1
|
Wang H, Xiao H, Feng B, Lan Y, Fung CW, Zhang H, Yan G, Lian C, Zhong Z, Li J, Wang M, Wu AR, Li C, Qian PY. Single-cell RNA-seq reveals distinct metabolic "microniches" and close host-symbiont interactions in deep-sea chemosynthetic tubeworm. SCIENCE ADVANCES 2024; 10:eadn3053. [PMID: 39047091 PMCID: PMC11268408 DOI: 10.1126/sciadv.adn3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Vestimentiferan tubeworms that thrive in deep-sea chemosynthetic ecosystems rely on a single species of sulfide-oxidizing gammaproteobacterial endosymbionts housed in a specialized symbiotic organ called trophosome as their primary carbon source. While this simple symbiosis is remarkably productive, the host-symbiont molecular interactions remain unelucidated. Here, we applied an approach for deep-sea in situ single-cell fixation in a cold-seep tubeworm, Paraescarpia echinospica. Single-cell RNA sequencing analysis and further molecular characterizations of both the trophosome and endosymbiont indicate that the tubeworm maintains two distinct metabolic "microniches" in the trophosome by controlling the availability of chemosynthetic gases and metabolites, resulting in oxygenated and hypoxic conditions. The endosymbionts in the oxygenated niche actively conduct autotrophic carbon fixation and are digested for nutrients, while those in the hypoxic niche conduct anaerobic denitrification, which helps the host remove ammonia waste. Our study provides insights into the molecular interactions between animals and their symbiotic microbes.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao, China
| | - Hongxiu Xiao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Buhan Feng
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Cheuk Wang Fung
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huan Zhang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chao Lian
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Zhaoshan Zhong
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Jing Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Minxiao Wang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Angela Ruohao Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chaolun Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- South China Sea Institute of Oceanology, Chinese Academy of Science, Guanzhou, China
- University of Chinese Academy of Science, Beijing, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
2
|
Mitchell JH, Freedman AH, Delaney JA, Girguis PR. Co-expression analysis reveals distinct alliances around two carbon fixation pathways in hydrothermal vent symbionts. Nat Microbiol 2024; 9:1526-1539. [PMID: 38839975 PMCID: PMC11636981 DOI: 10.1038/s41564-024-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/19/2024] [Indexed: 06/07/2024]
Abstract
Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.
Collapse
|
3
|
Ratinskaia L, Malavin S, Zvi-Kedem T, Vintila S, Kleiner M, Rubin-Blum M. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen. ISME COMMUNICATIONS 2024; 4:ycae076. [PMID: 38873029 PMCID: PMC11171427 DOI: 10.1093/ismeco/ycae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.
Collapse
Affiliation(s)
- Lina Ratinskaia
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Stas Malavin
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker 8499000, Israel
| | - Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| |
Collapse
|
4
|
Zvi-Kedem T, Shemesh E, Tchernov D, Rubin-Blum M. The worm affair: fidelity and environmental adaptation in symbiont species that co-occur in vestimentiferan tubeworms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:744-752. [PMID: 34374209 DOI: 10.1111/1758-2229.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The symbioses between the vestimentiferan tubeworms and their chemosynthetic partners (Gammaproteobacteria, Chromatiales and Sedimenticolaceae) hallmark the success of these organisms in hydrothermal vent and hydrocarbon seep deep-sea habitats. The fidelity of these associations varies, as both the hosts and the symbionts can be loose in partner choice. Some tubeworms may host distinct symbiont phylotypes, which often co-occur in a single host individual. To better understand the genetic basis for the promiscuity of tubeworm symbioses, we assembled and investigated metagenome-assembled genomes of two symbiont phylotypes (species, based on the average nucleotide identity < 95%) in Lamellibrachia anaximandri, a vestimentiferan endemic to the Mediterranean Sea, in individuals collected from Palinuro hydrothermal vents (Italy) and hydrocarbon seeps (Eratosthenes seamount and Palmahim disturbance). Using comparative genomics, we show that mainly mobilome and genes involved in defence mechanisms distinguish the symbiont genotypes. While many central metabolic functions are conserved in the tubeworm symbionts, nitrate respiration (Nar, Nap and Nas proteins) is modular, yet this modularity is not linked to phylotype, but rather to geographic location, potentially implying adaptation to the local environment. Our results hint that variation in a single moonlighting protein may be responsible for the fidelity of these symbioses.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Eli Shemesh
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, Haifa, 3108000, Israel
| |
Collapse
|
5
|
Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Riftia pachyptila. Appl Environ Microbiol 2021; 87:e0079421. [PMID: 34190607 DOI: 10.1128/aem.00794-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and the Calvin-Benson-Bassham cycle (CBB) in "Candidatus Endoriftia persephonae," the autotrophic sulfur-oxidizing bacterial endosymbiont from the giant hydrothermal vent tubeworm Riftia pachyptila. We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than that by the CBB. R. pachyptila was incubated under in situ conditions in high-pressure aquaria under low (28 to 40 μmol · h-1) or high (180 to 276 μmol · h-1) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under the two conditions were capable of similar rates of CO2 fixation. Activities of the rCAC enzyme ATP-dependent citrate lyase (ACL) and the CBB enzyme 1,3-bisphosphate carboxylase/oxygenase (RubisCO) did not differ between the two conditions, although transcript abundances for ATP-dependent citrate lyase were 4- to 5-fold higher under low-sulfide conditions. δ13C values of internal dissolved inorganic carbon (DIC) pools were varied and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila, δ13C values of lipids fell between those collected for organisms using either the rCAC or the CBB exclusively. These observations are consistent with cooccurring activities of the rCAC and the CBB in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from "omics" studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila was maintained and monitored in high-pressure aquaria prior to measuring its CO2 fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and the CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO2-fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated.
