1
|
Kim I, Lertpatipanpong P, Yoon Y, Lee J, Hong Y, Boonruang K, Ryu J, Baek SJ. Tolfenamic acid negatively regulates YAP and TAZ expression in human cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119556. [PMID: 37544381 DOI: 10.1016/j.bbamcr.2023.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Several diseases are associated with improper regulation of the Hippo pathway, which plays an important role in cell proliferation and cancer metastasis. Overactivation of the YAP and TAZ proteins accelerates cell proliferation, invasion, and migration during tumorigenesis. Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug (NSAID) that exhibits activity against various types of cancer. In this study, we observed that TA decreased YAP and TAZ protein levels in cancer cells. TA increased the phosphorylation of YAP and TAZ, leading to the degradation of YAP and TAZ in the cytoplasm and nucleus. TA predominantly affected multiple phosphodegron sites in the YAP and TAZ and lowered 14-3-3β protein expression, causing YAP and TAZ to enter the ubiquitination pathway. Proteins that affect YAP and TAZ regulation, such as NAG-1 and several YAP/TAZ E3 ligases, were not involved in TA-mediated YAP/TAZ degradation. In summary, our results indicate that TA affects phosphodegron sites on YAP/TAZ, demonstrating a novel effect of TA in tumorigenesis.
Collapse
Affiliation(s)
- Ilju Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Pattawika Lertpatipanpong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yongdae Yoon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Kanokkan Boonruang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
The Emerging Roles of circSMARCA5 in Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3015818. [PMID: 35712125 PMCID: PMC9197613 DOI: 10.1155/2022/3015818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/18/2022] [Accepted: 05/21/2022] [Indexed: 12/09/2022]
Abstract
Circular RNAs have a unique covalent closed-loop structure, which is mainly formed by the reverse splicing of exons from a precursor mRNA. With the development of key technologies such as high-throughput sequencing and the advancement of bioinformatics in recent years, our understanding of circular RNAs has become increasingly more detailed, and their abnormal expression in a variety of cancers has attracted increasing attention. Studies have shown that circSNARCA5 not only plays a crucial role in the occurrence and development of cancer but may also serve as a reliable indicator for tumor screening or a good marker for evaluating cancer prognosis. Nevertheless, there are no reviews focusing on the relationship between circSMARCA5 and cancer. Therefore, we will first explain the main biological characteristics of circSMARCA5, such as biogenesis and biological effects. Then, the focus will be on its role and significance in cancer. Finally, we will summarize the known information on circSMARCA5 in cancer and discuss future research prospects.
Collapse
|
4
|
Hua Y, Wang H, Wang H, Wu X, Yang L, Wang C, Li X, Jin Y, Li M, Wang L, Dong C, Yin F. Circular RNA Circ_0006282 Promotes Cell Proliferation and Metastasis in Gastric Cancer by Regulating MicroRNA-144-5p/Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein β Axis. Cancer Manag Res 2021; 13:815-827. [PMID: 33536789 PMCID: PMC7850404 DOI: 10.2147/cmar.s283952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a class of non-coding RNAs which function as novel regulators in human cancers. In this study, we aimed to investigate the functional roles and related molecular mechanisms of circ_0006282 in gastric cancer (GC) progression. Methods Fifty-five GC patients were enrolled in this study. GC cells (AGS and HGC-27) and normal cells (GES-1) were cultured in RPMI1640 added with 10% FBS and 1% penicillin-streptomycin. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to determine the expression levels of circ_0006282, transcription elongation factor B subunit 1 (TCEB1) mRNA, miR-144-5p and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein β (YWHAB; also known as 14-3-3β). RNase R assay was used to determine the characteristic of circ_0006282. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were employed for cell proliferation. Transwell assay was conducted for cell migration and invasion. Western blot assay was carried out to measure the protein levels of Cyclin D1, matrix metalloprotein 9 (MMP9) and YWHAB. Dual-luciferase reporter assay, RNA pull-down assay and RIP assay were adopted to analyze the interaction between miR-144-5p and circ_0006282 or YWHAB. Murine xenograft model assay was performed to explore the function of circ_0006282 in vivo. Results Circ_0006282 level was increased in GC tissues and cells compared to normal tissues and cells. Silencing of circ_0006282 restrained GC cell proliferation, migration and invasion. For mechanism analysis, circ_0006282 was identified to function as the sponge for miR-144-5p to positively regulate YWHAB expression in GC cells. Moreover, miR-144-5p inhibition or YWHAB overexpression effectively reversed the impacts of circ_0006282 knockdown on GC cell growth and motility. Additionally, circ_0006282 knockdown blocked tumor growth of GC in vivo. Conclusion Circ_0006282 facilitated the malignant behaviors of GC cells through circ_0006282/miR-144-5p/YWHAB axis.
