation of this soy food processing by-product.
Collapse
Affiliation(s)
- Weng Chan Vong
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Kai Ling Corrine Au Yang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shao-Quan Liu
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
12
|
Zeng W, Fang F, Liu S, Du G, Chen J, Zhou J. Comparative genomics analysis of a series of Yarrowia lipolytica WSH-Z06 mutants with varied capacity for α-ketoglutarate production. J Biotechnol 2016; 239:76-82. [PMID: 27732868 DOI: 10.1016/j.jbiotec.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 01/23/2023]
Abstract
Yarrowia lipolytica is one of the most intensively investigated α-ketoglutaric acid (α-KG) producers, and metabolic engineering has proven effective for enhancing production. However, regulation of α-KG metabolism remains poorly understood. Genetic engineering of new strains is accompanied by potential safety concerns in some countries and regions. A series of mutants with varied capacity for α-KG production were obtained using random mutagenesis of Y. lipolytica WSH-Z06. Comparative genomics analysis was implemented to identify genes candidates associated with α-KG production. Manipulation of genes regulating mitochondrial biogenesis and energy metabolism could improve α-KG production, while genes involved in regulating transformation between keto acids and amino acids may decrease production. One gene associated with cell cycle control well represented in all mutants, whereas this gene involved in cell concentration do not appear to influence α-KG production. The results shed light on α-KG production in eukaryotic cells, and pave the way for a high-throughput screening and random mutagenesis method for enhancing α-KG production.
Collapse
Affiliation(s)
- Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Fang Fang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Wu J, Zhang X, Zhou J, Dong M. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. BIORESOURCE TECHNOLOGY 2016; 218:999-1007. [PMID: 27450982 DOI: 10.1016/j.biortech.2016.07.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 05/06/2023]
Abstract
Microbial fermentations promise to revolutionize the conventional extraction of (2S)-pinocembrin from natural plant sources. Previously an Escherichia coli fermentation system was developed for one-step (2S)-pinocembrin production. However, this fermentation platform need supplementation of expensive malonyl-CoA precursor malonate and requires morpholinopropane sulfonate to provide buffering capacity. Here, a clustered regularly interspaced short palindromic repeats interference was constructed to efficiently channel carbon flux toward malonyl-CoA. By exploring the effects of different culture pH on microbial fermentation, it was found that high pH values favored upstream pathway catalysis, while low pH values favored downstream pathway catalysis. Based on this theory, a two-stage pH control strategy was proposed. The pH was controlled at 7.0 during 0-10h, and was shifted to 6.5 after 10h. Finally, the (2S)-pinocembrin titers increased to 525.8mg/L. These results were attained in minimal medium without additional precursor supplementation, thus offering opportunities for industrial scale low-cost production of flavonoids.
Collapse
Affiliation(s)
- Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China
| | - Xia Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
14
|
Guo H, Wan H, Chen H, Fang F, Liu S, Zhou J. Proteomic analysis of the response of α-ketoglutarate-producer Yarrowia lipolytica WSH-Z06 to environmental pH stimuli. Appl Microbiol Biotechnol 2016; 100:8829-41. [PMID: 27535241 DOI: 10.1007/s00253-016-7775-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022]
Abstract
During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biological Chemical Engineering, Huaqiao University, 668 Jimei Road, Amoy, Fujian, 361021, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Hui Wan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Hongwen Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biological Chemical Engineering, Huaqiao University, 668 Jimei Road, Amoy, Fujian, 361021, China
| | - Fang Fang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin. J Biotechnol 2016; 231:183-192. [DOI: 10.1016/j.jbiotec.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 12/17/2022]
|
16
|
Ledesma-Amaro R, Nicaud JM. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 2016; 61:40-50. [DOI: 10.1016/j.plipres.2015.12.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
17
|
