1
|
Wogram E, Sümpelmann F, Dong W, Rawat E, Fernández Maestre I, Fu D, Braswell B, Khalil A, Buescher JM, Mittler G, Borner GHH, Vlachos A, Tholen S, Schilling O, Bell GW, Rambold AS, Akhtar A, Schnell O, Beck J, Abu-Remaileh M, Prinz M, Jaenisch R. Rapid phagosome isolation enables unbiased multiomic analysis of human microglial phagosomes. Immunity 2024; 57:2216-2231.e11. [PMID: 39151426 DOI: 10.1016/j.immuni.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.
Collapse
Affiliation(s)
- Emile Wogram
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felix Sümpelmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Eshaan Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | | | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brandyn Braswell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Andrew Khalil
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; The Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Allsup BL, Gharpure S, Bryson BD. Proximity labeling defines the phagosome lumen proteome of murine and primary human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611277. [PMID: 39282337 PMCID: PMC11398489 DOI: 10.1101/2024.09.04.611277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Proteomic analyses of the phagosome has significantly improved our understanding of the proteins which contribute to critical phagosome functions such as apoptotic cell clearance and microbial killing. However, previous methods of isolating phagosomes for proteomic analysis have relied on cell fractionation with some intrinsic limitations. Here, we present an alternative and modular proximity-labeling based strategy for mass spectrometry proteomic analysis of the phagosome lumen, termed PhagoID. We optimize proximity labeling in the phagosome and apply PhagoID to immortalized murine macrophages as well as primary human macrophages. Analysis of proteins detected by PhagoID in murine macrophages demonstrate that PhagoID corroborates previous proteomic studies, but also nominates novel proteins with unexpected residence at the phagosome for further study. A direct comparison between the proteins detected by PhagoID between mouse and human macrophages further reveals that human macrophage phagosomes have an increased abundance of proteins involved in the oxidative burst and antigen presentation. Our study develops and benchmarks a new approach to measure the protein composition of the phagosome and validates a subset of these findings, ultimately using PhagoID to grant further insight into the core constituent proteins and species differences at the phagosome lumen.
Collapse
Affiliation(s)
- Benjamin L Allsup
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Supriya Gharpure
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Bryan D Bryson
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| |
Collapse
|
3
|
Kondethimmanahalli C, Ganta RR. Proteome analysis of Ehrlichia chaffeensis containing phagosome membranes revealed the presence of numerous bacterial and host proteins. Front Cell Infect Microbiol 2022; 12:1070356. [PMID: 36619760 PMCID: PMC9816426 DOI: 10.3389/fcimb.2022.1070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tick-transmitted Ehrlichia chaffeensis, the causative agent for human monocytic ehrlichiosis, resides and multiplies within a host cell phagosome. Infection progression of E. chaffeensis includes internalization into a host cell by host cell membrane fusion events following engulfment leading to the formation of E. chaffeensis containing vacuole (ECV). Revealing the molecular composition of ECV is important in understanding the host cellular processes, evasion of host defense pathways and in defining host-pathogen interactions. ECVs purified from infected host cells were analyzed to define both host and bacterial proteomes associated with the phagosome membranes. About 160 bacterial proteins and 2,683 host proteins were identified in the ECV membranes. The host proteins included predominantly known phagosome proteins involved in phagocytic trafficking, fusion of vesicles, protein transport, Ras signaling pathway and pathogenic infection. Many highly expressed proteins were similar to the previously documented proteins of phagosome vacuole membranes containing other obligate pathogenic bacteria. The finding of many bacterial membrane proteins is novel; they included multiple outer membrane proteins, such as the p28-Omps, the 120 kDa protein, preprotein translocases, lipoproteins, metal binding proteins, and chaperonins, although the presence of ankyrin repeat proteins, several Type I and IV secretion system proteins is anticipated. This study demonstrates that ECV membrane is extensively modified by the pathogen. This study represents the first and the most comprehensive description of ECV membrane proteome. The identity of many host and Ehrlichia proteins in the ECV membrane will be a valuable to define pathogenic mechanisms critical for the replication of the pathogen within macrophages.