Collapse
|
6
|
Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Völker U, Becher D, Schweder T, Markert S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. eLife 2021; 10:58371. [PMID: 33404502 PMCID: PMC7787665 DOI: 10.7554/elife.58371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Energy Bioengineering Group, University of Calgary, Calgary, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Mareike Meister
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
| | - Florian Bonn
- Institute of Biochemistry, University Hospital, Goethe University School of Medicine Frankfurt, Frankfurt, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
7
|
Bacterial Intracellular Sulphur Globules. BACTERIAL ORGANELLES AND ORGANELLE-LIKE INCLUSIONS 2020. [DOI: 10.1007/978-3-030-60173-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Yang Y, Sun J, Sun Y, Kwan YH, Wong WC, Zhang Y, Xu T, Feng D, Zhang Y, Qiu JW, Qian PY. Genomic, transcriptomic, and proteomic insights into the symbiosis of deep-sea tubeworm holobionts. THE ISME JOURNAL 2020; 14:135-150. [PMID: 31595051 PMCID: PMC6908572 DOI: 10.1038/s41396-019-0520-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Deep-sea hydrothermal vents and methane seeps are often densely populated by animals that host chemosynthetic symbiotic bacteria, but the molecular mechanisms of such host-symbiont relationship remain largely unclear. We characterized the symbiont genome of the seep-living siboglinid Paraescarpia echinospica and compared seven siboglinid-symbiont genomes. Our comparative analyses indicate that seep-living siboglinid endosymbionts have more virulence traits for establishing infections and modulating host-bacterium interaction than the vent-dwelling species, and have a high potential to resist environmental hazards. Metatranscriptome and metaproteome analyses of the Paraescarpia holobiont reveal that the symbiont is highly versatile in its energy use and efficient in carbon fixation. There is close cooperation within the holobiont in production and supply of nutrients, and the symbiont may be able to obtain nutrients from host cells using virulence factors. Moreover, the symbiont is speculated to have evolved strategies to mediate host protective immunity, resulting in weak expression of host innate immunity genes in the trophosome. Overall, our results reveal the interdependence of the tubeworm holobiont through mutual nutrient supply, a pathogen-type regulatory mechanism, and host-symbiont cooperation in energy utilization and nutrient production, which is a key adaptation allowing the tubeworm to thrive in deep-sea chemosynthetic environments.
Collapse
Affiliation(s)
- Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanjie Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Dong Feng
- CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, 266061, Qingdao, China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
9
|
Abstract
All animals are associated with microorganisms; hence, host-microbe interactions are of fundamental importance for life on earth. However, we know little about the molecular basis of these interactions. Therefore, we studied the deep-sea Riftia pachyptila symbiosis, a model association in which the tubeworm host is associated with only one phylotype of endosymbiotic bacteria and completely depends on this sulfur-oxidizing symbiont for nutrition. Using a metaproteomics approach, we identified both metabolic interaction processes, such as substrate transfer between the two partners, and interactions that serve to maintain the symbiotic balance, e.g., host efforts to control the symbiont population or symbiont strategies to modulate these host efforts. We suggest that these interactions are essential principles of mutualistic animal-microbe associations. The deep-sea tubeworm Riftia pachyptila lacks a digestive system but completely relies on bacterial endosymbionts for nutrition. Although the symbiont has been studied in detail on the molecular level, such analyses were unavailable for the animal host, because sequence information was lacking. To identify host-symbiont interaction mechanisms, we therefore sequenced the Riftia transcriptome, which served as a basis for comparative metaproteomic analyses of symbiont-containing versus symbiont-free tissues, both under energy-rich and energy-limited conditions. Our results suggest that metabolic interactions include nutrient allocation from symbiont to host by symbiont digestion and substrate transfer to the symbiont by abundant host proteins. We furthermore propose that Riftia maintains its symbiont by protecting the bacteria from oxidative damage while also exerting symbiont population control. Eukaryote-like symbiont proteins might facilitate intracellular symbiont persistence. Energy limitation apparently leads to reduced symbiont biomass and increased symbiont digestion. Our study provides unprecedented insights into host-microbe interactions that shape this highly efficient symbiosis.
