1
|
Guerra MES, Vieira B, Calazans APCT, Destro GV, Melo K, Rodrigues E, Waz NT, Girardello R, Darrieux M, Converso TR. Recent advances in the therapeutic potential of cathelicidins. Front Microbiol 2024; 15:1405760. [PMID: 38989014 PMCID: PMC11233757 DOI: 10.3389/fmicb.2024.1405760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
The alarming increase in antimicrobial resistance in the last decades has prompted the search for alternatives to control infectious diseases. Antimicrobial peptides (AMPs) represent a heterogeneous class of molecules with ample antibacterial, antiviral, and antifungal effects. They can be found in many organisms, including all classes of vertebrates, providing a valuable source of new antimicrobial agents. The unique properties of AMPs make it harder for microbes develop resistance, while their immunomodulatory properties and target diversity reinforce their translational use in multiple diseases, from autoimmune disorders to different types of cancer. The latest years have witnessed a vast number of studies evaluating the use of AMPs in therapy, with many progressing to clinical trials. The present review explores the recent developments in the medicinal properties of cathelicidins, a vast family of AMPs with potent antimicrobial and immunomodulatory effects. Cathelicidins from several organisms have been tested in disease models of viral and bacterial infections, inflammatory diseases, and tumors, with encouraging results. Combining nanomaterials with active, natural antimicrobial peptides, including LL-37 and synthetic analogs like ceragenins, leads to the creation of innovative nanoagents with significant clinical promise. However, there are still important limitations, such as the toxicity of many cathelicidins to healthy host cells and low stability in vivo. The recent advances in nanomaterials and synthetic biology may help overcome the current limitations, enabling the use of cathelicidins in future therapeutics. Furthermore, a better understanding of the mechanisms of cathelicidin action in vivo and their synergy with other host molecules will contribute to the development of safer, highly effective therapies.
Collapse
|
2
|
Maqbool A, Paul BT, Jesse FFA, Teik Chung EL, Mohd Lila MA, Haron AW. Biomarkers, immune responses and cellular changes in vaccinated and non-vaccinated goats during experimental infection of M. haemolytica A2 under tropical conditions. Microb Pathog 2021; 157:105001. [PMID: 34048891 DOI: 10.1016/j.micpath.2021.105001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND We investigated the biomarkers, immune responses and cellular changes in vaccinated and non-vaccinated goats experimentally challenged with M. haemolytica serotype A2 under rainy and hot tropical conditions. A total of twenty-four clinically healthy, non-pregnant, female goats randomly allocated to 2 groups of 12 goats each were used for the study. The 12 goats in each season were subdivided into three groups (n = 4), which served as the control (G-NEG), non-vaccinated (G-POS), and vaccinated (G-VACC). In week-1, the G-VACC received 2 mL of alum-precipitated pasteurellosis vaccine while G-POS and G-NEG received 2 ml of sterile PBS. In week 2, the G-POS and G-VACC received 1 mL intranasal spray containing 105 CFU of M. haemolytica serotype A2. Inoculation was followed by daily monitoring and weekly bleeding for eight weeks to collect data and serum for biomarkers and immune responses using commercial ELISA test kits. The goats were humanely euthanised at the end of the experiments to collect lungs and the submandibular lymph nodes tissue samples for gross and histopathological examinations. RESULTS Regardless of the season, we have observed a significant (p < 0.05) increase in serum concentrations of acute-phase proteins (haptoglobin, serum amyloid A), proinflammatory cytokines (interleukine-1β, interleukin-6), antibodies (immunoglobulin M, immunoglobulin G), and stress markers (cortisol and heat shock protein 70) in the G-POS goats compared to G-VACC and G-NEG. With regards to seasons, there was a significantly (p < 0.05) higher serum concentration with 1.5, 2 and 1-folds increase in the serum interleukin (IL)-1β, cortisol, and heat shock protein (HSP)-70 in the G-POS during rainy compared to the hot season. Histopathology of the lungs in G-POS goats revealed inflammatory cell infiltration, degeneration, haemorrhage/congestion, and pulmonary oedema in the alveoli spaces; thickening of the interstitium, and desquamation of bronchiolar epithelium. Cellular changes in the lymph node were characterized by a marked hypercellularity in G-POS goats. CONCLUSION Host responses to pneumonic mannheimiosis based on increased serum levels of biomarkers (cortisol, HSP70, IL-1β and IL-6) and severe cellular changes seen in the lungs and lymph nodes of G-POS goats compared to vaccinated goats and control group are influenced by the high environmental humidity recorded in the rainy season. Increased relative humidity in the rainy season is a significant stress factor for the higher susceptibility and severity of pneumonic mannheimiosis of goats in the tropics. Vaccination of goats using the alum precipitated Pasteurella multocida vaccine before the onset of the rainy season is recommended to minimise mortality due to potential outbreaks of pneumonia during the rainy season.