Collapse
Affiliation(s)
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
4
|
Saha SS, Samanas NB, Miralda I, Shubin NJ, Niino K, Bhise G, Acharya M, Seo AJ, Camp N, Deutsch GH, James RG, Piliponsky AM. Mast cell surfaceome characterization reveals CD98 heavy chain is critical for optimal cell function. J Allergy Clin Immunol 2022; 149:685-697. [PMID: 34324892 PMCID: PMC8792104 DOI: 10.1016/j.jaci.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mast cells are involved in many distinct pathologic conditions, suggesting that they recognize and respond to various stimuli and thus require a rich repertoire of cell surface proteins. However, mast cell surface proteomes have not been comprehensively characterized. OBJECTIVE We aimed to further characterize the mast cell surface proteome to obtain a better understanding of how mast cells function in health and disease. METHODS We enriched for glycosylated surface proteins expressed in mouse bone marrow-derived cultured mast cells (BMCMCs) and identified them using mass spectrometry analysis. The presence of novel surface proteins in mast cells was validated by real-time quantitative PCR and flow cytometry analysis in BMCMCs and peritoneal mast cells (PMCs). We developed a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt genes of interest in BMCMCs. RESULTS The glycoprotein enrichment approach resulted in the identification of 1270 proteins in BMCMCs, 378 of which were localized to the plasma membrane. The most common protein classes among plasma membrane proteins were small GTPases, receptors, and transporters. One such cell surface protein was CD98 heavy chain (CD98hc), encoded by the Slc3a2 gene. Slc3a2 gene disruption resulted in a significant reduction in CD98hc expression, adhesion, and proliferation. CONCLUSIONS Glycoprotein enrichment coupled with mass spectrometry can be used to identify novel surface molecules in mast cells. Moreover, CD98hc plays an important role in mast cell function.
Collapse
Affiliation(s)
- Siddhartha S. Saha
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nyssa B. Samanas
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nicholas J. Shubin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kerri Niino
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Gauri Bhise
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Manasa Acharya
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Albert J. Seo
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nathan Camp
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Gail H. Deutsch
- Department of Laboratories, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Richard G. James
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America,Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America,Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America,Corresponding author: Adrian M. Piliponsky, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, 1900 9th Ave, Room 721, , Phone number: 206-884-7226, Fax number: 206-987-7310
| |
Collapse
|
5
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
6
|
Santecchia I, Ferrer MF, Vieira ML, Gómez RM, Werts C. Phagocyte Escape of Leptospira: The Role of TLRs and NLRs. Front Immunol 2020; 11:571816. [PMID: 33123147 PMCID: PMC7573490 DOI: 10.3389/fimmu.2020.571816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
- INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - María Florencia Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Monica Larucci Vieira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Martín Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Catherine Werts
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
| |
Collapse
|
7
|
Pauwels AM, Härtlova A, Peltier J, Driege Y, Baudelet G, Brodin P, Trost M, Beyaert R, Hoffmann E. Spatiotemporal Changes of the Phagosomal Proteome in Dendritic Cells in Response to LPS Stimulation. Mol Cell Proteomics 2019; 18:909-922. [PMID: 30808727 DOI: 10.1074/mcp.ra119.001316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/23/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are professional phagocytes that use innate sensing and phagocytosis to internalize and degrade self as well as foreign material, such as pathogenic bacteria, within phagosomes. These intracellular compartments are equipped to generate antigenic peptides that serve as source for antigen presentation to T cells initiating adaptive immune responses. The phagosomal proteome of DCs is only partially studied and is highly dynamic as it changes during phagosome maturation, when phagosomes sequentially interact with endosomes and lysosomes. In addition, the activation status of the phagocyte can modulate the phagosomal composition and is able to shape phagosomal functions.In this study, we determined spatiotemporal changes of the proteome of DC phagosomes during their maturation and compared resting and lipopolysaccharide (LPS)-stimulated bone marrow-derived DCs by label-free, quantitative mass spectrometry. Ovalbumin-coupled latex beads were used as phagocytosis model system and revealed that LPS-treated DCs show decreased recruitment of proteins involved in phagosome maturation, such as subunits of the vacuolar proton ATPase, cathepsin B, D, S, and RAB7. In contrast, those phagosomes were characterized by an increased recruitment of proteins involved in antigen cross-presentation, e.g. different subunits of MHC I molecules, the proteasome and tapasin, confirming the observed increase in cross-presentation efficacy in those cells. Further, several proteins were identified that were not previously associated with phagosomal functions. Hierarchical clustering of phagosomal proteins demonstrated that their acquisition to DC phagosomes is not only dependent on the duration of phagosome maturation but also on the activation state of DCs. Thus, our study provides a comprehensive overview of how DCs alter their phagosome composition in response to LPS, which has profound impact on the initiation of efficient immune responses.