Collapse
|
10
|
Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula. Proc Natl Acad Sci U S A 2019; 116:8505-8514. [PMID: 30962361 PMCID: PMC6486704 DOI: 10.1073/pnas.1818995116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Animals typically store their primary energy reserves in specialized cells. Here, we show that in the small marine flatworm Paracatenula, this function is performed by its bacterial chemosynthetic symbiont. The intracellular symbiont occupies half of the biomass in the symbiosis and has a highly reduced genome but efficiently stocks up and maintains carbon and energy, particularly sugars. The host rarely digests the symbiont cells to access these stocks. Instead, the symbionts appear to provide the bulk nutrition by secreting outer-membrane vesicles. This is in contrast to all other described chemosynthetic symbioses, where the hosts continuously digest full cells of a small and ideally growing symbiont population that cannot provide a long-term buffering capacity during nutrient limitation. Hosts of chemoautotrophic bacteria typically have much higher biomass than their symbionts and consume symbiont cells for nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria symbionts in mouthless Paracatenula flatworms comprise up to half of the biomass of the consortium. Each species of Paracatenula harbors a specific Ca. Riegeria, and the endosymbionts have been vertically transmitted for at least 500 million years. Such prolonged strict vertical transmission leads to streamlining of symbiont genomes, and the retained physiological capacities reveal the functions the symbionts provide to their hosts. Here, we studied a species of Paracatenula from Sant’Andrea, Elba, Italy, using genomics, gene expression, imaging analyses, as well as targeted and untargeted MS. We show that its symbiont, Ca. R. santandreae has a drastically smaller genome (1.34 Mb) than the symbiont´s free-living relatives (4.29–4.97 Mb) but retains a versatile and energy-efficient metabolism. It encodes and expresses a complete intermediary carbon metabolism and enhanced carbon fixation through anaplerosis and accumulates massive intracellular inclusions such as sulfur, polyhydroxyalkanoates, and carbohydrates. Compared with symbiotic and free-living chemoautotrophs, Ca. R. santandreae’s versatility in energy storage is unparalleled in chemoautotrophs with such compact genomes. Transmission EM as well as host and symbiont expression data suggest that Ca. R. santandreae largely provisions its host via outer-membrane vesicle secretion. With its high share of biomass in the symbiosis and large standing stocks of carbon and energy reserves, it has a unique role for bacterial symbionts—serving as the primary energy storage for its animal host.
Collapse
|
11
|
Hinzke T, Kouris A, Hughes RA, Strous M, Kleiner M. More Is Not Always Better: Evaluation of 1D and 2D-LC-MS/MS Methods for Metaproteomics. Front Microbiol 2019; 10:238. [PMID: 30837968 PMCID: PMC6383543 DOI: 10.3389/fmicb.2019.00238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Metaproteomics, the study of protein expression in microbial communities, is a versatile tool for environmental microbiology. Achieving sufficiently high metaproteome coverage to obtain a comprehensive picture of the activities and interactions in microbial communities is one of the current challenges in metaproteomics. An essential step to maximize the number of identified proteins is peptide separation via liquid chromatography (LC) prior to mass spectrometry (MS). Thorough optimization and comparison of LC methods for metaproteomics are, however, currently lacking. Here, we present an extensive development and test of different 1D and 2D-LC approaches for metaproteomic peptide separations. We used fully characterized mock community samples to evaluate metaproteomic approaches with very long analytical columns (50 and 75 cm) and long gradients (up to 12 h). We assessed a total of over 20 different 1D and 2D-LC approaches in terms of number of protein groups and unique peptides identified, peptide spectrum matches (PSMs) generated, the ability to detect proteins of low-abundance species, the effect of technical replicate runs on protein identifications and method reproducibility. We show here that, while 1D-LC approaches are faster and easier to set up and lead to more identifications per minute of runtime, 2D-LC approaches allow for a higher overall number of identifications with up to >10,000 protein groups identified. We also compared the 1D and 2D-LC approaches to a standard GeLC workflow, in which proteins are pre-fractionated via gel electrophoresis. This method yielded results comparable to the 2D-LC approaches, however with the drawback of a much increased sample preparation time. Based on our results, we provide recommendations on how to choose the best LC approach for metaproteomics experiments, depending on the study aims.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- Institute of Pharmacy, Department of Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Angela Kouris