Collapse
Affiliation(s)
- Yunqi Hua
- Department of Digestive Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People's Republic of China
| | - Hailong Wang
- Department of Digestive Minimally Invasive Surgery, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, People's Republic of China
| | - Haizhen Wang
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, People's Republic of China
| | - Xiangming Wu
- Department of General Surgery, The Fourth Hospital of Baotou, Baotou, Inner Mongolia, People's Republic of China
| | - Li Yang
- Department of Pathology, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, People's Republic of China
| | - Chenlin Wang
- Department of Digestive Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People's Republic of China
| | - Xi Li
- Department of Digestive Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People's Republic of China
| | - Yunjian Jin
- Department of Digestive Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People's Republic of China
| | - Min Li
- Department of Digestive Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People's Republic of China
| | - Lina Wang
- Department of Digestive Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People's Republic of China
| | - Changcheng Dong
- Department of General Surgery, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, People's Republic of China
| | - Fangrui Yin
- Department of Central Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, People's Republic of China
| |
Collapse
|
5
|
Zhang X, Zhang Q, Zhang K, Wang F, Qiao X, Cui J. Circ SMARCA5 Inhibited Tumor Metastasis by Interacting with SND1 and Downregulating the YWHAB Gene in Cervical Cancer. Cell Transplant 2021; 30:963689720983786. [PMID: 33588586 PMCID: PMC7894587 DOI: 10.1177/0963689720983786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is one of the diseases that seriously endanger women's health. Circular RNA plays an important role in regulating the occurrence and development of cervical cancer. Here, we investigated the mechanisms of circ SMARCA5 in the development of cervical cancer. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) results showed that the expression of SMARCA5 was downregulated in cervical cancer tissues and cell lines. Then we found that overexpression of SMARCA5 inhibited proliferation and invasion, but promoted apoptosis in cervical cancer cells. These were detected by Cell Counting Kit-8, Transwell, and Annexin V-fluorescein isothiocyanate/propidium iodide detection kit, respectively, and the expression of the apoptosis-related proteins was determined by western blotting. Then we predicted that SMARCA5 combined with Staphylococcal nuclease domain-containing 1 (SND1) by starBase, and verified by RNA pull-down assay. To further reveal the molecular mechanisms of SMARCA5 in the progression of cervical cancer, the interaction protein of SND1 was predicted by STRING, and the interaction was verified by co-immunoprecipitation assay. Then, the effects of SND1 or YWHAB on the development of cervical cancer were detected by the gain and loss function test, and we found that knockdown of SND1 or YWHAB reversed the effects of SMARCA5 short interfering RNA on proliferation, invasion, and apoptosis of cervical cancer cells. Overexpression of SMARCA5 inhibited cervical cancer metastasis in vivo. Our results showed that overexpression of circ SMARCA5 inhibits the binding of SND1 to YWHAB, and inhibits the proliferation and invasion, but promotes apoptosis in cervical cancer cells, thus inhibiting the metastasis of cervical cancer.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Zhengzhou University, Henan Province, China
| | - Qing Zhang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Zhengzhou University, Henan Province, China
| | - Ke Zhang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Zhengzhou University, Henan Province, China
| | - Fang Wang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Zhengzhou University, Henan Province, China
| | - Xiaogai Qiao
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Zhengzhou University, Henan Province, China
| | - Jinquan Cui
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Zhengzhou University, Henan Province, China
| |
Collapse
|
6
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Challenges and Opportunities in Clinical Applications of Blood-Based Proteomics in Cancer. Cancers (Basel) 2020; 12:cancers12092428. [PMID: 32867043 PMCID: PMC7564506 DOI: 10.3390/cancers12092428] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The traditional approach in identifying cancer related protein biomarkers has focused on evaluation of a single peptide/protein in tissue or circulation. At best, this approach has had limited success for clinical applications, since multiple pathological tumor pathways may be involved during initiation or progression of cancer which diminishes the significance of a single candidate protein/peptide. Emerging sensitive proteomic based technologies like liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics can provide a platform for evaluating serial serum or plasma samples to interrogate secreted products of tumor–host interactions, thereby revealing a more “complete” repertoire of biological variables encompassing heterogeneous tumor biology. However, several challenges need to be met for successful application of serum/plasma based proteomics. These include uniform pre-analyte processing of specimens, sensitive and specific proteomic analytical platforms and adequate attention to study design during discovery phase followed by validation of discovery-level signatures for prognostic, predictive, and diagnostic cancer biomarker applications. Abstract Blood is a readily accessible biofluid containing a plethora of important proteins, nucleic acids, and metabolites that can be used as clinical diagnostic tools in diseases, including cancer. Like the on-going efforts for cancer biomarker discovery using the liquid biopsy detection of circulating cell-free and cell-based tumor nucleic acids, the circulatory proteome has been underexplored for clinical cancer biomarker applications. A comprehensive proteome analysis of human serum/plasma with high-quality data and compelling interpretation can potentially provide opportunities for understanding disease mechanisms, although several challenges will have to be met. Serum/plasma proteome biomarkers are present in very low abundance, and there is high complexity involved due to the heterogeneity of cancers, for which there is a compelling need to develop sensitive and specific proteomic technologies and analytical platforms. To date, liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics has been a dominant analytical workflow to discover new potential cancer biomarkers in serum/plasma. This review will summarize the opportunities of serum proteomics for clinical applications; the challenges in the discovery of novel biomarkers in serum/plasma; and current proteomic strategies in cancer research for the application of serum/plasma proteomics for clinical prognostic, predictive, and diagnostic applications, as well as for monitoring minimal residual disease after treatments. We will highlight some of the recent advances in MS-based proteomics technologies with appropriate sample collection, processing uniformity, study design, and data analysis, focusing on how these integrated workflows can identify novel potential cancer biomarkers for clinical applications.
Collapse
|
8
|
