1
|
Li KYC, Syrris P, Bonnin A, Treibel TA, Budhram-Mahadeo V, Dejea H, Cook AC. Cryo-X-Ray Phase Contrast Imaging Enables Combined 3D Structural Quantification and Nucleic Acid Analysis of Myocardial Biopsies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409163. [PMID: 39478309 DOI: 10.1002/advs.202409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Indexed: 12/28/2024]
Abstract
Snap-frozen biopsies serve as a valuable clinical resource of archival material for disease research, as they enable a comprehensive array of downstream analyses to be performed, including extraction and sequencing of nucleic acids. Obtaining three-dimensional (3D) structural information before multi-omics is more challenging but can potentially allow for better characterization of tissues and targeting of clinically relevant cells. Conventional histological techniques are limited in this regard due to their destructive nature and the reconstruction artifacts produced by sectioning, dehydration, and chemical processing. These limitations are particularly notable in soft tissues such as the heart. In this study, the feasibility of using synchrotron-based cryo-X-ray phase contrast imaging (cryo-X-PCI) of snap-frozen myocardial biopsies is assessed and 3D structure tensor analysis of aggregated myocytes, followed by nucleic acid (DNA and RNA) extraction and analysis. It is shown that optimal sample preparation is the key driver for successful structural and nucleic acid preservation which is unaffected by the process of cryo-X-PCI. It is proposed that cryo-X-PCI has clinical value for 3D tissue analysis of cardiac and potentially non-cardiac soft tissue biopsies before nucleic acid investigation.
Collapse
Affiliation(s)
- Kan Yan Chloe Li
- Institute of Cardiovascular Science, University College London, London, WC1N 1DZ, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, WC1N 1DZ, UK
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, London, WC1N 1DZ, UK
- Department of Cardiology, St Bartholomew's Hospital, London, EC1A 7BE, UK
| | | | - Hector Dejea
- European Synchrotron Radiation Facility, 71 Av des Martyrs, Grenoble, 3800, France
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, WC1N 1DZ, UK
| |
Collapse
|
2
|
Egbejiogu BC, Donnarumma F, Murray KK. Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39494617 DOI: 10.1021/jasms.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a ubiquitous and invaluable resource for biomedical research and clinical applications. However, FFPE tissue proteomics is challenging due to protein cross-linking and chemical modification. Laser ablation sampling allows precise removal of material from tissue sections with high spatial control and reproducibility for offline proteomics by liquid chromatography coupled with tandem mass spectrometry. In this work, we used a pulsed mid-infrared laser for microsampling of rat liver tissue for subsequent identification and quantification of proteins. It was found that more proteins were identified by FFPE tissue laser ablation sampling compared to fresh frozen (FF) tissue laser ablation sampling and that more proteins were identified by laser ablation than by manual dissection of FFPE tissue. In contrast to previous studies, no loss of hydrophilic proteins due to residual cross-linking was observed. The efficient capture of proteins by laser ablation microsampling is attributed to efficient laser breakup of the tissue which facilitates downstream processing of the proteins.
Collapse
Affiliation(s)
- Blessing C Egbejiogu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Schwab SK, Harris PS, Michel C, McGinnis CD, Nahomi RB, Assiri MA, Reisdorph R, Henriksen K, Orlicky DJ, Levi M, Rosenberg A, Nagaraj RH, Fritz KS. Quantifying Protein Acetylation in Diabetic Nephropathy from Formalin-Fixed Paraffin-Embedded Tissue. Proteomics Clin Appl 2024; 18:e202400018. [PMID: 38923810 DOI: 10.1002/prca.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism. EXPERIMENTAL DESIGN A novel extraction and LC-MS/MS approach was adapted to quantify sites of lysine acetylation from formalin-fixed paraffin-embedded (FFPE) kidney tissue and from patients with DKD and non-diabetic donors (n = 5 and n = 7, respectively). RESULTS Analysis of FFPE tissues identified 840 total proteins, with 225 of those significantly changing in patients with DKD. Acetylomic analysis quantified 289 acetylated peptides, with 69 of those significantly changing. Pathways impacted in DKD patients revealed numerous metabolic pathways, specifically mitochondrial function, oxidative phosphorylation, and sirtuin signaling. Differential protein acetylation in DKD patients impacted sirtuin signaling, valine, leucine, and isoleucine degradation, lactate metabolism, oxidative phosphorylation, and ketogenesis. CONCLUSIONS AND CLINICAL RELEVANCE A quantitative acetylomics platform was developed for protein biomarker discovery in formalin-fixed and paraffin-embedded biopsies of kidney transplant patients suffering from DKD.