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Rebecca-Ayme Hughes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria. mSphere 2019; 4:4/1/e00394-18. [PMID: 30602523 PMCID: PMC6315080 DOI: 10.1128/msphere.00394-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary production on Earth is dependent on autotrophic carbon fixation, which leads to the incorporation of carbon dioxide into biomass. Multiple metabolic pathways have been described for autotrophic carbon fixation, but most autotrophic organisms were assumed to have the genes for only one of these pathways. Our finding of a cultivable bacterium with two carbon fixation pathways in its genome, the rTCA and the CBB cycle, opens the possibility to study the potential benefits of having these two pathways and the interplay between them. Additionally, this will allow the investigation of the unusual and potentially very efficient mechanism of electron flow that could drive the rTCA cycle in these autotrophs. Such studies will deepen our understanding of carbon fixation pathways and could provide new avenues for optimizing carbon fixation in biotechnological applications. Very few bacteria are able to fix carbon via both the reverse tricarboxylic acid (rTCA) and the Calvin-Benson-Bassham (CBB) cycles, such as symbiotic, sulfur-oxidizing bacteria that are the sole carbon source for the marine tubeworm Riftia pachyptila, the fastest-growing invertebrate. To date, the coexistence of these two carbon fixation pathways had not been found in a cultured bacterium and could thus not be studied in detail. Moreover, it was not clear if these two pathways were encoded in the same symbiont individual, or if two symbiont populations, each with one of the pathways, coexisted within tubeworms. With comparative genomics, we show that Thioflavicoccus mobilis, a cultured, free-living gammaproteobacterial sulfur oxidizer, possesses the genes for both carbon fixation pathways. Here, we also show that both the CBB and rTCA pathways are likely encoded in the genome of the sulfur-oxidizing symbiont of the tubeworm Escarpia laminata from deep-sea asphalt volcanoes in the Gulf of Mexico. Finally, we provide genomic and transcriptomic data suggesting a potential electron flow toward the rTCA cycle carboxylase 2-oxoglutarate:ferredoxin oxidoreductase, via a rare variant of NADH dehydrogenase/heterodisulfide reductase in the E. laminata symbiont. This electron-bifurcating complex, together with NAD(P)+ transhydrogenase and Na+ translocating Rnf membrane complexes, may improve the efficiency of the rTCA cycle in both the symbiotic and the free-living sulfur oxidizer. IMPORTANCE Primary production on Earth is dependent on autotrophic carbon fixation, which leads to the incorporation of carbon dioxide into biomass. Multiple metabolic pathways have been described for autotrophic carbon fixation, but most autotrophic organisms were assumed to have the genes for only one of these pathways. Our finding of a cultivable bacterium with two carbon fixation pathways in its genome, the rTCA and the CBB cycle, opens the possibility to study the potential benefits of having these two pathways and the interplay between them. Additionally, this will allow the investigation of the unusual and potentially very efficient mechanism of electron flow that could drive the rTCA cycle in these autotrophs. Such studies will deepen our understanding of carbon fixation pathways and could provide new avenues for optimizing carbon fixation in biotechnological applications.
Collapse
|
13
|
Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME JOURNAL 2018; 13:902-920. [PMID: 30518817 PMCID: PMC6461927 DOI: 10.1038/s41396-018-0318-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/23/2018] [Accepted: 11/04/2018] [Indexed: 12/28/2022]
Abstract
Lucinidae clams harbor gammaproteobacterial thioautotrophic gill endosymbionts that are environmentally acquired. Thioautotrophic lucinid symbionts are related to metabolically similar symbionts associated with diverse marine host taxa and fall into three distinct phylogenetic clades. Most studies on the lucinid–bacteria chemosymbiosis have been done with seagrass-dwelling hosts, whose symbionts belong to the largest phylogenetic clade. In this study, we examined the taxonomy and functional repertoire of bacterial endosymbionts at an unprecedented resolution from Phacoides pectinatus retrieved from mangrove-lined coastal sediments, which are underrepresented in chemosymbiosis studies. The P. pectinatus thioautotrophic endosymbiont expressed metabolic gene variants for thioautotrophy, respiration, and nitrogen assimilation distinct from previously characterized lucinid thioautotrophic symbionts and other marine symbionts. At least two other bacterial species with different metabolisms were also consistently identified in the P. pectinatus gill microbiome, including a Kistimonas-like species and a Spirochaeta-like species. Bacterial transcripts involved in adhesion, growth, and virulence and mixotrophy were highly expressed, as were host-related hemoglobin and lysozyme transcripts indicative of sulfide/oxygen/CO2 transport and bactericidal activity. This study suggests the potential roles of P. pectinatus and its gill microbiome species in mangrove sediment biogeochemistry and offers insights into host and microbe metabolisms in the habitat.