Li C, Li Z, Zhang M. Low Expression of 14-3-3beta Is Associated With Adverse Survival of Diffuse Large B-Cell Lymphoma Patients. Front Med (Lausanne) 2019; 6:237. [PMID: 31737636 PMCID: PMC6831549 DOI: 10.3389/fmed.2019.00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin's lymphoma in the world, is highly heterogeneous. Although current therapies have improved the clinical outcome, 30-40% of the patients are still not cured. Thus, novel treatment options such as targeted therapy is urgently needed. Accumulating evidence suggests that 14-3-3beta protein plays an important role in tumorigenesis and tumor progression. However, the specific roles of 14-3-3beta in DLBCL are still poorly understood. In this study, we retrospectively analyzed 120 archived wax blocks obtained from patients with DLBCL (n = 70) and non-neoplastic lymph nodes (n = 50). Immunohistochemical staining showed that 14-3-3beta gene expression was significantly decreased in DLBCL tissues (P < 0.001) compared to that in non-neoplastic lymph nodes. Low 14-3-3beta expression was significantly correlated with extra-nodal status (P = 0.026), serum LDH level (P = 0.023) and adverse survival of DLBCL patients. In survival analyses, low 14-3-3beta expression was significantly associated with adverse overall survival of the DLBCL patients (P = 0.003). Using the Kaplan-Meier analysis module of the R2 microarray analysis and visualization platform (http://r2.amc.nl), we also confirmed that low expression of 14-3-3beta gene had inferior overall survival in DLBCL patients. Based on our results, we conclude that low expression of 14-3-3beta is associated with adverse survival of diffuse large B-cell lymphoma patients, suggesting a novel prognostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Chaoping Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science of Zhengzhou University, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Tang Y, Zhang Y, Wang C, Sun Z, Li L, Dong J, Zhou W. 14-3-3ζ binds to hepatitis B virus protein X and maintains its protein stability in hepatocellular carcinoma cells. Cancer Med 2018; 7:5543-5553. [PMID: 30358169 PMCID: PMC6247021 DOI: 10.1002/cam4.1512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
14‐3‐3ζ, a phosphopeptide‐binding molecule, is reportedly overexpressed in the cancerous tissues of patients with hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) protein X (HBx) draws intensive attention in HBV‐related HCC because it not only regulates HBV replication, but also promotes carcinogenesis by interacting with various tumor or antitumor molecules. This study is performed to investigate whether and how 14‐3‐3ζ interacts with HBx. The coimmunoprecipitation (Co‐IP) results showed that 14‐3‐3ζ bond to HBx in HBV‐infected Hep3B HCC cells and CSQT‐2 portal vein tumor thrombosis (PVTT) cells. By performing Co‐IP assay in HBV‐free Huh7 cells expressing wild‐type HBx, mutant HBx‐S31A, or HBx‐S31D (serine31 was mutated into alanine31 or aspartic acid31), we found that the phosphorylated serine31 with its near amino acid residues constituted a RPLphosphoS31GP (R, arginine; P, proline; L, leucine; S, serine; G, glycine) motif in HBx for 14‐3‐3ζ docking. This 14‐3‐3ζ‐HBx interaction was partly impaired when Akt signaling transduction was blocked by LY294002. Furthermore, 14‐3‐3ζ silencing augmented HBx ubiquitination and decreased its expression in cancer cells and xenograft tumor. The migratory and invasive abilities of CSQT‐2 cells were inhibited upon 14‐3‐3ζ silencing, whereas partly restored by HBx overexpression. Additionally, 14‐3‐3ζ positively correlated with HBx to be overexpressed in the primary HCC tissues (r = 0.344) and metastatic PVTT (r = 0.348). In summary, findings of this study reveal a novel 14‐3‐3ζ‐HBx interaction in HCC cells and suggest 14‐3‐3ζ as a candidate target for treating HBV‐related HCC.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China.,Post-doctoral Station, The General Hospital of Shenyang Military Area Command, Shenyang, 10016, China
| | - Yibing Zhang
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| | - Chunhui Wang
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| | - Zhongyi Sun
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| | - Longfei Li
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wenping Zhou
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| |
Collapse
|
10
|
YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process. Oncotarget 2018; 7:85393-85410. [PMID: 27863420 PMCID: PMC5356744 DOI: 10.18632/oncotarget.13381] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
We previously observed reduced YWHAE (14-3-3ε) protein expression in a small set of gastric cancer samples. YWHAE may act as a negative regulator of the cyclin CDC25B, which is a transcriptional target of MYC oncogene. The understanding of YWHAE role and its targets is important for the better knowledge of gastric carcinogenesis. Thus, we aimed to evaluate the relationship among YWHAE, CDC25B, and MYC in vitro and in vivo. For this, we analyzed the YWHAE, CDC25B, and MYC expression in YWHA-silenced, CDC25B-silenced, and MYC-silenced gastric cancer cell lines, as well as in gastric cancer and non-neoplastic gastric samples. In gastric cancer cell lines, YWHAE was able to inhibit the cell proliferation, invasion and migration through the reduction of MYC and CDC25B expression. Conversely, MYC induced the cell proliferation, invasion and migration through the induction of CDC25B and the reduction of YWHAE. Most of the tumors presented reduced YWHAE and increased CDC25B expression, which seems to be important for tumor development. Increased MYC expression was a common finding in gastric cancer and has a role in poor prognosis. In the tumor initiation, the opposite role of YWHAE and CDC25B in gastric carcinogenesis seems to be independent of MYC expression. However, the inversely correlation between YWHAE and MYC expression seems to be important for gastric cancer cells invasion and migration. The interaction between YWHAE and MYC and the activation of the pathways related to this interaction play a role in the metastasis process.
Collapse
|
11
|
Lin H, Jiao X, Yu B, Du J, Xu H, Dong A, Wan C. Clinical significance of serum 14-3-3 beta in patients with hepatocellular carcinoma. Cancer Biomark 2017; 20:143-150. [PMID: 28869445 DOI: 10.3233/cbm-160533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hai Lin
- Department of Gastroenterology, The Central Hospital of Linyi, Yishui, Shandong, China
| | - Xuelong Jiao
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Benxia Yu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiangdong Du
- Department of Gastroenterology, The Central Hospital of Linyi, Yishui, Shandong, China
- Department of Clinical Laboratory, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| | - HaiYan Xu
- Department of Hemopurification Center, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| | - Aiping Dong
- Department of Clinical Laboratory, People’s Hospital of Weifang, Weifang, Shandong, China
| | - Chunsheng Wan
- Department of Clinical Laboratory, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
12
|
Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget 2017; 8:73793-73809. [PMID: 29088746 PMCID: PMC5650301 DOI: 10.18632/oncotarget.17379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro, indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.
Collapse
|
13
|
Qiu Y, Zhou Z, Li Z, Lu L, Li L, Li X, Wang X, Zhang M. Pretreatment 14-3-3 epsilon level is predictive for advanced extranodal NK/T cell lymphoma therapeutic response to asparaginase-based chemotherapy. Proteomics Clin Appl 2016; 11. [PMID: 27774748 DOI: 10.1002/prca.201600111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of the present study was to identify the potential relevant biomarkers to predict the therapeutic response of advanced extranodal natural killer/T cell lymphoma(ENKTL) treated with asparaginase-based treatment. EXPERIMENTAL DESIGN Proteomic technology is used to identify differentially expressed proteins between chemotherapy-resistant and chemotherapy-sensitive patients. Then enzyme-linked immunosorbent assay is used to validate the predictive value of selective biomarkers. RESULTS A total of 61 upregulated and 22 downregulated proteins are identified in chemotherapy-resistant patients compared with chemotherapy-sensitive patients. Furthermore, they validated that pretreatment high level 14-3-3 epsilon(ε)(≥61.95 ng/mL, 84.0 and 95.2% for sensitivity and specificity, respectively) is associated with poor 2-year overall survival (OS) (5.3 vs 68.8%, p<0.0001) and PFS (4.5 vs 76.9%, p<0.0001). In multivariate survival analysis, pretreatment high level 14-3-3 epsilon significantly is correlated with both inferior OS (p = 0.033) and PFS (p = 0.005). CONCLUSION AND CLINICAL RELEVANCE These findings indicate that pretreatment high level 14-3-3 epsilon is an independent predictor of chemotherapy-resistance and poor prognosis for patients with advanced ENKTL in the era of asparaginase.