Collapse
Affiliation(s)
- Anne-Marie Pauwels
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anetta Härtlova
- ¶Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Julien Peltier
- ¶Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Yasmine Driege
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Baudelet
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscille Brodin
- ‖Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Matthias Trost
- ¶Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rudi Beyaert
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eik Hoffmann
- From the ‡Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium;; §Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;; ‖Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
8
|
Gutiérrez S, Wolke M, Plum G, Robinson N. Isolation of Salmonella typhimurium-containing Phagosomes from Macrophages. J Vis Exp 2017. [PMID: 29155747 DOI: 10.3791/56514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmonella typhimurium is a facultative intracellular bacterium that causes gastroenteritis in humans. After invasion of the lamina propria, S. typhimurium bacteria are quickly detected and phagocytized by macrophages, and contained in vesicles known as phagosomes in order to be degraded. Isolation of S. typhimurium-containing phagosomes have been widely used to study how S. typhimurium infection alters the process of phagosome maturation to prevent bacterial degradation. Classically, the isolation of bacteria-containing phagosomes has been performed by sucrose gradient centrifugation. However, this process is time-consuming, and requires specialized equipment and a certain degree of dexterity. Described here is a simple and quick method for the isolation of S. typhimurium-containing phagosomes from macrophages by coating the bacteria with biotin-streptavidin-conjugated magnetic beads. Phagosomes obtained by this method can be suspended in any buffer of choice, allowing the utilization of isolated phagosomes for a broad range of assays, such as protein, metabolite, and lipid analysis. In summary, this method for the isolation of S. typhimurium-containing phagosomes is specific, efficient, rapid, requires minimum equipment, and is more versatile than the classical method of isolation by sucrose gradient-ultracentrifugation.
Collapse
Affiliation(s)
- Saray Gutiérrez
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne
| | - Martina Wolke
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne
| | - Georg Plum
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne
| | - Nirmal Robinson
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne;
| |
Collapse
|
9
|
Semini G, Aebischer T. Phagosome proteomics to study Leishmania's intracellular niche in macrophages. Int J Med Microbiol 2017; 308:68-76. [PMID: 28927848 DOI: 10.1016/j.ijmm.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
10
|
Pauwels AM, Trost M, Beyaert R, Hoffmann E. Patterns, Receptors, and Signals: Regulation of Phagosome Maturation. Trends Immunol 2017; 38:407-422. [PMID: 28416446 PMCID: PMC5455985 DOI: 10.1016/j.it.2017.03.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Recognition of microbial pathogens and dead cells and their phagocytic uptake by specialized immune cells are essential to maintain host homeostasis. Phagosomes undergo fusion and fission events with endosomal and lysosomal compartments, a process called ‘phagosome maturation’, which leads to the degradation of the phagosomal content. However, many phagocytic cells also act as antigen-presenting cells and must balance degradation and peptide preservation. Emerging evidence indicates that receptor engagement by phagosomal cargo, as well as inflammatory mediators and cellular activation affect many aspects of phagosome maturation. Unsurprisingly, pathogens have developed strategies to hijack this machinery, thereby interfering with host immunity. Here, we highlight progress in this field, summarize findings on the impact of immune signals, and discuss consequences for pathogen elimination. Self and non-self immune signals are able to delay or accelerate phagosome maturation, and their effects are dependent on the phagocytic cell type, duration of stimulation, and whether the stimulus is particle bound or present in the cellular environment. Acceleration of phagosome maturation enhances pathogen killing, while a delay in phagosome maturation preserves antigenic peptides for presentation to T cells and to initiate adaptive immune responses. Besides its functions in pathogen killing and antigen presentation, the phagosome also functions as a signaling platform and interacts with other cell organelles. Some pathogens are able to arrest phagosome maturation to enhance their intraphagosomal survival and replication or to promote phagosomal escape. The latex bead phagocytosis model system combined with mass spectrometry is a powerful technique to analyze changes in the phagosomal proteome.