Collapse
|
14
|
Hinzke T, Kleiner M, Markert S. Centrifugation-Based Enrichment of Bacterial Cell Populations for Metaproteomic Studies on Bacteria-Invertebrate Symbioses. Methods Mol Biol 2018; 1841:319-334. [PMID: 30259496 DOI: 10.1007/978-1-4939-8695-8_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to high sample complexity, metaproteomic investigations on bacteria-animal symbioses with two or more uncultured partners can be challenging. A selective isolation or enrichment of distinct (sub-)populations within those consortia can solve this problem. Subsequent discrete proteomic analyses benefit from increased sample purity and higher proteome coverage for each of the individual organisms. Here, we describe centrifugation-based methods that allow for a separation of the host and its bacterial symbiont population(s), or even for an enrichment of distinct symbiotic cell cycle stages in the deep-sea mussels Bathymodiolus azoricus and B. thermophilus, the gutless oligochaete Olavius algarvensis and the deep-sea tube worm Riftia pachyptila, respectively.
Collapse
Affiliation(s)
| | - Manuel Kleiner
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Stephanie Markert
- Institute of Marine Biotechnology, Greifswald, Germany.
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
15
|
Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A, Felbeck H, Schlüter R, Sievert SM, Daniel R, Schweder T, Markert S. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genomic Sci 2017; 12:50. [PMID: 28878861 PMCID: PMC5581435 DOI: 10.1186/s40793-017-0266-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
Bathymodiolus thermophilus, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic Gammaproteobacteria within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive and detailed insights into its metabolism and its interactions with the host can only be obtained from culture-independent approaches such as genomics and proteomics. In this study, we report the first draft genome sequence of the sulfur-oxidizing symbiont of B. thermophilus, here tentatively named Candidatus Thioglobus thermophilus. The draft genome (3.1 Mb) harbors 3045 protein-coding genes. It revealed pathways for the use of sulfide and thiosulfate as energy sources and encodes the Calvin-Benson-Bassham cycle for CO2 fixation. Enzymes required for the synthesis of the tricarboxylic acid cycle intermediates oxaloacetate and succinate were absent, suggesting that these intermediates may be substituted by metabolites from external sources. We also detected a repertoire of genes associated with cell surface adhesion, bacteriotoxicity and phage immunity, which may perform symbiosis-specific roles in the B. thermophilus symbiosis.
Collapse
Affiliation(s)
- Ruby Ponnudurai
- Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany
| | - Lizbeth Sayavedra
- Max Planck Institute for Marine Microbiology, Department of Symbiosis, Bremen, Germany
| | - Manuel Kleiner
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Stefan E Heiden
- Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg August University, Göttingen, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, La Jolla, CA USA
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Stefan M Sievert
- Woods Hole Oceanographic Institution, Biology Department, Woods Hole, MA USA
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg August University, Göttingen, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany.,Institute of Marine Biotechnology, Walther-Rathenau-Straße 49A, 17489 Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany.,Institute of Marine Biotechnology, Walther-Rathenau-Straße 49A, 17489 Greifswald, Germany
| |
Collapse
|
16
|
Ponnudurai R, Kleiner M, Sayavedra L, Petersen JM, Moche M, Otto A, Becher D, Takeuchi T, Satoh N, Dubilier N, Schweder T, Markert S. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME JOURNAL 2016; 11:463-477. [PMID: 27801908 PMCID: PMC5270565 DOI: 10.1038/ismej.2016.124] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 12/28/2022]
Abstract
The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate
symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a
sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the
last decades, the degree of interdependence between the three symbiotic
partners, their individual metabolic contributions, as well as the mechanism of
carbon transfer from the symbionts to the host are poorly understood. We used a
combination of proteomics and genomics to investigate the physiology and
metabolism of the individual symbiotic partners. Our study revealed that key
metabolic functions are most likely accomplished jointly by B. azoricus
and its symbionts: (1) CO2 is pre-concentrated by the host for carbon
fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes
essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing
symbiont. In return (3), the sulfur oxidizer may compensate for the host's
putative deficiency in amino acid and cofactor biosynthesis. We also identified
numerous ‘symbiosis-specific' host proteins by comparing
symbiont-containing and symbiont-free host tissues and symbiont fractions. These
proteins included a large complement of host digestive enzymes in the gill that
are likely involved in symbiont digestion and carbon transfer from the symbionts
to the host.