Ledesma-Amaro R, Dulermo T, Nicaud JM. Engineering Yarrowia lipolytica to produce biodiesel from raw starch. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:148. [PMID: 26379779 PMCID: PMC4571081 DOI: 10.1186/s13068-015-0335-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/03/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND In the last year, the worldwide concern about the abuse of fossil fuels and the seeking for alternatives sources to produce energy have found microbial oils has potential candidates for diesel substitutes. Yarrowia lipolytica has emerged as a paradigm organism for the production of bio-lipids in white biotechnology. It accumulates high amounts of lipids from glucose as sole carbon sources. Nonetheless, to lower the cost of microbial oil production and rival plant-based fuels, the use of raw and waste materials as fermentation substrate is required. Starch is one of the most abundant carbohydrates in nature and it is constituted by glucose monomers. Y. lipolytica lacks the capacity to breakdown this polymer and thus expensive enzymatic and/or physical pre-treatments are needed. RESULTS In this work, we express heterologous alpha-amylase and glucoamylase enzymes in Y. lipolytica. The modified strains were able to produce and secrete high amounts of active form of both proteins in the culture media. These strains were able to grow on starch as sole carbon source and produce certain amount of lipids. Thereafter, we expressed both enzymes in an engineered strain able to overaccumulate lipids. This strain was able to produce up to 21 % of DCW as fatty acids from soluble starch, 5.7 times more than the modified strain in the wild-type background. Media optimization to increase the C/N ratio to 90 increased total lipid content up to 27 % of DCW. We also tested these strains in industrial raw starch as a proof of concept of the feasibility of the consolidated bioprocess. Lipid production from raw starch was further enhanced by the expression of a second copy of each enzyme. Finally, we determined in silico that the properties of a biodiesel produced by this strain from raw starch would fit the established standards. CONCLUSIONS In this work, we performed a strain engineering approach to obtain a consolidated bioprocess to directly produce biolipids from raw starch. Additionally, we proved that lipid production from starch can be enhanced by both metabolic engineering and culture condition optimization, setting up the basis for further studies.
Collapse
Affiliation(s)
- Rodrigo Ledesma-Amaro
- />INRA, UMR1319 Micalis, 78350 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- />Institut Micalis, INRA-AgroParisTech, UMR1319, Team BIMLip, Biologie Intégrative du Métabolisme Lipidique, CBAI, 78850 Thiverval-Grignon, France
| | - Thierry Dulermo
- />INRA, UMR1319 Micalis, 78350 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Jean Marc Nicaud
- />INRA, UMR1319 Micalis, 78350 Jouy-en-Josas, France
- />AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- />Institut Micalis, INRA-AgroParisTech, UMR1319, Team BIMLip, Biologie Intégrative du Métabolisme Lipidique, CBAI, 78850 Thiverval-Grignon, France
| |
Collapse
|
18
|
Celińska E, Olkowicz M, Grajek W. L-Phenylalanine catabolism and 2-phenylethanol synthesis in Yarrowia lipolytica--mapping molecular identities through whole-proteome quantitative mass spectrometry analysis. FEMS Yeast Res 2015; 15:fov041. [PMID: 26060219 DOI: 10.1093/femsyr/fov041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
Abstract
A world-wide effort is now being pursued towards the development of flavors and fragrances (F&F) production independently from traditional sources, as well as autonomously from depleting fossil fuel supplies. Biotechnological production of F&F by microbes has emerged as a vivid solution to the current market limitations. Amongst a wide variety of fragrant chemicals, 2-PE is of significant interest to both scientific and industrial community. Although the general overview of the 2-PE synthesis pathway is commonly known, involvement of particular molecular identities in this pathway has not been elucidated in Yarrowia lipolytica to date. The aim of this study was mapping molecular identities involved in 2-PE synthesis in Y. lipolytica. To acquire a comprehensive landscape of the proteins that are directly and indirectly involved in L-Phe degradation and 2-PE synthesis, we took advantage of comprehensibility and sensitivity of high-throughput LC-MS/MS-quantitative analysis. Amongst a number of proteins involved in amino acid turnover and the central carbon metabolism, enzymes involved in L-Phe conversion to 2-PE have been identified. Results on yeast-to-hyphae transition in relation to the character of the provided nitrogen source have been presented.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Mariola Olkowicz
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Włodzimierz Grajek
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
19
|
Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, Irlinger F, Landaud S, Leclercq-Perlat MN, Bento P, Fraud S, Gibrat JF, Aubert J, Fer F, Guédon E, Pons N, Kennedy S, Beckerich JM, Swennen D, Bonnarme P. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS One 2015; 10:e0124360. [PMID: 25867897 PMCID: PMC4395090 DOI: 10.1371/journal.pone.0124360] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.
