1
|
Kang KJ, Ryu CJ, Jang YJ. Identification of dentinogenic cell-specific surface antigens in odontoblast-like cells derived from adult dental pulp. Stem Cell Res Ther 2019; 10:128. [PMID: 31029165 PMCID: PMC6487011 DOI: 10.1186/s13287-019-1232-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Background Odontoblast is a unique progenitor that plays a role in dentin formation. So far, the dentinogenic differentiation of dental pulp stem cells and the role of surface molecules of odontoblasts in dentinogenesis are not well known yet. In this study, we obtained odontoblast-like cells from human dental pulp cells and screened odontoblast-specific cell surface antigens by decoy immunization. Methods Through decoy immunization with intact odontoblast-like cells derived from human dental pulp cells, we constructed 12 monoclonal antibodies (mAbs) of IgG type, and their binding affinities for cell surface of odontoblast-like cells were analyzed by flow cytometry. Immunoprecipitation, mass spectrometry, and immunohistochemistry were performed to demonstrate odontoblast-specific antigens. Odontoblasts were sorted by these mAbs using magnetic-activated cell sorting system, and their mineralization efficiency was increased after sorting. Results We constructed 12 mAbs of IgG type, which had a strong binding affinity for cell surface antigens of odontoblast-like cells. In human adult tooth, these mAbs accumulated in the odontoblastic layer between dentin and pulp and in the perivascular region adjacent to the blood vessels in the pulp core. Cell surface expression of the antigenic molecules was increased during odontogenic cytodifferentiation and decreased gradually as dentinogenic maturation progressed. Proteomic analysis showed that two representative antigenic molecules, OD40 and OD46, had the potential to be components for cell adhesion and extracellular matrix structures. Conclusion These results suggest that mAbs will be useful for detecting and separating odontoblasts from the primary pulp cells and other lineage cells and will provide information on the structures of extracellular matrix and microenvironment that appears during the dentinogenic differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung-Jung Kang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Chun-Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
2
|
Zhang YY, Tang LL, Zheng B, Ge RS, Zhu DY. Protein profiles of cardiomyocyte differentiation in murine embryonic stem cells exposed to perfluorooctane sulfonate. J Appl Toxicol 2016; 36:726-40. [PMID: 26178269 DOI: 10.1002/jat.3207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 12/30/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic contaminant that may affect diverse systems in animals and humans, including the cardiovascular system. However, little is known about the mechanism by which it affects the biological systems. Herein, we used embryonic stem cell test procedure as a tool to assess the developmental cardiotoxicity of PFOS. The differentially expressed proteins were identified by quantitative proteomics that combines the stable isotope labeling of amino acids with high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Results of the embryonic stem cell test procedure suggested that PFOS was a weak embryotoxic chemical. Nevertheless, a few marker proteins related to cardiovascular development (Brachyury, GATA4, MEF2C, α-actinin) were significantly reduced by exposure to PFOS. In total, 176 differential proteins were identified by proteomics analysis, of which 67 were upregulated and 109 were downregulated. Gene ontology annotation classified these proteins into 13 groups by molecular functions, 12 groups by cellular locations and 10 groups by biological processes. Most proteins were mainly relevant to either catalytic activity (25.6%), nucleus localization (28.9%) or to cellular component organization (19.8%). Pathway analysis revealed that 32 signaling pathways were affected, particularly these involved in metabolism. Changes in five proteins, including L-threonine dehydrogenase, X-ray repair cross-complementing 5, superoxide dismutase 2, and DNA methyltransferase 3b and 3a were confirmed by Western blotting, suggesting the reliability of the technique. These results revealed potential new targets of PFOS on the developmental cardiovascular system.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Lei-Lei Tang
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Bei Zheng
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Ren-Shan Ge
- Institute of Reproductive Biomedicine and the 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-Yan Zhu
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Huang TS, Li L, Moalim-Nour L, Jia D, Bai J, Yao Z, Bennett SAL, Figeys D, Wang L. A Regulatory Network Involving β-Catenin, e-Cadherin, PI3k/Akt, and Slug Balances Self-Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling. Stem Cells 2016; 33:1419-33. [PMID: 25538040 PMCID: PMC5297972 DOI: 10.1002/stem.1944] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self‐renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self‐renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two‐layer regulatory circuit involving β‐catenin, E‐cadherin, PI3K/Akt, and Slug in a time‐dependent manner. Short‐term upregulation of β‐catenin does not lead to the activation of T‐cell factor (TCF)‐eGFP Wnt reporter in hESCs. Instead, it enhances E‐cadherin expression on the cell membrane, thereby enhancing hESC self‐renewal through E‐cadherin‐associated PI3K/Akt signaling. Conversely, long‐term Wnt activation or loss of E‐cadherin intracellular β‐catenin binding domain induces TCF‐eGFP activity and promotes hESC differentiation through β‐catenin‐induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E‐cadherin that serves as a β‐catenin “sink” sequestering free cytoplasmic β‐catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self‐renewal associated with short‐term Wnt/β‐catenin activation to definitive differentiation. Stem Cells2015;33:1419–1433