Collapse
Affiliation(s)
- Anne-Marie Pauwels
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthias Trost
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eik Hoffmann
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Current address: Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
11
|
Lamberti Y, Cafiero JH, Surmann K, Valdez H, Holubova J, Večerek B, Sebo P, Schmidt F, Völker U, Rodriguez ME. Proteome analysis of Bordetella pertussis isolated from human macrophages. J Proteomics 2016; 136:55-67. [DOI: 10.1016/j.jprot.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
|
12
|
Herweg JA, Hansmeier N, Otto A, Geffken AC, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, Hilbi H. Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 2015; 5:48. [PMID: 26082896 PMCID: PMC4451638 DOI: 10.3389/fcimb.2015.00048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Nicole Hansmeier
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Anna C Geffken
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Prema Subbarayal
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Bhupesh K Prusty
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Ulrich E Schaible
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Hubert Hilbi
- Department of Medicine, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich Munich, Germany ; Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|
13
|
Inpp5e increases the Rab5 association and phosphatidylinositol 3-phosphate accumulation at the phagosome through an interaction with Rab20. Biochem J 2015; 464:365-75. [PMID: 25269936 DOI: 10.1042/bj20140916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphoinositide 5'-phosphatases have been implicated in the regulation of phagocytosis. However, their precise roles in the phagocytic process are poorly understood. We prepared RAW264.7 macrophages deficient in Inpp5e (shInpp5e) to clarify the role of this lipid phosphatase. In the shInpp5e cells, the uptake of solid particles was increased and the rate of phagosome acidification was accelerated. As expected, levels of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 were increased and decreased respectively, on the forming phagocytic cups of these cells. Unexpectedly, the most prominent consequence of the Inpp5e deficiency was the decreased accumulation of PtdIns3P and Rab5 on the phagosome. The expression of a constitutively active form of Rab5b in the shInpp5e cells rescued the PtdIns3P accumulation. Rab20 has been reported to regulate the activity of Rabex5, a guanine nucleotide exchange factor for Rab5. The association of Rab20 with the phagosome was remarkably abrogated in the shInpp5e cells. Over-expression of Rab20 increased phagosomal PtdIns3P accumulation and delayed its elimination. These results suggest that Inpp5e, through functional interactions with Rab20 on the phagosome, activates Rab5, which, in turn, increases PtdIns3P and delays phagosome acidification.
Collapse
|
14
|
Quero S, Párraga-Niño N, García-Núñez M, Sabrià M. [Proteomics in infectious diseases]. Enferm Infecc Microbiol Clin 2015; 34:253-60. [PMID: 25583331 DOI: 10.1016/j.eimc.2014.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 11/27/2022]
Abstract
Infectious diseases have a high incidence in the population, causing a major impact on global health. In vitro culture of microorganisms is the first technique applied for infection diagnosis which is laborious and time consuming. In recent decades, efforts have been focused on the applicability of "Omics" sciences, highlighting the progress provided by proteomic techniques in the field of infectious diseases. This review describes the management, processing and analysis of biological samples for proteomic research.