Collapse
Affiliation(s)
- Stefanie K Schwab
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter S Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cole Michel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Courtney D McGinnis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rooban B Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kammi Henriksen
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Avi Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ram H Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Vallejos R, Zhantuyakova A, Negri GL, Martin SD, Spencer SE, Thornton S, Leung S, Lynch B, Qin Y, Chow C, Liang B, Zdravko S, Douglas JM, Milne K, Mateyko B, Nelson BH, Howitt BE, Kommoss FK, Horn LC, Hoang L, Singh N, Morin GB, Huntsman DG, Cochrane D. Changes in the tumour microenvironment mark the transition from serous borderline tumour to low-grade serous carcinoma. J Pathol 2024; 264:197-211. [PMID: 39081243 DOI: 10.1002/path.6338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 09/04/2024]
Abstract
Low-grade serous ovarian carcinoma (LGSC) is a rare and lethal subtype of ovarian cancer. LGSC is pathologically, biologically, and clinically distinct from the more common high-grade serous ovarian carcinoma (HGSC). LGSC arises from serous borderline ovarian tumours (SBTs). The mechanism of transformation for SBTs to LGSC remains poorly understood. To better understand the biology of LGSC, we performed whole proteome profiling of formalin-fixed, paraffin-embedded tissue blocks of LGSC (n = 11), HGSC (n = 19), and SBTs (n = 26). We identified that the whole proteome is able to distinguish between histotypes of the ovarian epithelial tumours. Proteins associated with the tumour microenvironment were differentially expressed between LGSC and SBTs. Fibroblast activation protein (FAP), a protein expressed in cancer-associated fibroblasts, is the most differentially abundant protein in LGSC compared with SBT. Multiplex immunohistochemistry (IHC) for immune markers (CD20, CD79a, CD3, CD8, and CD68) was performed to determine the presence of B cells, T cells, and macrophages. The LGSC FAP+ stroma was associated with greater abundance of Tregs and M2 macrophages, features not present in SBTs. Our proteomics cohort reveals that there are changes in the tumour microenvironment in LGSC compared with its putative precursor lesion, SBT. These changes suggest that the tumour microenvironment provides a supportive environment for LGSC tumourigenesis and progression. Thus, targeting the tumour microenvironment of LGSC may be a viable therapeutic strategy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rodrigo Vallejos
- Department of Genome Sciences and Technology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Almira Zhantuyakova
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | | | - Spencer D Martin
- Diagnostic and Molecular Pathology, University of British Columbia, Vancouver, BC, Canada
| | | | - Shelby Thornton
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Leung
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, BC, Canada
| | - Branden Lynch
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Yimei Qin
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, BC, Canada
| | - Christine Chow
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, BC, Canada
| | - Brooke Liang
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, Canada
| | | | | | | | - Felix Kf Kommoss
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- Diagnostic and Molecular Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Lars-Christian Horn
- Division of Gynecologic, Breast and Perinatal Pathology, Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Lien Hoang
- Diagnostic and Molecular Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Naveena Singh
- Diagnostic and Molecular Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Genome Sciences and Technology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
- Diagnostic and Molecular Pathology, University of British Columbia, Vancouver, BC, Canada
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, BC, Canada
| | - Dawn Cochrane
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
5
|
Piana D, Iavarone F, De Paolis E, Daniele G, Parisella F, Minucci A, Greco V, Urbani A. Phenotyping Tumor Heterogeneity through Proteogenomics: Study Models and Challenges. Int J Mol Sci 2024; 25:8830. [PMID: 39201516 PMCID: PMC11354793 DOI: 10.3390/ijms25168830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Tumor heterogeneity refers to the diversity observed among tumor cells: both between different tumors (inter-tumor heterogeneity) and within a single tumor (intra-tumor heterogeneity). These cells can display distinct morphological and phenotypic characteristics, including variations in cellular morphology, metastatic potential and variability treatment responses among patients. Therefore, a comprehensive understanding of such heterogeneity is necessary for deciphering tumor-specific mechanisms that may be diagnostically and therapeutically valuable. Innovative and multidisciplinary approaches are needed to understand this complex feature. In this context, proteogenomics has been emerging as a significant resource for integrating omics fields such as genomics and proteomics. By combining data obtained from both Next-Generation Sequencing (NGS) technologies and mass spectrometry (MS) analyses, proteogenomics aims to provide a comprehensive view of tumor heterogeneity. This approach reveals molecular alterations and phenotypic features related to tumor subtypes, potentially identifying therapeutic biomarkers. Many achievements have been made; however, despite continuous advances in proteogenomics-based methodologies, several challenges remain: in particular the limitations in sensitivity and specificity and the lack of optimal study models. This review highlights the impact of proteogenomics on characterizing tumor phenotypes, focusing on the critical challenges and current limitations of its use in different clinical and preclinical models for tumor phenotypic characterization.