Collapse
Affiliation(s)
- Yajuan Qiu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Zhou
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lisha Lu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Su YL, Huang HL, Huang BS, Chen PC, Chen CS, Wang HL, Lin PH, Chieh MS, Wu JJ, Yang JC, Chow LP. Combination of OipA, BabA, and SabA as candidate biomarkers for predicting Helicobacter pylori-related gastric cancer. Sci Rep 2016; 6:36442. [PMID: 27819260 PMCID: PMC5098209 DOI: 10.1038/srep36442] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori ) infection is a major cause of chronic gastritis and is highly related to duodenal ulcer (DU) and gastric cancer (GC). To identify H. pylori-related GC biomarkers with high seropositivity in GC patients, differences in levels of protein expression between H. pylori from GC and DU patients were analyzed by isobaric tag for relative and absolute quantitation (iTRAQ). In total, 99 proteins showed increased expression (>1.5-fold) in GC patients compared to DU patients, and 40 of these proteins were categorized by KEGG pathway. The four human disease-related adhesin identified, AlpA, OipA, BabA, and SabA, were potential GC-related antigens, with a higher seropositivity in GC patients (n = 76) than in non-GC patients (n = 100). Discrimination between GC and non-GC patients was improved using multiple antigens, with an odds ratio of 9.16 (95% CI, 2.99-28.07; p < 0.0001) for three antigens recognized. The optimized combination of OipA, BabA, and SabA gave a 77.3% correct prediction rate. A GC-related protein microarray was further developed using these antigens. The combination of OipA, BabA, and SabA showed significant improvement in the diagnostic accuracy and the protein microarray containing above antigens should provide a rapid and convenient diagnosis of H. pylori-associated GC.
Collapse
Affiliation(s)
- Yu-Lin Su
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Ling Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bo-Shih Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chung Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Hong-Long Wang
- Department of Statistics, National Taipei University, New Taipei City, Taiwan
| | - Pin-Hsin Lin
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Shu Chieh
- First Core Laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Mohri Y, Toiyama Y, Kusunoki M. Progress and prospects for the discovery of biomarkers for gastric cancer: a focus on proteomics. Expert Rev Proteomics 2016; 13:1131-1139. [PMID: 27744719 DOI: 10.1080/14789450.2016.1249469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Patient outcomes from gastric cancer vary due to the complexity of stomach carcinogenesis. Recent research using proteomic technologies has targeted components of all of these systems in order to develop biomarkers to aid the early diagnosis of gastric cancer and to assist in prognostic stratification. Areas covered: This review is comprised of evidence obtained from literature searches from PubMed. It covers the evidence of diagnostic, prognostic, and predictive biomarkers for gastric cancer using proteomic technologies, and provides up-to-date references. Expert commentary: The proteomic technologies have not only enabled the screening of a large number of samples, but also enabled the identification of diagnostic, prognostic and predictive biomarkers for gastric cancer. While major challenges still remain, to date, proteomic studies in gastric cancer have provided a wealth of information in revealing proteome alterations associated with the disease.
Collapse
Affiliation(s)
- Yasuhiko Mohri
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| | - Yuji Toiyama
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| | - Masato Kusunoki
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| |
Collapse
|
16
|
Harada K, Mizrak Kaya D, Shimodaira Y, Song S, Baba H, Ajani JA. Proteomics approach to identify biomarkers for upper gastrointestinal cancer. Expert Rev Proteomics 2016; 13:1041-1053. [PMID: 27718753 DOI: 10.1080/14789450.2016.1246189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The prognosis for patients with upper gastrointestinal cancers remains dismal despite the development of multimodality therapies that incorporate surgery, chemotherapy, and radiotherapy. Early diagnosis and personalized treatment should lead to better prognosis. Given the advances in proteomic technologies over the past decades, proteomics promises to be the most effective technique to identify novel diagnostics and therapeutic targets. Areas covered: For this review, keywords were searched in combination with 'proteomics' and 'gastric cancer' or 'esophageal cancer' in PubMed. Studies that evaluated proteomics associated with upper gastrointestinal cancer were identified through reading, with several studies quoted at second hand. We summarize the proteomics involved in upper gastrointestinal cancer and discuss potential biomarkers and therapeutic targets. Expert commentary: In particular, the development of mass spectrometry has enabled detection of multiple proteins and peptides in more biological samples over a shorter time period and at lower cost than was previously possible. In addition, more sophisticated protein databases have allowed a wider variety of proteins in samples to be quantified. Novel biomarkers that have been identified by new proteomic technologies should be applied in a clinical setting.
Collapse
Affiliation(s)
- Kazuto Harada
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Gastroenterological Surgery, Graduate School of Medical Science , Kumamoto University , Kumamoto , Japan
| | - Dilsa Mizrak Kaya
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yusuke Shimodaira
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shumei Song
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Hideo Baba
- b Department of Gastroenterological Surgery, Graduate School of Medical Science , Kumamoto University , Kumamoto , Japan
| | - Jaffer A Ajani
- a Department of Gastrointestinal Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
17
|
Leal MF, Wisnieski F, de Oliveira Gigek C, do Santos LC, Calcagno DQ, Burbano RR, Smith MC. What gastric cancer proteomic studies show about gastric carcinogenesis? Tumour Biol 2016; 37:9991-10010. [PMID: 27126070 DOI: 10.1007/s13277-016-5043-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, São Paulo, Brazil. .,Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil.