Collapse
Affiliation(s)
- Ruby Ponnudurai
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Manuel Kleiner
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Lizbeth Sayavedra
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jillian M Petersen
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Martin Moche
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Nicole Dubilier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
17
|
Seston SL, Beinart RA, Sarode N, Shockey AC, Ranjan P, Ganesh S, Girguis PR, Stewart FJ. Metatranscriptional Response of Chemoautotrophic Ifremeria nautilei Endosymbionts to Differing Sulfur Regimes. Front Microbiol 2016; 7:1074. [PMID: 27486438 PMCID: PMC4949241 DOI: 10.3389/fmicb.2016.01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022] Open
Abstract
Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 μM hydrogen sulfide (LS), 350 μM hydrogen sulfide (HS), 300 μM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples.
Collapse
Affiliation(s)
| | - Roxanne A Beinart
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | - Neha Sarode
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Abigail C Shockey
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA
| | - Piyush Ranjan
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Sangita Ganesh
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
18
|
Sayavedra L, Kleiner M, Ponnudurai R, Wetzel S, Pelletier E, Barbe V, Satoh N, Shoguchi E, Fink D, Breusing C, Reusch TBH, Rosenstiel P, Schilhabel MB, Becher D, Schweder T, Markert S, Dubilier N, Petersen JM. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 2015; 4:e07966. [PMID: 26371554 PMCID: PMC4612132 DOI: 10.7554/elife.07966] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/14/2015] [Indexed: 01/06/2023] Open
Abstract
Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.
Collapse
Affiliation(s)
| | - Manuel Kleiner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ruby Ponnudurai
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Silke Wetzel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Eric Pelletier
- Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- Metabolic Genomics Group, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- University of Évry-Val d'Essonne, Evry, France
| | - Valerie Barbe
- Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Dennis Fink
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Corinna Breusing
- Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Thorsten BH Reusch
- Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | |
Collapse
|
19
|
Wilmes P, Heintz-Buschart A, Bond PL. A decade of metaproteomics: where we stand and what the future holds. Proteomics 2015; 15:3409-17. [PMID: 26315987 PMCID: PMC5049639 DOI: 10.1002/pmic.201500183] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/06/2015] [Accepted: 08/05/2015] [Indexed: 12/21/2022]
Abstract
We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype‐phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ.
Collapse
Affiliation(s)
- Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Philip L Bond
- Advanced Water Management Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Flood BE, Jones DS, Bailey JV. Sedimenticola thiotaurini sp. nov., a sulfur-oxidizing bacterium isolated from salt marsh sediments, and emended descriptions of the genus Sedimenticola and Sedimenticola selenatireducens. Int J Syst Evol Microbiol 2015; 65:2522-2530. [DOI: 10.1099/ijs.0.000295] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A marine facultative anaerobe, strain SIP-G1T, was isolated from salt marsh sediments, Falmouth, MA, USA. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it belongs to an unclassified clade of Gammaproteobacteria that includes numerous sulfur-oxidizing bacteria that are endosymbionts of marine invertebrates endemic to sulfidic habitats. Strain SIP-G1T is a member of the genus Sedimenticola, of which there is one previously described isolate, Sedimenticola selenatireducens AK4OH1T. S. selenatireducens AK4OH1T was obtained for further characterization and comparison with strain SIP-G1T. The two strains were capable of coupling the oxidation of thiosulfate, tetrathionate, elemental sulfur and sulfide to autotrophic growth and they produced sulfur inclusions as metabolic intermediates. They showed varying degrees of O2 sensitivity, but when provided amino acids or peptides as a source of energy, they appeared more tolerant of O2 and exhibited concomitant production of elemental sulfur inclusions. The organic substrate preferences and limitations of these two organisms suggest that they possess an oxygen-sensitive carbon fixation pathway(s). Organic acids may be used to produce NADPH through the TCA cycle and are used in the formation of polyhydroxyalkanoates. Cell-wall-deficient morphotypes appeared when organic compounds (especially acetate) were present in excess and reduced sulfur was absent. Levels of DNA–DNA hybridization (∼47 %) and phenotypic characterization indicate that strain SIP-G1T represents a separate species within the genus Sedimenticola, for which the name Sedimenticola thiotaurini sp. nov. is proposed. The type strain is SIP-G1T ( = ATCC BAA-2640T = DSM 28581T). The results also justify emended descriptions of the genus Sedimenticola and of S. selenatireducens.
Collapse
Affiliation(s)
- Beverly E. Flood
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel S. Jones
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jake V. Bailey
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
21
|
Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis": an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci U S A 2015; 112:1173-8. [PMID: 25587132 DOI: 10.1073/pnas.1416223112] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name "Candidatus Nitrosopelagicus brevis" str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean.