Collapse
Affiliation(s)
- Diletta Piana
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
| | - Elisa De Paolis
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
- Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gennaro Daniele
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Federico Parisella
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
| | - Angelo Minucci
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
- Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
| |
Collapse
|
6
|
Godbole S, Voß H, Gocke A, Schlumbohm S, Schumann Y, Peng B, Mynarek M, Rutkowski S, Dottermusch M, Dorostkar MM, Korshunov A, Mair T, Pfister SM, Kwiatkowski M, Hotze M, Neumann P, Hartmann C, Weis J, Liesche-Starnecker F, Guan Y, Moritz M, Siebels B, Struve N, Schlüter H, Schüller U, Krisp C, Neumann JE. Multiomic profiling of medulloblastoma reveals subtype-specific targetable alterations at the proteome and N-glycan level. Nat Commun 2024; 15:6237. [PMID: 39043693 PMCID: PMC11266559 DOI: 10.1038/s41467-024-50554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and clinically heterogenous. The application of omics technologies-mainly studying nucleic acids-has significantly improved MB classification and stratification, but treatment options are still unsatisfactory. The proteome and their N-glycans hold the potential to discover clinically relevant phenotypes and targetable pathways. We compile a harmonized proteome dataset of 167 MBs and integrate findings with DNA methylome, transcriptome and N-glycome data. We show six proteome MB subtypes, that can be assigned to two main molecular programs: transcription/translation (pSHHt, pWNT and pG3myc), and synapses/immunological processes (pSHHs, pG3 and pG4). Multiomic analysis reveals different conservation levels of proteome features across MB subtypes at the DNA methylome level. Aggressive pGroup3myc MBs and favorable pWNT MBs are most similar in cluster hierarchies concerning overall proteome patterns but show different protein abundances of the vincristine resistance-associated multiprotein complex TriC/CCT and of N-glycan turnover-associated factors. The N-glycome reflects proteome subtypes and complex-bisecting N-glycans characterize pGroup3myc tumors. Our results shed light on targetable alterations in MB and set a foundation for potential immunotherapies targeting glycan structures.