| | - Fernanda Wisnieski
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Carolina de Oliveira Gigek
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Leonardo Caires do Santos
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, 66073-000, Belém, Pará, Brazil
| | - Rommel Rodriguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
| | - Marilia Cardoso Smith
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| |
Collapse
|
18
|
Tang Y, Lv P, Sun Z, Han L, Zhou W. 14-3-3β Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells by Modulating Expression of MMP2 and MMP9 through PI3K/Akt/NF-κB Pathway. PLoS One 2016; 11:e0146070. [PMID: 26730736 PMCID: PMC4711775 DOI: 10.1371/journal.pone.0146070] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022] Open
Abstract
14-3-3β has been demonstrated to possess the oncogenic potential, and its increased expression has been detected in multiple types of carcinomas. However, majority of previous studies focused on the role of 14-3-3β in tumor cell proliferation and apoptosis, leaving much to be elucidated about its function in tumor cell invasion and metastasis. Hence, the present study aimed to investigate the role of 14-3-3β in the invasion of hepatocellular carcinoma (HCC) cells and the implications in the prognosis of HCC patients. We first examined the expression of 14-3-3β in the primary tumors of HCC patients with or without portal vein tumor thrombus (PVTT), and found that 14-3-3β expression was higher in the primary tumors with PVTT, and the level was even higher in the PVTTs. Kaplan-Meier curves and multivariate analysis revealed that high expression of 14-3-3β was associated with overall survival (OS) and time to recurrence (TTR) of HCC patients. In addition, ectopic expression of 14-3-3β in HCC cell lines led to enhanced migration ability and invasiveness, as well as up-regulation of matrix metalloproteinase 2 and 9, which could be suppressed by inhibiting the activation of Akt and nuclear factor-κB (NF-κB) signaling. Furthermore, we identified a correlated elevation of 14-3-3β and p-Akt in the primary tumors of HCC patients, and showed that a combinatory detection of 14-3-3β and p-Akt could better predict post-surgical outcome of HCC patients.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, People’s Republic of China
- Post-doctoral Station, The General Hospital of Shenyang Military Area Command, Shenyang, People’s Republic of China
| | - Pengfei Lv
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, People’s Republic of China
| | - Zhongyi Sun
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, People’s Republic of China
| | - Lei Han
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, People’s Republic of China
| | - Wenping Zhou
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, People’s Republic of China
| |
Collapse
|
19
|
Coghlin C, Murray GI. Progress in the development of protein biomarkers of oesophageal and gastric cancers. Proteomics Clin Appl 2016; 10:532-45. [DOI: 10.1002/prca.201500079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/10/2015] [Accepted: 11/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Caroline Coghlin
- Department of Cellular Pathology; Craigavon Area Hospital; Portadown UK
| | - Graeme I. Murray
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry; University of Aberdeen; Aberdeen UK
| |
Collapse
|
20
|
Chen J, Ge L, Liu A, Yuan Y, Ye J, Zhong J, Liu L, Chen X. Identification of pathways related to FAF1/H. pylori-associated gastric carcinogenesis through an integrated approach based on iTRAQ quantification and literature review. J Proteomics 2016; 131:163-176. [DOI: 10.1016/j.jprot.2015.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
|
21
|
Yang L, Wang J, Li J, Zhang H, Guo S, Yan M, Zhu Z, Lan B, Ding Y, Xu M, Li W, Gu X, Qi C, Zhu H, Shao Z, Liu B, Tao SC. Identification of Serum Biomarkers for Gastric Cancer Diagnosis Using a Human Proteome Microarray. Mol Cell Proteomics 2015; 15:614-23. [PMID: 26598640 DOI: 10.1074/mcp.m115.051250] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/27/2022] Open
Abstract
We aimed to globally discover serum biomarkers for diagnosis of gastric cancer (GC). GC serum autoantibodies were discovered and validated using serum samples from independent patient cohorts encompassing 1,401 participants divided into three groups, i.e. healthy, GC patients, and GC-related disease group. To discover biomarkers for GC, the human proteome microarray was first applied to screen specific autoantibodies in a total of 87 serum samples from GC patients and healthy controls. Potential biomarkers were identified via a statistical analysis protocol. Targeted protein microarrays with only the potential biomarkers were constructed and used to validate the candidate biomarkers using 914 samples. To provide further validation, the abundance of autoantibodies specific to the biomarker candidates was analyzed using enzyme-linked immunosorbent assays. Receiver operating characteristic curves were generated to evaluate the diagnostic accuracy of the serum biomarkers. Finally, the efficacy of prognosis efficacy of the final four biomarkers was evaluated by analyzing the clinical records. The final panel of biomarkers consisting of COPS2, CTSF, NT5E, and TERF1 provides high diagnostic power, with 95% sensitivity and 92% specificity to differentiate GC patients from healthy individuals. Prognosis analysis showed that the panel could also serve as independent predictors of the overall GC patient survival. The panel of four serum biomarkers (COPS2, CTSF, NT5E, and TERF1) could serve as a noninvasive diagnostic index for GC, and the combination of them could potentially be used as a predictor of the overall GC survival rate.
Collapse
Affiliation(s)
- Lina Yang
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jingfang Wang
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianfang Li
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hainan Zhang
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujuan Guo
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Min Yan
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenggang Zhu
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Lan
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Youcheng Ding
- Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
| | - Ming Xu
- Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Wei Li
- Shanghai Putuo Center Hospital, Shanghai, China
| | - Xiaonian Gu
- Shanghai Pudong Gongli Hospital, Shanghai, China 200135
| | - Chong Qi
- Shanghai Fifth People's Hospital affiliated to Fudan University, Shanghai, 200240 China
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingya Liu
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China;
| | - Sheng-Ce Tao
- From the Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, and Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China;
| |
Collapse
|
22
|
Farid SG, Morris-Stiff G. "OMICS" technologies and their role in foregut primary malignancies. Curr Probl Surg 2015; 52:409-41. [PMID: 26527526 DOI: 10.1067/j.cpsurg.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
|
23
|
Identification of proteins associated with lymph node metastasis of gastric cancer. J Cancer Res Clin Oncol 2014; 140:1739-49. [PMID: 24828259 DOI: 10.1007/s00432-014-1679-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 04/09/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to identify proteins associated with gastric cancer lymph node metastasis and explore the clinicopathological significance of these proteins. METHODS Gastric cancer tissues were obtained from 24 patients with high or low lymph node metastatic potential. Total cellular proteins were separated by two-dimensional gel electrophoresis (2-DE), analyzed by MALDI/TOF-TOF MS, and identified by a database search. Expression of 14-3-3β and profilin-1 was then immunohistochemically verified in paraffin-embedded gastric cancer tissues from 128 patients and analyzed by multivariate logistic regression models, Kaplan-Meier curves, and Cox proportional hazard models. RESULTS A total of 26 differentially expressed proteins were identified, 20 of which were overexpressed and 6 of which were underexpressed. 14-3-3β and profilin-1 were upregulated in gastric cancer tissues with and without lymph node metastasis, respectively. Expression of 14-3-3β protein was associated, but profilin-1 expression was inversely associated with gastric cancer lymph node metastasis. Multivariate analysis showed that overexpression of 14-3-3β and reduced expression of profilin-1 were independent risk factors for gastric cancer lymph node metastasis, while 14-3-3β overexpression was an independent prognostic factor for gastric cancer patients. CONCLUSIONS The current study identified 26 differentially expressed proteins. Further studies showed that both 14-3-3β and profilin-1 protein may be useful biomarkers for prediction of gastric cancer lymph node metastasis and that expression of 14-3-3β was a prognostic marker for gastric cancer patients.