Collapse
|
22
|
Dmytrenko O, Russell SL, Loo WT, Fontanez KM, Liao L, Roeselers G, Sharma R, Stewart FJ, Newton ILG, Woyke T, Wu D, Lang JM, Eisen JA, Cavanaugh CM. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis. BMC Genomics 2014; 15:924. [PMID: 25342549 PMCID: PMC4287430 DOI: 10.1186/1471-2164-15-924] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. RESULTS Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. CONCLUSIONS The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Eisen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, 4081 Biological Laboratories, Cambridge, MA 02138, USA.
| | | |
Collapse
|
23
|
Williams TJ, Cavicchioli R. Marine metaproteomics: deciphering the microbial metabolic food web. Trends Microbiol 2014; 22:248-60. [PMID: 24731505 DOI: 10.1016/j.tim.2014.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Metaproteomics can be applied to marine systems to discover metabolic processes in the ocean. This review describes current breakthroughs regarding marine microbes in the areas of microbial procurement of nutrients, important and previously unrecognized metabolic processes, functional roles for proteins with previously unknown functions, and intricate networks of metabolic interactions between symbiotic microbes and their hosts. By recognizing that metaproteomics empowers our understanding of the roles that marine microbes play in global biogeochemical cycles, the achievements to date from this advancing field highlight the enormous potential that the future holds.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
24
|
Liao L, Wankel SD, Wu M, Cavanaugh CM, Girguis PR. Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae. Mol Ecol 2013; 23:1544-1557. [PMID: 24237389 DOI: 10.1111/mec.12460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/30/2022]
Abstract
Chemoautotrophic symbionts of deep sea hydrothermal vent tubeworms are known to provide their hosts with all their primary nutrition. While studies have examined how chemoautotrophic symbionts provide the association with nitrogen, fewer have examined if symbiont nitrogen metabolism varies as a function of environmental conditions. Ridgeia piscesae tubeworms flourish at Northeastern Pacific vents, occupy a range of microhabitats, and exhibit a high degree of morphological plasticity [e.g. long-skinny (LS) and short-fat (SF) phenotypes] that may relate to environmental conditions. This plasticity affords an opportunity to examine whether symbiont nitrogen metabolism varies among host phenotypes. LS and SF R. piscesae were recovered from the Axial and Main Endeavour Field hydrothermal vents. Nitrate and ammonium were quantified in Ridgeia blood, and the expression of key nitrogen metabolism genes, as well as stable nitrogen isotope ratios, was quantified in host branchial plume and symbiont-containing tissues. Nitrate and ammonium were abundant in the blood of both phenotypes though environmental ammonium concentrations were, paradoxically, lowest among individuals with the highest blood ammonium. Assimilatory nitrate reductase transcripts were always below detection, though in both LS and SF R. piscesae symbionts, we observed elevated expression of dissimilatory nitrate reductase genes, as well as symbiont and host ammonium assimilation genes. Site-specific differences in expression, along with tissue stable isotope analyses, suggest that LS and SF Ridgeia symbionts are engaged in both dissimilatory nitrate reduction and ammonia assimilation to varying degrees. As such, it appears that environmental conditions -not host phenotype-primarily dictates symbiont nitrogen metabolism.
Collapse
Affiliation(s)
- Li Liao
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA, 02138-2020, USA; SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | | | | | | | | |
Collapse
|
25
|
Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME JOURNAL 2013; 7:1556-67. [PMID: 23619306 PMCID: PMC3721115 DOI: 10.1038/ismej.2013.45] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host-symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry.
Collapse
|
26
|
Leis B, Angelov A, Liebl W. Screening and expression of genes from metagenomes. ADVANCES IN APPLIED MICROBIOLOGY 2013; 83:1-68. [PMID: 23651593 DOI: 10.1016/b978-0-12-407678-5.00001-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microorganisms are the most abundant and widely spread organisms on earth. They colonize a huge variety of natural and anthropogenic environments, including very specialized ecological niches and even extreme habitats, which are made possible by the immense metabolic diversity and genetic adaptability of microbes. As most of the organisms from environmental samples defy cultivation, cultivation-independent metagenomics approaches have been applied since more than one decade to access and characterize the phylogenetic diversity in microbial communities as well as their metabolic potential and ecological functions. Thereby, metagenomics has fully emerged as an own scientific field for mining new biocatalysts for many industrially relevant processes in biotechnology and pharmaceutics. This review summarizes common metagenomic approaches ranging from sampling, isolation of nucleic acids, construction of metagenomic libraries and their evaluation. Sequence-based screenings implement next-generation sequencing platforms, microarrays or PCR-based methods, while function-based analysis covers heterologous expression of metagenomic libraries in diverse screening setups. Major constraints and advantages of each strategy are described. The importance of alternative host-vector systems is discussed, and in order to underline the role of phylogenetic and physiological distance from the gene donor and the expression host employed, a case study is presented that describes the screening of a genomic library from an extreme thermophilic bacterium in both Escherichia coli and Thermus thermophilus. Metatranscriptomics, metaproteomics and single-cell-based methods are expected to complement metagenomic screening efforts to identify novel biocatalysts from environmental samples.