Collapse
Affiliation(s)
- Shweta Godbole
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Gocke
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Schlumbohm
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Yannis Schumann
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Bojia Peng
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Dottermusch
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mario M Dorostkar
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Mair
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Madlen Hotze
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Philipp Neumann
- Chair for High Performance Computing, Helmut Schmidt University, Hamburg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Hannover Medical School (MHH), Hannover, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Yudong Guan
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuela Moritz
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bente Siebels
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Christoph Krisp
- Section of Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
7
|
Makhmut A, Qin D, Hartlmayr D, Seth A, Coscia F. An Automated and Fast Sample Preparation Workflow for Laser Microdissection Guided Ultrasensitive Proteomics. Mol Cell Proteomics 2024; 23:100750. [PMID: 38513891 PMCID: PMC11067455 DOI: 10.1016/j.mcpro.2024.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Spatial tissue proteomics integrating whole-slide imaging, laser microdissection, and ultrasensitive mass spectrometry is a powerful approach to link cellular phenotypes to functional proteome states in (patho)physiology. To be applicable to large patient cohorts and low sample input amounts, including single-cell applications, loss-minimized and streamlined end-to-end workflows are key. We here introduce an automated sample preparation protocol for laser microdissected samples utilizing the cellenONE robotic system, which has the capacity to process 192 samples in 3 h. Following laser microdissection collection directly into the proteoCHIP LF 48 or EVO 96 chip, our optimized protocol facilitates lysis, formalin de-crosslinking, and tryptic digest of low-input archival tissue samples. The seamless integration with the Evosep ONE LC system by centrifugation allows 'on-the-fly' sample clean-up, particularly pertinent for laser microdissection workflows. We validate our method in human tonsil archival tissue, where we profile proteomes of spatially-defined B-cell, T-cell, and epithelial microregions of 4000 μm2 to a depth of ∼2000 proteins and with high cell type specificity. We finally provide detailed equipment templates and experimental guidelines for broad accessibility.
Collapse
Affiliation(s)
- Anuar Makhmut
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Di Qin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | | | | | - Fabian Coscia
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany.
| |
Collapse
|
8
|
Shimomura-Kuroki J, Tsuneki M, Ida-Yonemochi H, Seino Y, Yamamoto K, Hirao Y, Yamamoto T, Ohshima H. Establishing protein expression profiles involved in tooth development using a proteomic approach. Odontology 2023; 111:839-853. [PMID: 36792749 DOI: 10.1007/s10266-023-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Various growth and transcription factors are involved in tooth development and developmental abnormalities; however, the protein dynamics do not always match the mRNA expression level. Using a proteomic approach, this study comprehensively analyzed protein expression in epithelial and mesenchymal tissues of the tooth germ during development. First molar tooth germs from embryonic day 14 and 16 Crlj:CD1 (ICR) mouse embryos were collected and separated into epithelial and mesenchymal tissues by laser microdissection. Mass spectrometry of the resulting proteins was carried out, and three types of highly expressed proteins [ATP synthase subunit beta (ATP5B), receptor of activated protein C kinase 1 (RACK1), and calreticulin (CALR)] were selected for immunohistochemical analysis. The expression profiles of these proteins were subsequently evaluated during all stages of amelogenesis using the continuously growing incisors of 3-week-old male ICR mice. Interestingly, these three proteins were specifically expressed depending on the stage of amelogenesis. RACK1 was highly expressed in dental epithelial and mesenchymal tissues during the proliferation and differentiation stages of odontogenesis, except for the pigmentation stage, whereas ATP5B and CALR immunoreactivity was weak in the enamel organ during the early stages, but became intense during the maturation and pigmentation stages, although the timing of the increased protein expression was different between the two. Overall, RACK1 plays an important role in maintaining the cell proliferation and differentiation in the apical end of incisors. In contrast, ATP5B and CALR are involved in the transport of minerals and the removal of organic materials as well as matrix deposition for CALR.
Collapse
Affiliation(s)
- Junko Shimomura-Kuroki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan.