Collapse
|
24
|
Lin LL, Huang HC, Juan HF. Deciphering molecular determinants of chemotherapy in gastrointestinal malignancy using systems biology approaches. Drug Discov Today 2014; 19:1402-9. [PMID: 24793142 DOI: 10.1016/j.drudis.2014.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/15/2014] [Accepted: 04/24/2014] [Indexed: 12/26/2022]
Abstract
Gastrointestinal cancers are asymptomatic in early tumor development, leading to high mortality rates. Peri- or postoperative chemotherapy is a common strategy used to prolong the life expectancy of patients with these diseases. Understanding the molecular mechanisms by which anticancer drugs exert their effect is crucial to the development of anticancer therapies, especially when drug resistance occurs and an alternative drug is needed. By integrating high-throughput techniques and computational modeling to explore biological systems at different levels, from gene expressions to networks, systems biology approaches have been successfully applied in various fields of cancer research. In this review, we highlight chemotherapy studies that reveal potential signatures using microarray analysis, next-generation sequencing (NGS), proteomic and metabolomic approaches for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Li-Ling Lin
- Institute of Molecular and Cellular Biology, Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan.
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, Department of Life Science, National Taiwan University, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
25
|
He CZ, Zhang KH. Serum protein and genetic tumor markers of gastric carcinoma. Asian Pac J Cancer Prev 2014; 14:3437-42. [PMID: 23886124 DOI: 10.7314/apjcp.2013.14.6.3437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The high incidence of gastric cancer and consequent mortality pose severe threats to human health. Early screening, diagnosis and treatment are the key to improve the prognosis of the patients with gastric cancer. Gastroscopy with biopsy is an efficient method for the diagnosis of early gastric cancer, but the associated discomfort and high cost make it difficult to be a routine method for screening gastric cancer. Serum tumor marker assay is a simple and practical method for detection of gastric cancer, but it is limited by poor sensitivity and specificity. Therefore, people have been looking for novel serum markers of gastric cancer in recent years. Here we review the novel serum tumor markers of gastric cancer and their diagnostic significance, focusing on the discoveries from serum proteomics analyses and epigenetics researches.
Collapse
Affiliation(s)
- Chao-Zhu He
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, China.
| | | |
Collapse
|
26
|
Liu W, Yang Q, Liu B, Zhu Z. Serum proteomics for gastric cancer. Clin Chim Acta 2014; 431:179-84. [PMID: 24525212 DOI: 10.1016/j.cca.2014.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, 800,000 cancer-related deaths are caused by gastric cancer each year globally, hence making it the second leading cause of cancer-related deaths in the world. Gastric cancer is often either asymptomatic or causing only nonspecific symptoms in its early stages. By the time the symptoms occur, the cancer has usually reached an advanced stage, which is one of the main reasons for its relatively poor prognosis. Therefore, early diagnosis and early treatment are very crucial. The differential analysis of serum protein between cancer patients and healthy controls can be performed using proteomics techniques and can hence be adopted as tumor biomarkers for the early diagnosis of cancer. So far, several serum tumor biomarkers have been identified for gastric cancer. However due to their poor specificity and sensitivity, they have proven to be insufficient for the reliable diagnosis of gastric cancer. Thus, using modern advanced proteomics techniques to find some new and reliable serum tumor biomarkers for earlier and reliable diagnosis of gastric cancer is a must. Nowadays, proteomic-based techniques, such as SELDI and HCLP, are available to discover biomarkers in gastric cancer. Numerous novel serum tumor biomarkers such as SAA, plasminogen and C9c, have been discovered through serological proteomics strategies. This review mainly focuses on the serum proteomics techniques and their application in the research of gastric cancer.
Collapse
Affiliation(s)
- Wentao Liu
- Key Laboratory of Shanghai Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Surgery, Shanghai 200025, PR China
| | - Qiumeng Yang
- Key Laboratory of Shanghai Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Surgery, Shanghai 200025, PR China
| | - Bingya Liu
- Key Laboratory of Shanghai Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Surgery, Shanghai 200025, PR China
| | - Zhenggang Zhu
- Key Laboratory of Shanghai Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Surgery, Shanghai 200025, PR China.
| |
Collapse
|
27
|
Yang Y, Toy W, Choong LY, Hou P, Ashktorab H, Smoot DT, Yeoh KG, Lim YP. Discovery of SLC3A2 cell membrane protein as a potential gastric cancer biomarker: implications in molecular imaging. J Proteome Res 2012; 11:5736-47. [PMID: 23116296 DOI: 10.1021/pr300555y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite decreasing incidence and mortality, gastric cancer remains the second leading cause of cancer-related deaths in the world. Successful management of gastric cancer is hampered by lack of highly sensitive and specific biomarkers especially for early cancer detection. Cell surface proteins that are aberrantly expressed between normal and cancer cells are potentially useful for cancer imaging and therapy due to easy accessibility of these targets. Combining two-phase partition and isobaric tags for relative and absolute quantification methods, we compared the relative expression levels of membrane proteins between noncancer and gastric cancer cells. About 33% of the data set was found to be plasma membrane and associated proteins using this approach (compared to only 11% in whole cell analysis), several of which have never been previously implicated in gastric cancer. Upregulation of SLC3A2 in gastric cancer cells was validated by immunoblotting of a panel of 13 gastric cancer cell lines and immunohistochemistry on tissue microarrays comprising 85 matched pairs of normal and tumor tissues. Immunofluorescence and immunohistochemistry both confirmed the plasma membrane localization of SLC3A2 in gastric cancer cells. The data supported the notion that SLC3A2 is a potential biomarker that could be exploited for molecular imaging-based detection of gastric cancer.