Collapse
Affiliation(s)
- Sara Quero
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España; Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, España
| | - Noemí Párraga-Niño
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España.
| | - Marian García-Núñez
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España; CIBER de Enfermedades Respiratorias, Bunyola, Illes Balears, España
| | - Miquel Sabrià
- Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, España; CIBER de Enfermedades Respiratorias, Bunyola, Illes Balears, España; Unitat de Malalties Infeccioses, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| |
Collapse
|
15
|
Pei G, Repnik U, Griffiths G, Gutierrez MG. Identification of an immune-regulated phagosomal Rab cascade in macrophages. J Cell Sci 2014; 127:2071-82. [PMID: 24569883 PMCID: PMC4004979 DOI: 10.1242/jcs.144923] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-γ (IFN-γ) has been shown to regulate phagosome trafficking and function in macrophages, but the molecular mechanisms involved are poorly understood. Here, we identify Rab20 as part of the machinery by which IFN-γ controls phagosome maturation. We found that IFN-γ stimulates the association of Rab20 with early phagosomes in macrophages. By using imaging of single phagosomes in live cells, we found that Rab20 induces an early delay in phagosome maturation and extends the time for which Rab5a and phosphatidylinositol 3-phosphate (PI3P) remain associated with phagosomes. Moreover, Rab20 depletion in macrophages abrogates the delay in phagosome maturation induced by IFN-γ. Finally, we demonstrate that Rab20 interacts with the Rab5a guanine nucleotide exchange factor Rabex-5 (also known as RABGEF1) and that Rab20 knockdown impairs the IFN-γ-dependent recruitment of Rabex-5 and Rab5a into phagosomes. Taken together, here, we uncover Rab20 as a key player in the Rab cascade by which IFN-γ induces a delay in phagosome maturation in macrophages.
Collapse
Affiliation(s)
- Gang Pei
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
16
|
Study of macrophage functions in murine J774 cells and human activated THP-1 cells exposed to oritavancin, a lipoglycopeptide with high cellular accumulation. Antimicrob Agents Chemother 2014; 58:2059-66. [PMID: 24449768 DOI: 10.1128/aac.02475-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oritavancin, a lipoglycopeptide antibiotic in development, accumulates to high levels in the lysosomes of eukaryotic cells. We examined specific functions of macrophages (phagocytic capacity, lysosomal integrity, metabolic activity, and production of reactive oxygen species [ROS]) in correlation with the cellular accumulation of the drug, using J774 mouse macrophages and THP-1 human monocytes differentiated into macrophages using phorbol 12-myristate 13-acetate. Oritavancin did not affect Pseudomonas aeruginosa phagocytosis, lysosomal integrity, or metabolic activity in cells incubated for 3 h with extracellular concentrations ranging from 5 to 50 μg/ml. At extracellular concentrations of ≥25 μg/ml, oritavancin reduced latex bead phagocytosis by approximately 50% and doubled ROS production in J774 macrophages only. This may result from the fact that the cellular accumulation of oritavancin was 15 times higher in J774 cells than in activated THP-1 cells at 3 h. Human pharmacokinetic studies estimate that the concentration of oritavancin in alveolar macrophages could reach approximately 560 μg/ml after administration of a cumulative dose of 4 g, which is below the cellular concentration needed in the present study to impair latex bead phagocytosis (1,180 μg/ml) or to stimulate ROS production (15,000 μg/ml) by J774 cells. The data, therefore, suggest that, in spite of its substantial cellular accumulation, oritavancin is unlikely to markedly affect macrophage functions under the conditions of use investigated in current phase III trials (a single dose of 1,200 mg).