| | - Masayuki Tsuneki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medmain Research, Medmain Inc., 2-4-5-104, Akasaka, Chuo-Ku, Fukuoka, 810-0042, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Yuta Seino
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Yoshitoshi Hirao
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| |
Collapse
|
9
|
Moghaddam SJK, Roushandeh AM, Roudkenar MH, Nemati S, Najafi-Ghalehlou N, Pakzad T, Hamidi M. Study of Three Potential Diagnostic Biomarkers in Nasopharyngeal Carcinoma Samples from Guilan, North of Iran. Int Arch Otorhinolaryngol 2023; 27:e461-e470. [PMID: 37564471 PMCID: PMC10411240 DOI: 10.1055/s-0042-1749371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/17/2022] [Indexed: 10/17/2022] Open
Abstract
Introduction Finding biomarkers for highly lethal cancers is a priority. Objective The current study was designed to understand the clinical significance of vascular endothelial growth factor (VEGF), latent membrane protein 1 (LMP1), and tumor necrosis factor-α (TNF-α) expression as the biomarkers, and evaluate their correlation with each other, in nasopharyngeal carcinoma (NPC) in the province of Guilan, North of Iran. Methods Gene expression was evaluated in 25 formalin-fixed paraffin-embedded (FFPE) blocks from cases of confirmed NPC and 20 FFPE samples of non-NPC by quantifying messenger ribonucleic acid (mRNA) and protein levels, using real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) methods, respectively. Furthermore, the correlations among the protein levels of different genes, along with the patients' demographic characteristics were assessed. Results Our findings on mRNA and protein levels demonstrated that the expression of the LMP1 gene in the NPC group was significantly elevated compared with that of the non-NPC group. In addition, the protein levels in the NPC group indicated a positive and significant correlation between LMP1 and VEGF expression. It was noted that both protein and mRNA levels showed no significant differences in the expression of TNF-α and VEGF genes between the NPC and control groups. Furthermore, there was no significant relationship between the expression of these proteins and the demographic characteristics of NPC patients. Conclusion Overall, a significant increase in LMP1 expression was observed in NPC patients, which may serve as a diagnostic biomarker for NPC. Also, LMP1 might be involved in NPC progression by inducing VEGF gene expression.
Collapse
Affiliation(s)
- Saghi Jani Kargar Moghaddam
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadman Nemati
- Otorhinolaryngology Research Center, Faculty of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Toofan Pakzad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
10
|
Jani Kargar Moghaddam S, Mohammadi Roushandeh A, Hamidi M, Nemati S, Jahanian-Najafabadi A, Habibi Roudkenar M. Lipocalin-2 Upregulation in Nasopharyngeal Carcinoma: A Novel Potential Diagnostic Biomarker. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:268-276. [PMID: 37791335 PMCID: PMC10542929 DOI: 10.30476/ijms.2022.93041.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 10/05/2023]
Abstract
Background Lipocalin-2 (LCN2) deregulation has been reported in several types of cancer and is implicated in the proliferation, migration, angiogenesis, and progression of tumors. However, its aberrant expression has been rarely studied in nasopharyngeal carcinoma (NPC). In the present study, we investigated the expression of LCN2 in NPC patients. Methods In this descriptive cross-sectional study, 29 NPC and 20 non-cancerous control paraffin pathology blocks were obtained from the seven-year (2011 to 2018) archive of Razi Laboratory in Rasht, Iran. LCN2 mRNA expression was evaluated through quantitative real-time PCR. In addition, immunohistochemistry was performed to evaluate LCN2 expression at the protein level. The fold change value and total immunostaining score (TIS) were applied for quantitative evaluation. The nonparametric Mann-Whitney U test and Fisher's exact test were used through GraphPad Prism 8.3.0 software. P<0.05 was considered statistically significant. Results Our results revealed that LCN2 mRNA and protein levels in NPC tissues were significantly higher than control tissues (P=0.028 and P=0.002, respectively). At the protein level, 65.51% (19/29) of NPC patients were categorized as having high LCN2 expression (TIS>3) and 34.47% (10/29) as low expression (TIS≤3). While in the control group, 25% (5/20) of subjects represented a high expression of LCN2 (TIS>3), and 75% (15/20) showed no or weak expression (TIS≤3). No significant correlation was found between the overexpression of LCN2 at the protein level and the demographic features of the patients. Conclusion Our findings suggest that LCN2 might be considered a potential new diagnostic marker for NPC. However, this warrants further studies.