Collapse
Affiliation(s)
- Tyng-Shyan Huang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hwang HI, Lee TH, Kang KJ, Ryu CJ, Jang YJ. Immunomic Screening of Cell Surface Molecules on Undifferentiated Human Dental Pulp Stem Cells. Stem Cells Dev 2015; 24:1934-45. [PMID: 25919113 DOI: 10.1089/scd.2014.0493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human adult dental pulp tissue is a source of adult stem cells that have a potential to differentiate into various tissues, although the primary cell suspensions cultured from pulp tissue are mixtures of both stem cell and nonstem cell populations with heterogeneous phenotypes and various differentiation efficiencies. Therefore, cell surface protein markers on dental pulp stem cells are critical for detection and purification of stem cell populations. Yet, little is known about the cell surface molecules that are specifically associated with the undifferentiated and progenitor state of human adult dental pulp stem cells (hDPSCs). Presently, cell surface proteins expressed on hDPSCs were assessed by screening surface molecules specifically expressed on dentinogenic progenitors. Using a decoy immunization strategy, a set of monoclonal antibodies (MAbs) was generated against undifferentiated pulp progenitor cells. Forty-five hybridomas produced MAbs that interacted weakly, if at all, to differentiated pulp cells. Of these, 19 MAbs (18 IgG, 1 IgM) recognized surface molecules on undifferentiated hDPSCs. By multicolor flow cytometric analysis, 40%-60% of newly identified MAb-positive cells were demonstrated to be positive for the CD44 and CD90 mesenchymal markers. When MAb-positive cells were sorted from the heterogeneous pulp cell suspension, mineralization efficiency was increased three to five times compared with MAb-negative cells. The results suggest that the decoy immunization is an efficient method for isolation of MAbs against dentinogenic progenitors. These MAbs will be helpful for identification and enrichment of hDPSCs for efficient dentin regeneration.
Collapse
Affiliation(s)
- Hyo-In Hwang
- 1 Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University , Cheonan, Korea
| | - Tae-Hyung Lee
- 1 Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University , Cheonan, Korea
| | - Kyung-Jung Kang
- 1 Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University , Cheonan, Korea
| | - Chun-Jeih Ryu
- 2 Department of Bioscience and Biotechnology, Sejong University , Seoul, Korea
| | - Young-Joo Jang
- 1 Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University , Cheonan, Korea.,3 Laboratory of Oral Biochemistry, the School of Dentistry, Dankook University , Cheonan, Korea
| |
Collapse
|
5
|
Konze SA, van Diepen L, Schröder A, Olmer R, Möller H, Pich A, Weißmann R, Kuss AW, Zweigerdt R, Buettner FFR. Cleavage of E-cadherin and β-catenin by calpain affects Wnt signaling and spheroid formation in suspension cultures of human pluripotent stem cells. Mol Cell Proteomics 2014; 13:990-1007. [PMID: 24482122 DOI: 10.1074/mcp.m113.033423] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The envisioned clinical and industrial use of human pluripotent stem cells and their derivatives has given major momentum to the establishment of suspension culture protocols that enable the mass production of cells. Understanding molecular changes accompanying the transfer from adherent to suspension culture is of utmost importance because this information can have a direct effect on the development of optimized culture conditions. In this study we assessed the gene expression of human embryonic stem cells and induced pluripotent stem cells grown in surface-adherent culture (two-dimensional) versus free-floating suspension culture spheroids (three-dimensional). We combined a quantitative proteomic approach based on stable isotope labeling by amino acids in cell culture with deep-sequencing-based transcriptomics. Cells in three-dimensional culture showed reduced expression of proteins forming structural components of cell-cell and cell-extracellular matrix junctions. However, fully unexpected, we found up-regulation of secreted inhibitors of the canonical Wnt signaling pathway and, concomitantly, a reduction in the level of active β-catenin and in the expression of Wnt target genes. In Western blot analyses the cysteine protease calpain was shown to cleave E-cadherin and β-catenin under three-dimensional culture conditions. Our data allowed the development of a model in which calpain cleavage of E-cadherin induces the disintegration of focal cell contacts and generates a 100-kDa E-cadherin fragment required for the formation of three-dimensional cell-cell contacts in spheroids. The parallel release of β-catenin and its potential activation by calpain cleavage are counterbalanced by the overexpression of soluble Wnt pathway inhibitors. According to this model, calpain has a key function in the interplay between E-cadherin and β-catenin-mediated intercellular adhesion and the canonical Wnt signaling pathway. Supporting this model, we show that pharmacological modulation of calpain activity prevents spheroid formation and causes disassembly of preexisting spheroids into single cells, thereby providing novel strategies for improving suspension culture conditions for human pluripotent stem cells in the future.