Collapse
|
17
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013. [PMID: 23386811 DOI: 10.3389/fncel.2013.00006/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
18
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
19
|
Stein MP, Müller MP, Wandinger-Ness A. Bacterial pathogens commandeer Rab GTPases to establish intracellular niches. Traffic 2012; 13:1565-88. [PMID: 22901006 DOI: 10.1111/tra.12000] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/13/2012] [Indexed: 12/11/2022]
Abstract
Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post-translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Department of Biology, California State University, Northridge, Northridge, CA, USA.
| | | | | |
Collapse
|
20
|
He Y, Li W, Liao G, Xie J. Mycobacterium tuberculosis-Specific Phagosome Proteome and Underlying Signaling Pathways. J Proteome Res 2012; 11:2635-43. [DOI: 10.1021/pr300125t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ying He
- Institute of Modern Biopharmaceuticals,
State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource
of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Weimin Li
- Beijing Tuberculosis & Thoracic Tumor Research Institute, Tongzhou Qu, Beijing 101149
| | - Guojian Liao
- Institute
of Modern Biopharmaceuticals,
School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals,
State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource
of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
21
|
Buschow SI, Lasonder E, Szklarczyk R, Oud MM, de Vries IJM, Figdor CG. Unraveling the human dendritic cell phagosome proteome by organellar enrichment ranking. J Proteomics 2011; 75:1547-62. [PMID: 22146474 DOI: 10.1016/j.jprot.2011.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) take up pathogens through phagocytosis and process them into protein and lipid fragments for presentation to T cells. So far, the proteome of the human DC phagosome, a detrimental compartment for antigen processing and presentation as well as for DC activation, remains largely uncharacterized. Here we have analyzed the protein composition of phagosomes from human monocyte-derived DC. For LC-MS/MS analysis we purified phagosomes from DC using latex beads targeted to DC-SIGN, and quantified proteins using a label-free method. We used organellar enrichment ranking (OER) to select proteins with a high potential to be relevant for phagosome function. The method compares phagosome protein abundance with protein abundance in whole DC. Phagosome enrichment indicates specific recruitment to the phagosome rather than co-purification or passive incorporation. Using OER we extracted the most enriched proteins that we further complemented with functionally associated proteins to define a set of 90 phagosomal proteins that included many proteins with established relevance on DC phagosomes as well as high potential novel candidates. We already experimentally confirmed phagosomal recruitment of Galectin-9, which has not been previously associated with phagocytosis, to both bead and pathogen containing phagosomes, suggesting a role for Galectin-9 in DC phagocytosis.
Collapse
Affiliation(s)
- Sonja I Buschow
- Department of Tumor Immunology at the Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Guimarães de Araújo ME, Huber LA, Stasyk T. Latex beads internalization and quantitative proteomics join forces to decipher the endosomal proteome. Expert Rev Proteomics 2011; 8:303-7. [PMID: 21679111 DOI: 10.1586/epr.11.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proteome analysis of endocytic compartments has been constrained by the limited purity of the organelle fractions obtained by current biochemical methods. Duclos and coworkers have developed a novel method to isolate highly purified endosomal organelles based on small latex beads internalization followed by gradient centrifugation and successfully combined it with a redundant peptide counting method to compare the relative abundance of proteins in organelles. The presence of bona fide markers in their respective subcellular organelles and the identification of several new endosomal-associated proteins, attested the applicability of their combinatory approach. Future applications of this strategy may deliver a comprehensive endosomal proteome chart: from the identification of the key players to the determination of time and signaling-dependent proteome changes. As a long-term perspective, such an approach may unveil new clues to the molecular mechanisms underlining human diseases associated with endosomal biogenesis defects.