Collapse
Affiliation(s)
- Yixuan Yang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Park SG, Jung S, Ryu HH, Jung TY, Moon KS, Kim IY, Jeong YI, Pei J, Park SJ, Kang SS. Role of 14-3-3-beta in the migration and invasion in human malignant glioma cell line U87MG. Neurol Res 2012; 34:893-900. [PMID: 22925547 DOI: 10.1179/1743132812y.0000000087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
PURPOSE To assess the influence of 14-3-3-beta in modulating the migration and invasion of human glioma cells. METHODS To profile the genes associated with malignant glioma cell motility, differential display-polymerase chain reaction was performed and the findings were validated by Northern blotting in the U343MG-A, U87MG, and U87MG-10' human glioma cell lines. Antisense 14-3-3-beta cDNA plasmid was transfected into U87MG ('U87-YA-3'). To follow motility changes after transfection, simple scratch test and matrigel assay were performed. Morphological and cytoskeletal changes were documented by light and confocal microscopy. In addition, doubling times of the transfectant and endogenous 14-3-3-beta levels were determined in various glioma cell lines with different motilities. RESULTS 14-3-3-beta was highly expressed in U87MG cells. U87-YA-3 cells became small and flat, and actin was depolarized. Furthermore, U87-YA-3 cell motility was inhibited markedly versus parental U87MG cells. The doubling times of transfected and parent cells were 32 and 37 hours, respectively. Endogenous 14-3-3-beta expression in the human glioma cell lines was proportional to their migratory and invasive abilities. CONCLUSION 14-3-3-beta modulates the migration and invasion in U87MG cells, which may be useful in developing therapeutic approaches for the treatment of glioma.
Collapse
Affiliation(s)
- Sung-Geun Park
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang XJ, Leung FP, Hsiao WWL, Tan S, Li S, Xu HX, Sung JJY, Bian ZX. Proteome profiling of spinal cord and dorsal root ganglia in rats with trinitrobenzene sulfonic acid-induced colitis. World J Gastroenterol 2012; 18:2914-28. [PMID: 22736915 PMCID: PMC3380319 DOI: 10.3748/wjg.v18.i23.2914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/24/2011] [Accepted: 04/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate proteomic changes in spinal cord and dorsal root ganglia (DRG) of rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis.
METHODS: The colonic myeloperoxidase (MPO) activity and tumor necrosis factor-α (TNF-α) level were determined. A two-dimensional electrophoresis (2-DE)-based proteomic technique was used to profile the global protein expression changes in the DRG and spinal cord of the rats with acute colitis induced by intra-colonic injection of TNBS.
RESULTS: TNBS group showed significantly elevated colonic MPO activity and increased TNF-α level. The proteins derived from lumbosacral enlargement of the spinal cord and DRG were resolved by 2-DE; and 26 and 19 proteins that displayed significantly different expression levels in the DRG and spinal cord were identified respectively. Altered proteins were found to be involved in a number of biological functions, such as inflammation/immunity, cell signaling, redox regulation, sulfate transport and cellular metabolism. The overexpression of the protein similar to potassium channel tetramerisation domain containing protein 12 (Kctd 12) and low expression of proteasome subunit α type-1 (psma) were validated by Western blotting analysis.
CONCLUSION: TNBS-induced colitis has a profound impact on protein profiling in the nervous system. This result helps understand the neurological pathogenesis of inflammatory bowel disease.
Collapse
|
30
|
LIU CHIBO, PAN CHUNQIN, LIANG YONG. Screening and identification of serum proteomic biomarkers for gastric adenocarcinoma. Exp Ther Med 2012; 3:1005-1009. [PMID: 22970007 PMCID: PMC3438544 DOI: 10.3892/etm.2012.515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/20/2012] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to screen for possible serum biomarkers for gastric adenocarcinoma. Surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS) was used to screen serum samples from 109 cases of gastric adenocarcinoma and 106 control subjects (60 healthy subjects, 30 patients with chronic superficial gastritis and 16 cases of chronic atrophic gastritis). The differentially expressed protein peaks were selected and isolated using high performance liquid chromatography (HPLC) and processed with enzyme prior to liquid chromatography-mass spectrometry tandem mass spectrometry (LC-MS/MS) analysis and data mining with software XCalibur program components BioWorks 3.2. Among the gastric cancer cases, three differentially expressed protein peaks were selected as potential serum biomarkers: the m/z peaks at 5,906.5 showed increased expression (8.53±4.33 in the cancer group, and 0.88±0.31 in the control group); the m/z peaks at 6,635.7 and 8,716.3 showed decreased expression (6.54±2.44 and 0.93±0.29, respectively, in the cancer group and 17.56±4.43 and 2.16±0.98, respectively, in the control group) (P<0.01). The m/z peaks at 5,906.5, 6,635.7 and 8,716.3, were identified as fibrinogen α-chain, apolipo-protein A-II and apolipoprotein C-I. The combined use of the three biomarkers distinguished the cancer group patients from the control group samples at a sensitivity of 93.85% (61/65) and a specificity of 94.34% (50/53). In conclusion, fibrinogen α-chain, apolipoprotein A-II and apolipoprotein C-I were identified as potential markers for gastric cancer and appear to have diagnostic value for clinical applications.