Collapse
Affiliation(s)
- Sarah A Konze
- Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liberski AR, Al-Noubi MN, Rahman ZH, Halabi NM, Dib SS, Al-Mismar R, Billing AM, Krishnankutty R, Ahmad FS, Raynaud CM, Rafii A, Engholm-Keller K, Graumann J. Adaptation of a commonly used, chemically defined medium for human embryonic stem cells to stable isotope labeling with amino acids in cell culture. J Proteome Res 2013; 12:3233-45. [PMID: 23734825 DOI: 10.1021/pr400099j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino acids by the feeders, interlaboratory variability of MEF preparation, and the overall complexity of the culture system are all of concern in conjunction with SILAC. We demonstrate a feeder-free SILAC culture system based on a customized version of a commonly used, chemically defined hESC medium developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein amounts required by proteomic work flows. It greatly enhances the usability of quantitative proteomics as a tool for the study of mechanisms underlying hESCs differentiation and self-renewal. Associated data have been deposited to the ProteomeXchange with the identifier PXD000151.
Collapse
|
7
|
Hughes C, Radan L, Chang WY, Stanford WL, Betts DH, Postovit LM, Lajoie GA. Mass spectrometry-based proteomic analysis of the matrix microenvironment in pluripotent stem cell culture. Mol Cell Proteomics 2012; 11:1924-36. [PMID: 23023296 DOI: 10.1074/mcp.m112.020057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis. In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach.
Collapse
Affiliation(s)
- Chris Hughes
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Li L, Bennett SAL, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr 2012; 6:59-70. [PMID: 22647941 PMCID: PMC3364139 DOI: 10.4161/cam.19583] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The survival, proliferation, self-renewal and differentiation of human pluripotent stem cells (hPSCs, including human embryonic stem cells and human induced pluripotent stem cells) involve a number of processes that require cell-cell and cell-matrix interactions. The cell adhesion molecules (CAMs), a group of cell surface proteins play a pivotal role in mediating such interactions. Recent studies have provided insights into the essential roles and mechanisms of CAMs in the regulation of hPSC fate decisions. Here, we review the latest research progress in this field and focus on how E-cadherin and several other important CAMs including classic cadherins, Ig-superfamily CAMs, integrins and heparin sulfate proteoglycans control survival and differentiation of hPSCs.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | | | | |
Collapse
|
9
|
Kim SY, Kim MJ, Jung H, Kim WK, Kwon SO, Son MJ, Jang IS, Choi JS, Park SG, Park BC, Han YM, Lee SC, Cho YS, Bae KH. Comparative Proteomic Analysis of Human Somatic Cells, Induced Pluripotent Stem Cells, and Embryonic Stem Cells. Stem Cells Dev 2012; 21:1272-86. [DOI: 10.1089/scd.2011.0243] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Sun Young Kim
- Medical Proteomics Research Center, KRIBB, Daejeon, South Korea
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Min-Jeong Kim
- Development and Differentiation Research Center, KRIBB, Daejeon, South Korea
| | - Hyeyun Jung
- Medical Proteomics Research Center, KRIBB, Daejeon, South Korea
| | - Won Kon Kim
- Medical Proteomics Research Center, KRIBB, Daejeon, South Korea
| | - Sang Oh Kwon
- Proteome Research Team, Korea Basic Science Institute, Daejeon, South Korea
| | - Myung Jin Son
- Development and Differentiation Research Center, KRIBB, Daejeon, South Korea
| | - Ik-Soon Jang
- Proteome Research Team, Korea Basic Science Institute, Daejeon, South Korea
| | - Jong-Soon Choi
- Proteome Research Team, Korea Basic Science Institute, Daejeon, South Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, KRIBB, Daejeon, South Korea
| | | | - Yong-Mahn Han
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Sang Chul Lee
- Medical Proteomics Research Center, KRIBB, Daejeon, South Korea
| | - Yee Sook Cho
- Development and Differentiation Research Center, KRIBB, Daejeon, South Korea
| | - Kwang-Hee Bae
- Medical Proteomics Research Center, KRIBB, Daejeon, South Korea
| |
Collapse
|