Collapse
|
23
|
Li Q. Phagosome proteomics: a powerful tool to assess bacteria-mediated immunomodulation. Bioeng Bugs 2011; 2:194-8. [PMID: 21829091 DOI: 10.4161/bbug.2.4.15563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacteria-mediated immunomodulation has important implications in microbial infection and bacterial vaccines. Intraphagosomal bacteria negotiate survival niches with the intracellular environment by modulating the phagosome composition during invasion. The final phagosome composition determines the fate of the intraphagosomal bacterium or the efficacy of a bacterial vaccine. Therefore, the phagosome proteome is a valuable readout to assess the ability of a natural or genetically engineered bacterial strain to modulate the host immune response. Compared to a preparation of latex-bead-containing phagosomes, the preparation of bacterial phagosomes requires additional measures to ensure comparable purity due to their closer density to some other organelles. This bottleneck can be overcome with delicate preparation protocols, proper experimental designs to facilitate bioinformatics based discrimination against contaminating proteins, and the incorporation of stable-isotope labeled internal standards to correct for contaminating fractions of phagosomal proteins. The rapid progress in the proteomics and bioinformatics fields provides an array of techniques that promise to bring about an unprecedented coverage of both known and as yet undiscovered immunomodulation pathways within bacterial phagosome proteomes. A precise portrait of the bacteria-mediated immunomodulation pathways in phagosomes will likely aid in the intelligent design of bioengineered bacterial vaccine strains for important future biomedical applications.
Collapse
Affiliation(s)
- Qingbo Li
- Center for Pharmaceutical Biotechnology and Department of Microbiology and Immunology, University of Illinois, Chicago, USA. ial infectio
| |
Collapse
|
24
|
Schmidt F, Völker U. Proteome analysis of host-pathogen interactions: Investigation of pathogen responses to the host cell environment. Proteomics 2011; 11:3203-11. [DOI: 10.1002/pmic.201100158] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/20/2011] [Indexed: 11/06/2022]
|
25
|
Li Q, Singh CR, Ma S, Price ND, Jagannath C. Label-free proteomics and systems biology analysis of mycobacterial phagosomes in dendritic cells and macrophages. J Proteome Res 2011; 10:2425-39. [PMID: 21413810 DOI: 10.1021/pr101245u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteomics has been applied to study intracellular bacteria and phagocytic vacuoles in different host cell lines, especially macrophages (Mφs). For mycobacterial phagosomes, few studies have identified over several hundred proteins for systems assessment of the phagosome maturation and antigen presentation pathways. More importantly, there has been a scarcity in publication on proteomic characterization of mycobacterial phagosomes in dendritic cells (DCs). In this work, we report a global proteomic analysis of Mφ and DC phagosomes infected with a virulent, an attenuated, and a vaccine strain of mycobacteria. We used label-free quantitative proteomics and bioinformatics tools to decipher the regulation of phagosome maturation and antigen presentation pathways in Mφs and DCs. We found that the phagosomal antigen presentation pathways are repressed more in DCs than in Mφs. The results suggest that virulent mycobacteria might co-opt the host immune system to stimulate granuloma formation for persistence while minimizing the antimicrobial immune response to enhance mycobacterial survival. The studies on phagosomal proteomes have also shown promise in discovering new antigen presentation mechanisms that a professional antigen presentation cell might use to overcome the mycobacterial blockade of conventional antigen presentation pathways.
Collapse
Affiliation(s)
- Qingbo Li
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, United States.
| | | | | | | | | |
Collapse
|
26
|
Protein microarrays and biomarkers of infectious disease. Int J Mol Sci 2010; 11:5165-83. [PMID: 21614200 PMCID: PMC3100839 DOI: 10.3390/ijms11125165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 01/11/2023] Open
Abstract
Protein microarrays are powerful tools that are widely used in systems biology research. For infectious diseases, proteome microarrays assembled from proteins of pathogens will play an increasingly important role in discovery of diagnostic markers, vaccines, and therapeutics. Distinct formats of protein microarrays have been developed for different applications, including abundance-based and function-based methods. Depending on the application, design issues should be considered, such as the need for multiplexing and label or label free detection methods. New developments, challenges, and future demands in infectious disease research will impact the application of protein microarrays for discovery and validation of biomarkers.
Collapse
|