Collapse
Affiliation(s)
- CHIBO LIU
- Departments of Clinical Laboratory and
| | | | - YONG LIANG
- Tumorology, Taizhou Municipal Hospital, Taizhou, Zhejiang,
P.R. China
| |
Collapse
|
31
|
Tseng CW, Huang HC, Shih ACC, Chang YY, Hsu CC, Chang JY, Li WH, Juan HF. Revealing the anti-tumor effect of artificial miRNA p-27-5p on human breast carcinoma cell line T-47D. Int J Mol Sci 2012; 13:6352-6369. [PMID: 22754369 PMCID: PMC3382822 DOI: 10.3390/ijms13056352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) cause mRNA degradation or translation suppression of their target genes. Previous studies have found direct involvement of miRNAs in cancer initiation and progression. Artificial miRNAs, designed to target single or multiple genes of interest, provide a new therapeutic strategy for cancer. This study investigates the anti-tumor effect of a novel artificial miRNA, miR P-27-5p, on breast cancer. In this study, we reveal that miR P-27-5p downregulates the differential gene expressions associated with the protein modification process and regulation of cell cycle in T-47D cells. Introduction of this novel artificial miRNA, miR P-27-5p, into breast cell lines inhibits cell proliferation and induces the first “gap” phase (G1) cell cycle arrest in cancer cell lines but does not affect normal breast cells. We further show that miR P-27-5p targets the 3′-untranslated mRNA region (3′-UTR) of cyclin-dependent kinase 4 (CDK4) and reduces both the mRNA and protein level of CDK4, which in turn, interferes with phosphorylation of the retinoblastoma protein (RB1). Overall, our data suggest that the effects of miR p-27-5p on cell proliferation and G1 cell cycle arrest are through the downregulation of CDK4 and the suppression of RB1 phosphorylation. This study opens avenues for future therapies targeting breast cancer.
Collapse
Affiliation(s)
- Chien-Wei Tseng
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
| | - Arthur Chun-Chieh Shih
- Institute of Information Science, Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan; E-Mail:
| | - Ya-Ya Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
| | - Chung-Cheng Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
| | - Jen-Yun Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
| | - Wen-Hsiung Li
- Biodiversity Research Center and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Authors to whom correspondence should be addressed; E-Mails: (W.-H.L.); (H.-F.J.); Tel.: +1-773-702-3104 (W.-H.L.); +886-2-33664536 (H.-F.J.); Fax: +1-773-702-9740 (W.-H.L.); +886-2-23673374 (H.-F.J.)
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
- Authors to whom correspondence should be addressed; E-Mails: (W.-H.L.); (H.-F.J.); Tel.: +1-773-702-3104 (W.-H.L.); +886-2-33664536 (H.-F.J.); Fax: +1-773-702-9740 (W.-H.L.); +886-2-23673374 (H.-F.J.)
| |
Collapse
|
32
|
Lin LL, Huang HC, Juan HF. Discovery of biomarkers for gastric cancer: a proteomics approach. J Proteomics 2012; 75:3081-97. [PMID: 22498886 DOI: 10.1016/j.jprot.2012.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/10/2012] [Accepted: 03/25/2012] [Indexed: 01/06/2023]
Abstract
Gastric cancer is the second leading cause of cancer-related deaths worldwide. Although many treatment options exist for patients with gastric tumors, the incidence and mortality rate of gastric cancer are on the rise. The early stages of gastric cancer are non-symptomatic, and the treatment response is unpredictable. This situation is further aggravated by a lack of diagnostic biomarkers that can aid in the early detection and prognosis of gastric cancer and in the prediction of chemoresistance. Moreover, clinical surgical specimens are rarely obtained, and traditional biomarkers of gastric cancer are not very effective. Many studies in the field of proteomics have contributed to the discovery and establishment of powerful diagnostic tools (e.g., ProteinChip array) in the management of cancer. The evolution in proteomic technologies has not only enabled the screening of a large number of samples but also enabled the identification of pathologically significant proteins, such as phosphoproteins, and the quantitation of difference in protein expression under different conditions. Multiplexed assays are used widely to accurately fractionate various complex samples such as blood, tissue, cells, and Helicobacter pylori-infected specimens to identify differentially expressed proteins. Biomarker detection studies have substantially contributed to the areas of secretome, metabolome, and phosphoproteome. Here, we review the development of potential biomarkers in the natural history of gastric cancer, with specific emphasis on the characteristics of target protein convergence.
Collapse
Affiliation(s)
- Li-Ling Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
33
|
Tsai MM, Lin PY, Cheng WL, Tsai CY, Chi HC, Chen CY, Tseng YH, Cheng YF, Chen CD, Liang Y, Liao CJ, Wu SM, Lin YH, Chung IH, Wang CS, Lin KH. Overexpression of ADP-ribosylation factor 1 in human gastric carcinoma and its clinicopathological significance. Cancer Sci 2012; 103:1136-44. [PMID: 22348287 DOI: 10.1111/j.1349-7006.2012.02243.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer is the sixth leading cause of cancer-related death in Taiwan, and the identification of related factors is essential to increase patient survival. ADP-ribosylation factor 1 (ARF1) was initially identified using 2-D electrophoresis combined with MALDI-time-of-flight mass spectrometry. ADP-ribosylation factor 1 belongs to the Ras superfamily or GTP-binding protein family and has been shown to enhance cell proliferation. In the current study, we evaluated the potential of ARF1 as a biomarker for gastric cancer detection. ADP-ribosylation factor 1 mRNA was upregulated in tumor tissues (compared with adjacent non-tumor tissues, n = 55) in approximately 67.2% of gastric cancer patients. Expression of ARF1 protein was additionally observed using Western blot and immunohistochemistry (IHC) analyses. The clinicopathological correlations of ARF1 were further evaluated. Elevated ARF1 expression was strongly correlated with lymph node metastasis (P = 0.008), serosal invasion (P = 0.046), lymphatic invasion (P = 0.035), and pathological staging (P = 0.010). Moreover, the 5-year survival rate for the lower ARF1 expression group (n = 50; IHC score < 90) was higher than that of the higher expression group (n = 60; IHC score ≥ 90) (P = 0.0228, log-rank test). To establish the specific function of ARF1 in human gastric cancer, isogenic ARF1-overexpressing cell lines were prepared. Our results showed that ARF1-overexpressing clones display enhanced cell proliferation, migration, and invasion. Furthermore, ARF1-overexpression might contribute to poor prognosis of patients. These findings collectively support the utility of ARF1 as a novel prognostic marker for gastric cancer and its role in cell invasion.
Collapse
Affiliation(s)
- Ming-Ming Tsai
- Department of Biochemistry, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|