Collapse
Affiliation(s)
- Arsalan Maqbool
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Directorate of Animal Health, Livestock, and Dairy Development Department, Balochistan, 87300, Pakistan
| | - Bura Thlama Paul
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Veterinary Teaching Hospital, University of Maiduguri, 600230, Maiduguri, Borno State, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Eric Lim Teik Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Azmi Mohd Lila
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abd Wahid Haron
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Young-Speirs M, Drouin D, Cavalcante PA, Barkema HW, Cobo ER. Host defense cathelicidins in cattle: types, production, bioactive functions and potential therapeutic and diagnostic applications. Int J Antimicrob Agents 2018; 51:813-821. [PMID: 29476808 DOI: 10.1016/j.ijantimicag.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Cathelicidins are a primitive class of host defense peptides and are known for their broad-spectrum antimicrobial activity against bacteria, fungi, and enveloped viruses. These small, cationic, proteolytically-activated peptides are diverse in structure, encompassing a wide range of activities on host immune and inflammatory cell responses. The dual capacity of cathelicidins to directly control infection and regulate host defenses highlights the potential use of these peptides as alternatives to antibiotics and immunomodulators. Cathelicidins are found in many mammalian species; this review focuses on bovine cathelicidins. Eight naturally and two synthetically occurring bovine cathelicidins are described in detail, with a focus on recent advances in their expression, location and biological roles. This review also presents an overview of the bioactive functions of cathelicidins in bovine mastitis, a disease causing economic losses in cattle dairy production. Comparison of the structural, antimicrobial, cytotoxic and mechanistic properties of bovine cathelicidins advances the knowledge needed for the development of these peptides as potential identifiers of infectious diseases (e.g., bovine mastitis) and as novel therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Morgan Young-Speirs
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominique Drouin
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paloma Araujo Cavalcante
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Schrödl W, Büchler R, Wendler S, Reinhold P, Muckova P, Reindl J, Rhode H. Acute phase proteins as promising biomarkers: Perspectives and limitations for human and veterinary medicine. Proteomics Clin Appl 2016; 10:1077-1092. [PMID: 27274000 DOI: 10.1002/prca.201600028] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 12/23/2022]
Abstract
Acute phase proteins (APPs) are highly conserved plasma proteins that are increasingly secreted by the liver in response to a variety of injuries, independently of their location and cause. APPs favor the systemic regulation of defense, coagulation, proteolysis, and tissue repair. Various APPs have been applied as general diagnostic parameters for a long time. Through proteomic techniques, more and more APPs have been discovered to be differentially altered. Since they are not consistently explainable by a stereotypic hepatic expression of sets of APPs, most of these results have unfortunately been neglected or attributed to the nonspecificity of the acute phase reaction. Moreover, it appears that various extrahepatic tissues are also able to express APPs. These extrahepatic APPs show focally specific roles in tissue homeostasis and repair and are released primarily into interstitial and distal fluids. Since these focal proteins might leak into the circulatory system, mixtures of hepatic and extrahepatic APP species can be expected in blood. Hence, a selective alteration of parts of APPs might be expected. There are several hints on multiple molecular forms and fragments of tissue-derived APPs. These differences offer the chance for multiple selective determinations. Thus, specific proteoforms might indeed serve as tissue-specific disease indicators.
Collapse
Affiliation(s)
- Wieland Schrödl
- Institute of Bacteriology and Mycology, Veterinary Faculty, University Leipzig, Germany
| | - Rita Büchler
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Sindy Wendler
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich Loeffler Institut', Federal Research Institute for Animal Health, Jena, Germany
| | - Petra Muckova
- Institute of Biochemistry I, University Hospital Jena, Germany.,Clinic of Neurology, University Hospital Jena, Germany
| | - Johanna Reindl
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Heidrun Rhode
- Institute of Biochemistry I, University Hospital Jena, Germany
| |
Collapse
|
5
|
Katsafadou A, Tsangaris G, Billinis C, Fthenakis G. Use of proteomics in the study of microbial diseases of small ruminants. Vet Microbiol 2015; 181:27-33. [DOI: 10.1016/j.vetmic.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Muckova P, Wendler S, Rubel D, Büchler R, Alert M, Gross O, Rhode H. Preclinical Alterations in the Serum of COL(IV)A3–/– Mice as Early Biomarkers of Alport Syndrome. J Proteome Res 2015; 14:5202-14. [DOI: 10.1021/acs.jproteome.5b00814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Petra Muckova
- Institute
of Biochemistry I, University Hospital Jena, Nonnenplan 2-4, 07740 Jena, Germany
- Clinic
of Neurology, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany
| | - Sindy Wendler
- Institute
of Biochemistry I, University Hospital Jena, Nonnenplan 2-4, 07740 Jena, Germany
| | - Diana Rubel
- Department
of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Rita Büchler
- Institute
of Biochemistry I, University Hospital Jena, Nonnenplan 2-4, 07740 Jena, Germany
| | - Mandy Alert
- Institute
of Biochemistry I, University Hospital Jena, Nonnenplan 2-4, 07740 Jena, Germany
| | - Oliver Gross
- Department
of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Heidrun Rhode
- Institute
of Biochemistry I, University Hospital Jena, Nonnenplan 2-4, 07740 Jena, Germany
| |
Collapse
|
7
|
Rai AN, Epperson WB, Nanduri B. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics. Bioinform Biol Insights 2015; 9:13-23. [PMID: 26526746 PMCID: PMC4620937 DOI: 10.4137/bbi.s30525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/27/2022] Open
Abstract
Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches.