Collapse
Affiliation(s)
- Benedikt Leis
- Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Bavaria, Germany
| | | | | |
Collapse
|
27
|
Thiel V, Hügler M, Blümel M, Baumann HI, Gärtner A, Schmaljohann R, Strauss H, Garbe-Schönberg D, Petersen S, Cowart DA, Fisher CR, Imhoff JF. Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the mediterranean sea. Front Microbiol 2012; 3:423. [PMID: 23248622 PMCID: PMC3522073 DOI: 10.3389/fmicb.2012.00423] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/26/2012] [Indexed: 12/05/2022] Open
Abstract
Vestimentiferan tubeworms (siboglinid polychetes) of the genus Lamellibrachia are common members of cold seep faunal communities and have also been found at sedimented hydrothermal vent sites in the Pacific. As they lack a digestive system, they are nourished by chemoautotrophic bacterial endosymbionts growing in a specialized tissue called the trophosome. Here we present the results of investigations of tubeworms and endosymbionts from a shallow hydrothermal vent field in the Western Mediterranean Sea. The tubeworms, which are the first reported vent-associated tubeworms outside the Pacific, are identified as Lamellibrachia anaximandri using mitochondrial ribosomal and cytochrome oxidase I (COI) gene sequences. They harbor a single gammaproteobacterial endosymbiont. Carbon isotopic data, as well as the analysis of genes involved in carbon and sulfur metabolism indicate a sulfide-oxidizing chemoautotrophic endosymbiont. The detection of a hydrogenase gene fragment suggests the potential for hydrogen oxidation as alternative energy source. Surprisingly, the endosymbiont harbors genes for two different carbon fixation pathways, the Calvin-Benson-Bassham (CBB) cycle as well as the reductive tricarboxylic acid (rTCA) cycle, as has been reported for the endosymbiont of the vent tubeworm Riftia pachyptila. In addition to RubisCO genes we detected ATP citrate lyase (ACL – the key enzyme of the rTCA cycle) type II gene sequences using newly designed primer sets. Comparative investigations with additional tubeworm species (Lamellibrachia luymesi, Lamellibrachia sp. 1, Lamellibrachia sp. 2, Escarpia laminata, Seepiophila jonesi) from multiple cold seep sites in the Gulf of Mexico revealed the presence of acl genes in these species as well. Thus, our study suggests that the presence of two different carbon fixation pathways, the CBB cycle and the rTCA cycle, is not restricted to the Riftia endosymbiont, but rather might be common in vestimentiferan tubeworm endosymbionts, regardless of the habitat.
Collapse
Affiliation(s)
- Vera Thiel
- GEOMAR, Helmholtz Centre for Ocean Research Kiel Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kleiner M, Petersen JM, Dubilier N. Convergent and divergent evolution of metabolism in sulfur-oxidizing symbionts and the role of horizontal gene transfer. Curr Opin Microbiol 2012; 15:621-31. [DOI: 10.1016/j.mib.2012.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
|
29
|
Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. ISME JOURNAL 2011; 6:766-76. [PMID: 22011719 DOI: 10.1038/ismej.2011.137] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two closely related deep-sea tubeworms Riftia pachyptila and Tevnia jerichonana both rely exclusively on a single species of sulfide-oxidizing endosymbiotic bacteria for their nutrition. They do, however, thrive in markedly different geochemical conditions. A detailed proteogenomic comparison of the endosymbionts coupled with an in situ characterization of the geochemical environment was performed to investigate their roles and expression profiles in the two respective hosts. The metagenomes indicated that the endosymbionts are genotypically highly homogeneous. Gene sequences coding for enzymes of selected key metabolic functions were found to be 99.9% identical. On the proteomic level, the symbionts showed very consistent metabolic profiles, despite distinctly different geochemical conditions at the plume level of the respective hosts. Only a few minor variations were observed in the expression of symbiont enzymes involved in sulfur metabolism, carbon fixation and in the response to oxidative stress. Although these changes correspond to the prevailing environmental situation experienced by each host, our data strongly suggest that the two tubeworm species are able to effectively attenuate differences in habitat conditions, and thus to provide their symbionts with similar micro-environments.
Collapse
|