Collapse
Affiliation(s)
- Eric Dugat-Bony
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Cécile Straub
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Aurélie Teissandier
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Djamila Onésime
- INRA, Institut Micalis, F-78352, Jouy-en-Josas, France
- AgroParisTech, Institut Micalis, F-78352, Jouy-en-Josas, France
| | - Valentin Loux
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | - Christophe Monnet
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Françoise Irlinger
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Sophie Landaud
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Marie-Noëlle Leclercq-Perlat
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Pascal Bento
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | | | - Jean-François Gibrat
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | - Julie Aubert
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Frédéric Fer
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Eric Guédon
- INRA, Institut Micalis, F-78352, Jouy-en-Josas, France
- AgroParisTech, Institut Micalis, F-78352, Jouy-en-Josas, France
| | - Nicolas Pons
- INRA, US 1367 Metagenopolis, F-78352, Jouy-en-Josas, France
| | - Sean Kennedy
- INRA, US 1367 Metagenopolis, F-78352, Jouy-en-Josas, France
| | - Jean-Marie Beckerich
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Pascal Bonnarme
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
- * E-mail:
| |
Collapse
|
20
|
Guo H, Liu P, Madzak C, Du G, Zhou J, Chen J. Identification and application of keto acids transporters in Yarrowia lipolytica. Sci Rep 2015; 5:8138. [PMID: 25633653 PMCID: PMC4311248 DOI: 10.1038/srep08138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/08/2015] [Indexed: 01/18/2023] Open
Abstract
Production of organic acids by microorganisms is of great importance for obtaining building-block chemicals from sustainable biomass. Extracellular accumulation of organic acids involved a series of transporters, which play important roles in the accumulation of specific organic acid while lack of systematic demonstration in eukaryotic microorganisms. To circumvent accumulation of by-product, efforts have being orchestrated to carboxylate transport mechanism for potential clue in Yarrowia lipolytica WSH-Z06. Six endogenous putative transporter genes, YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D24607g, YALI0D20108g and YALI0E32901g, were identified. Transport characteristics and substrate specificities were further investigated using a carboxylate-transport-deficient Saccharomyces cerevisiae strain. These transporters were expressed in Y. lipolytica WSH-Z06 to assess their roles in regulating extracellular keto acids accumulation. In a Y. lipolytica T1 line over expressing YALI0B19470g, α-ketoglutarate accumulated to 46.7 g·L−1, whereas the concentration of pyruvate decreased to 12.3 g·L−1. Systematic identification of these keto acids transporters would provide clues to further improve the accumulation of specific organic acids with higher efficiency in eukaryotic microorganisms.
Collapse
Affiliation(s)
- Hongwei Guo
- 1] School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China [2] Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Peiran Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Catherine Madzak
- UMR1238 Microbiologie et Génétique Moléculaire, INRA/CNRS/AgroPan's Tech, CBAI, BP 01, 78850 Thiverval-Grignon, France
| | - Guocheng Du
- 1] School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China [2] Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- 1] School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China [2] Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- 1] School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China [2] Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
Guo H, Madzak C, Du G, Zhou J, Chen J. Effects of pyruvate dehydrogenase subunits overexpression on the α-ketoglutarate production in Yarrowia lipolytica WSH-Z06. Appl Microbiol Biotechnol 2014; 98:7003-12. [PMID: 24760229 DOI: 10.1007/s00253-014-5745-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/18/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Yarrowia lipolytica WSH-Z06 harbours a promising capability to oversynthesize α-ketoglutarate (α-KG). Its wide utilization is hampered by the formation of high concentrations of pyruvate. In this study, a metabolic strategy for the overexpression of the α and β subunits of pyruvate dehydrogenase E1, E2 and E3 components was designed to reduce the accumulation of pyruvate. Elevated expression level of α subunit of E1 component improved the α-KG production and reduced the pyruvate accumulation. Due to a reduction in the acetyl-CoA supply, neither the growth of cells nor the synthesis of α-KG was restrained by the overexpression of β subunit of E1, E2 and E3 components. Furthermore, via the overexpression of these thiamine pyrophosphate (TPP)-binding subunits, the dependency of pyruvate dehydrogenase on thiamine was diminished in strains T1 and T2, in which α and β subunits of E1 component were separately overexpressed. In these two recombinant strains, the accumulation of pyruvate was insensitive to variations in exogenous thiamine. The results suggest that α-KG production can be enhanced by altering the dependence on TPP of pyruvate dehydrogenase and that the competition for the cofactor can be switched to ketoglutarate dehydrogenase via separate overexpression of the TPP-binding subunits of pyruvate dehydrogenase. The results presented here provided new clue to improve α-KG production.