Collapse
Affiliation(s)
- Aswathy N Rai
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - William B Epperson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA. ; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, MS, USA
| |
Collapse
|
8
|
Abstract
Background Cumulating reports suggest that acute phase proteins (APPs) do not only play a role as systemic inflammatory mediators, but are also expressed in different tissues as local reaction to inflammatory stimuli. The present study aimed to evaluate presence and changes in luminal lung concentrations of the APPs haptoglobin (Hp), lipopolysaccharide binding protein (LBP), C-reactive protein (CRP), and lactoferrin (Lf) in calves with an acute respiratory disease experimentally induced by Chlamydia (C.) psittaci. Results Intra-bronchial inoculation of the pathogen resulted in a consistent respiratory illness. In venous blood of the infected calves (n = 13), concentrations of plasma proteins and serum LBP were assessed (i) before exposure and (ii) 8 times within 14 days after inoculation (dpi). Increasing clinical illness correlated significantly with increasing LBP—and decreasing albumin concentrations in blood, both verifying a systemic acute phase response. Broncho-alveolar lavage fluid (BALF) was obtained from all 13 calves experimentally infected with C. psittaci at 4, 9 and 14 dpi, and from 6 uninfected healthy calves. Concentrations of bovine serum albumin (BSA), Hp, LBP, CRP and Lf in BALF were determined by ELISA. In infected animals, absolute concentrations of LBP and Hp in BALF correlated significantly with the respiratory score. The quotient [LBP]/[BSA] in BALF peaked significantly in acutely infected animals (4 dpi), showed a time-dependent decrease during the recovery phase (9-14 dpi), and was significantly higher compared to healthy controls. Concentrations of Hp and Lf in BALF as well as [Hp]/[BSA]—and [Lf]/[BSA]-quotients decreased during the study in infected animals, but were never higher than in healthy controls. CRP concentrations and [CRP]/[BSA]-quotient did not express significant differences between infected and healthy animals or during the course of infection. Conclusion In conclusion, absolute concentrations of LBP in blood and BALF as well as the quotient [LBP]/[BSA] in BALF perfectly paralleled the clinical course of respiratory illness after infection. Beside LBP, the suitability of Hp and Lf as local biomarkers of respiratory infections in cattle and their role in the local response to pathogens is worth further investigation, while CRP does not seem to play a role in local defense mechanisms of the bovine lung.
Collapse
|
9
|
Abstract
Advancement in electrophoresis and mass spectrometry techniques along with the recent progresses in genomics, culminating in bovine and pig genome sequencing, widened the potential application of proteomics in the field of veterinary medicine. The aim of the present review is to provide an in-depth perspective about the application of proteomics to animal disease pathogenesis, as well as its utilization in veterinary diagnostics. After an overview on the various proteomic techniques that are currently applied to veterinary sciences, the article focuses on proteomic approaches to animal disease pathogenesis. Included as well are recent achievements in immunoproteomics (ie, the identifications through proteomic techniques of antigen involved in immune response) and histoproteomics (ie, the application of proteomics in tissue processed for immunohistochemistry). Finally, the article focuses on clinical proteomics (ie, the application of proteomics to the identification of new biomarkers of animal diseases).