Collapse
Affiliation(s)
- Saghi Jani Kargar Moghaddam
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadman Nemati
- Otorhinolaryngology Research Center, School of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
11
|
Barnabas G, Goebeler V, Tsui J, Bush JW, Lange PF. ASAP─Automated Sonication-Free Acid-Assisted Proteomes─from Cells and FFPE Tissues. Anal Chem 2023; 95:3291-3299. [PMID: 36724070 PMCID: PMC9933881 DOI: 10.1021/acs.analchem.2c04264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable resource for retrospective studies, but protein extraction and subsequent sample processing steps have been shown to be challenging for mass spectrometry (MS) analysis. Streamlined high-throughput sample preparation workflows are essential for efficient peptide extraction from complex clinical specimens such as fresh frozen tissues or FFPE. Overall, proteome analysis has gained significant improvements in the instrumentation, acquisition methods, sample preparation workflows, and analysis pipelines, yet even the most recent FFPE workflows remain complex and are not readily scalable. Here, we present an optimized workflow for automated sonication-free acid-assisted proteome (ASAP) extraction from FFPE sections. ASAP enables efficient protein extraction from FFPE specimens, achieving similar proteome coverage as established methods using expensive sonicators, resulting in reduced sample processing time. The broad applicability of ASAP on archived pediatric tumor FFPE specimens resulted in high-quality data with increased proteome coverage and quantitative reproducibility. Our study demonstrates the practicality and superiority of the ASAP workflow as a streamlined, time- and cost-effective pipeline for high-throughput FFPE proteomics of clinical specimens.
Collapse
Affiliation(s)
- Georgina
D. Barnabas
- Department
of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital and Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Verena Goebeler
- Department
of Pediatrics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital and Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Janice Tsui
- Department
of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital and Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jonathan W. Bush
- Department
of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Philipp F. Lange
- Department
of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael
Cuccione Childhood Cancer Research Program, BC Children’s Hospital and Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
12
|
Pu J, Xue C, Huo S, Shen Q, Qu Y, Yang X, An B, Angel TE, Chen Z, Mehl JT, Tang H, Yang E, Sikorski TW, Qu J. Highly Accurate and Robust Absolute Quantification of Target Proteins in Formalin-Fixed Paraffin-Embedded (FFPE) Tissues by LC-MS. Anal Chem 2023; 95:924-934. [PMID: 36534410 PMCID: PMC10581745 DOI: 10.1021/acs.analchem.2c03473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate, absolute liquid chromatography-mass spectrometry (LC-MS)-based quantification of target proteins in formalin-fixed paraffin-embedded (FFPE) tissues would greatly expand sample availability for pharmaceutical/clinical investigations but remains challenging owing to the following issues: (i) efficient/quantitative recovery of target signature peptides from FFPE tissues is essential but an optimal procedure for targeted, absolute quantification is lacking; (ii) most FFPE samples are long-term-stored; severe immunohistochemistry (IHC) signal losses of target proteins during storage were widely reported, while the effect of storage on LC-MS-based methods was unknown; and (iii) the proper strategy to prepare calibration/quality-control samples to ensure accurate targeted protein analysis in FFPE tissues remained elusive. Using targeted quantification of monoclonal antibody (mAb), antigen, and 40 tissue markers in FFPE tissues as a model system, we extensively investigate those issues and develope an LC-MS-based strategy enabling accurate and precise targeted protein quantification in FFPE samples. First, we demonstrated a surfactant cocktail-based procedure (f-SEPOD), providing high/reproducible recovery of target signature peptides from FFPE tissues. Second, a heat-accelerated degradation study within a roughly estimated 5 year storage period recapitulated the loss of protein IHC signals while LC-MS signals of all targets remained constant. This indicates that the storage of FFPE tissues mainly causes decreased immunoreactivity but unlikely chemical degradation of proteins, which strongly suggests that the storage of FFPE tissues does not cause significant quantitative bias for LC-MS-based methods. Third, while a conventional spike-and-extract approach for calibration caused substantial negative biases, a novel approach, using FFPE-treated calibration standards, enabled accurate and precise quantification. With the pipeline, we conducted the first-ever pharmacokinetics measurement of mAb and its target in FFPE tissues, where time courses by FFPE vs fresh tissues showed excellent correlation.