Collapse
Affiliation(s)
- Hongwei Guo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | | | | | | | | |
Collapse
|
22
|
Zhang B, Rong C, Chen H, Song Y, Zhang H, Chen W. De novo synthesis of trans-10, cis-12 conjugated linoleic acid in oleaginous yeast Yarrowia lipolytica. Microb Cell Fact 2012; 11:51. [PMID: 22545818 PMCID: PMC3390286 DOI: 10.1186/1475-2859-11-51] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 04/30/2012] [Indexed: 02/08/2023] Open
Abstract
Background Conjugated linoleic acid (CLA) has many well-documented beneficial physiological effects. Due to the insufficient natural supply of CLA and low specificity of chemically produced CLA, an effective and isomer-specific production process is required for medicinal and nutritional purposes. Results The linoleic acid isomerase gene from Propionibacterium acnes was expressed in Yarrowia lipolytica Polh. Codon usage optimization of the PAI and multi-copy integration significantly improved the expression level of PAI in Y. lipolytica. The percentage of trans-10, cis-12 CLA was six times higher in yeast carrying the codon-optimized gene than in yeast carrying the native gene. In combination with multi-copy integration, the production yield was raised to approximately 30-fold. The amount of trans-10, cis-12 CLA reached 5.9% of total fatty acid yield in transformed Y. lipolytica. Conclusions This is the first report of production of trans-10, cis-12 CLA by the oleaginous yeast Y. lipolytica, using glucose as the sole carbon source through expression of linoleic acid isomerase from Propionibacterium acnes.
Collapse
Affiliation(s)
- Baixi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Yin X, Madzak C, Du G, Zhou J, Chen J. Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol 2012; 96:1527-37. [DOI: 10.1007/s00253-012-4192-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/13/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
24
|
Kar T, Destain J, Thonart P, Delvigne F. Scale-down assessment of the sensitivity of Yarrowia lipolytica to oxygen transfer and foam management in bioreactors: investigation of the underlying physiological mechanisms. J Ind Microbiol Biotechnol 2011; 39:337-46. [PMID: 21879355 DOI: 10.1007/s10295-011-1030-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/11/2011] [Indexed: 12/01/2022]
Abstract
A scale-down investigation of the impact of local dissolved oxygen limitation on lipase production by Y. lipolytica has been performed. One of the major issues encountered during this kind of process is foam formation, requiring a reduction of the overall oxygen transfer efficiency of the system in order to keep antifoam consumption to a reasonable level. A regulation strategy involving oxygen enrichment of the air flow through the reactor has allowed this issue to be partly overcome. For a second time, the scale dependency of the process operated with air enrichment has been investigated by a combination of scale-down and pilot-scale cultivation tests. The scale-down apparatus considered in this work comprised a well-mixed part connected to a plug-flow part subjected to dissolved oxygen limitation. Surprisingly, foaming intensity was greatly reduced in the case of the test performed in scale-down reactors (SDRs) while maintaining the same stirring and aeration intensities in the stirred part of the reactor. For mean residence time of 100 s in the recycle loop of the reactor, foam formation was significantly reduced while cell growth and lipase production were both unaltered. When the residence time in the recycle loop was raised to 200 s, the foam phenomena was also reduced, but the lipase yield was altered as well as lip2 gene transcription and translation as shown by real-time quantitative polymerase chain reaction (RT-qPCR) and reporter gene activity, respectively. Our results clearly show the importance of primarily taking into account cell physiology for the scaling-up procedure.
Collapse
Affiliation(s)
- Tambi Kar
- Unité de Bio-Industries/CWBI, Université de Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | | | | |
Collapse
|
25
|
Xu S, Zhou J, Liu L, Chen J. Arginine: A novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Szopinska A, Morsomme P. Quantitative Proteomic Approaches and Their Application in the Study of Yeast Stress Responses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:639-49. [DOI: 10.1089/omi.2010.0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aleksandra Szopinska
- Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|