Collapse
|
10
|
Bartlett JA, Albertolle ME, Wohlford-Lenane C, Pezzulo AA, Zabner J, Niles RK, Fisher SJ, McCray PB, Williams KE. Protein composition of bronchoalveolar lavage fluid and airway surface liquid from newborn pigs. Am J Physiol Lung Cell Mol Physiol 2013; 305:L256-66. [PMID: 23709621 DOI: 10.1152/ajplung.00056.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The airway mucosa and the alveolar surface form dynamic interfaces between the lung and the external environment. The epithelial cells lining these barriers elaborate a thin liquid layer containing secreted peptides and proteins that contribute to host defense and other functions. The goal of this study was to develop and apply methods to define the proteome of porcine lung lining liquid, in part, by leveraging the wealth of information in the Sus scrofa database of Ensembl gene, transcript, and protein model predictions. We developed an optimized workflow for detection of secreted proteins in porcine bronchoalveolar lavage (BAL) fluid and in methacholine-induced tracheal secretions [airway surface liquid (ASL)]. We detected 674 and 3,858 unique porcine-specific proteins in BAL and ASL, respectively. This proteome was composed of proteins representing a diverse range of molecular classes and biological processes, including host defense, molecular transport, cell communication, cytoskeletal, and metabolic functions. Specifically, we detected a significant number of secreted proteins with known or predicted roles in innate and adaptive immunity, microbial killing, or other aspects of host defense. In greatly expanding the known proteome of the lung lining fluid in the pig, this study provides a valuable resource for future studies using this important animal model of pulmonary physiology and disease.
Collapse
Affiliation(s)
- Jennifer A Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Singh AK, Sachdeva A, Degrasse JA, Croley TR, Stanker LH, Hodge D, Sharma SK. Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium Botulinum Strain PS-5. Protein J 2013; 32:288-96. [PMID: 23625059 DOI: 10.1007/s10930-013-9486-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Botulinum neurotoxins are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins. The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presence of NT genes was validated by PCR amplification of toxin specific fragments from genomic DNA of Clostridium botulinum strain PS-5 which indicated the presence of both serotype A and B genes on PS-5 genome. Further, TC was purified and characterized by Western blotting, Digoxin-enzyme linked immunosorbent assay, endopeptidase activity assay, and Liquid chromatography-Mass spectrometry. The data showed the presence of serotype A specific neurotoxin. Based on the analysis of neurotoxin genes and characterization of TC, PS-5 strain appears as a serotype A (B) strain of C. botulinum which produces only serotype A specific TC in the cell culture medium.
Collapse
Affiliation(s)
- Ajay K Singh
- Divisions of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Novel platform for the detection of Staphylococcus aureus enterotoxin B in foods. Appl Environ Microbiol 2012; 79:1422-7. [PMID: 23241982 DOI: 10.1128/aem.02743-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal contamination of food products and staphylococcal food-borne illnesses continue to be a problem worldwide. Screening of food for the presence of Staphylococcus aureus and/or enterotoxins using traditional methods is laborious. Reliable and rapid multiplex detection methods from a single food extract or culture supernatant would simplify testing. A fluorescence-based cytometric bead array was developed for the detection of staphylococcal enterotoxin B (SEB), using magnetic microspheres coupled with either an engineered, enterotoxin-specific Vβ domain of the T-cell receptor (Vβ-TCR) or polyclonal antibodies. The binding affinity of the Vβ-TCR for SEB has been shown to be in the picomolar range, comparable to the best monoclonal antibodies. The coupled beads were validated with purified enterotoxins and tested in a variety of food matrices spiked with enterotoxins. The Vβ-TCR or antibody was shown to specifically bind SEB in four different food matrices, including milk, mashed potatoes, vanilla pudding, and cooked chicken. The use of traditional polyclonal antibodies and Vβ-TCR provides a redundant system that ensures accurate identification of the enterotoxin, and the use of labeled microspheres permits simultaneous testing of multiple enterotoxins from a single sample.
Collapse
|
13
|
A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 2012; 280:22-35. [PMID: 23246832 DOI: 10.1016/j.cellimm.2012.11.009] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 01/01/2023]
Abstract
Cathelicidins are a group of antimicrobial peptides. Since their discovery, it has become clear that they are an exceptional class of peptides, with some members having pleiotropic effects. Not only do they possess an antibacterial, antifungal and antiviral function, they also show a chemotactic and immunostimulatory/-modulatory effect. Moreover, they are capable of inducing wound healing, angiogenesis and modulating apoptosis. Recent insights even indicate for a role of these peptides in cancer. This review provides a comprehensive summary of the most recent and relevant insights concerning the human cathelicidin LL-37.
Collapse
|
14
|
Acute phase proteins in ruminants. J Proteomics 2012; 75:4207-31. [DOI: 10.1016/j.jprot.2012.04.004] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 01/03/2023]
|
15
|
DeGrasse JA. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 2012; 7:e33410. [PMID: 22438927 PMCID: PMC3306407 DOI: 10.1371/journal.pone.0033410] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/14/2012] [Indexed: 12/22/2022] Open
Abstract
The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APT(SEB1), successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide.
Collapse
Affiliation(s)
- Jeffrey A DeGrasse
- Spectroscopy and Mass Spectrometry Branch, Division of Analytical Chemistry, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, United States of America.
| |
Collapse
|