Collapse
Affiliation(s)
- Jie Pu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Chao Xue
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Shihan Huo
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Qingqing Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Yang Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| | - Xinxin Yang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| | - Bo An
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Thomas E. Angel
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Zhuo Chen
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - John T. Mehl
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Huaping Tang
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Eric Yang
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Timothy W. Sikorski
- Bioanalysis, Immunogenicity & Biomarkers, In-Vitro/In-Vivo Translation, R&D Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States; Phone: (610) 270-4978
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| |
Collapse
|
13
|
Bhattacharya N, Nagornov K, Verheggen K, Verhaert M, Sciot R, Verhaert P. MS1-Based Data Analysis Approaches for FFPE Tissue Imaging of Endogenous Peptide Ions by Mass Spectrometry Histochemistry (MSHC). Methods Mol Biol 2023; 2688:187-202. [PMID: 37410294 DOI: 10.1007/978-1-0716-3319-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Ambiguous reports in the literature exist regarding the use and usefulness of formalin-fixed paraffin-embedded (FFPE) tissues in mass spectrometry imaging (MSI). Especially for the study of endogenous (non-tryptic) peptides, several studies have concluded that MSI on archived FFPE tissue bank samples is virtually impossible. We here illustrate that by employing a variant of MSI, called mass spectrometry histochemistry (MSHC), biomolecular tissue localization data are obtained that unequivocally comprise endogenous peptides. We here discuss different informatics steps in a data analysis workflow to help filter peptide-related features out of large and complex datasets generated by atmospheric pressure matrix-assisted laser desorption/ionization high-resolution (Orbitrap mass analyzer) MSHC. These include, in addition to accurate mass measurements, Kendrick mass defect filtering and isotopic distribution scrutiny.
Collapse
Affiliation(s)
| | | | | | - Marthe Verhaert
- ProteoFormiX, Beerse, Belgium
- Department of Medical Oncology at Institute Jules Bordet, Brussels, Belgium
| | - Raf Sciot
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | | |
Collapse
|
14
|
Dowling P. DIGE Saturation Labeling for Scarce Amounts of Protein from Formalin-Fixed Paraffin-Embedded (FFPE) Tissue. Methods Mol Biol 2023; 2596:113-118. [PMID: 36378435 DOI: 10.1007/978-1-0716-2831-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this chapter, we describe the utility of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) as a proteomics platform for the global detection of expressed proteins in formalin-fixed paraffin-embedded (FFPE) tissues and its use for biomarker discovery/identification of proteins that may contribute to cancer development and progression. Formalin fixation and paraffin embedding of tissue is the standard processing methodology practiced in pathology laboratories worldwide, resulting in a highly stable form of tissue that is easily stored due to its inherent stability at room temperature. Consequently, FFPE tissues represent an attractive reservoir of clinical material for conducting retrospective protein biomarker analysis. A limitation for proteomics research in this type of clinical sample is the amount of viable protein that can be obtained from fixed tissues. Tissue biopsies are precious samples that can generally be acquired in very small amounts due to the invasive nature of the sample collection, mainly during surgery or biopsy. Subsequently, the amount of extracted protein can be, in many cases, very limited. The saturation 2D-DIGE technology has emerged as a useful method for protein analysis where only scarce amounts of protein are available. This approach can be adapted successfully to label low-level protein isolated from FFPE tissue.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
15
|
Li J, Zhang J, Xu M, Yang Z, Yue S, Zhou W, Gui C, Zhang H, Li S, Wang PG, Yang S. Advances in glycopeptide enrichment methods for the analysis of protein glycosylation over the past decade. J Sep Sci 2022; 45:3169-3186. [PMID: 35816156 DOI: 10.1002/jssc.202200292] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Advances in bioanalytical technology have accelerated the analysis of complex protein glycosylation, which is beneficial to understanding glycosylation in drug discovery and disease diagnosis. Due to its biological uniqueness in the course of disease occurrence and development, disease-specific glycosylation requires quantitative characterization of protein glycosylation. We provide a comprehensive review of recent advances in glycosylation analysis, including workflows for glycoprotein digestion, glycopeptide separation and enrichment, and mass-spectrometry sequencing. We specifically focus on different strategies for glycopeptide enrichment through physical interaction, chemical oxidation, or metabolic labeling of intact glycopeptides. The recent advances and challenges of O-glycosylation analysis are presented, and the development of improved enrichment methods combining different proteases to analyze O-glycosylation is also proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jie Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeren Yang
- AstraZeneca, Medimmune Ct, Frederick, MD, 21703, USA
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Wanlong Zhou
- U.S. Food and Drug Administration, Forensic Chemistry Center, Cincinnati, OH, 45237, USA
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Haiyang Zhang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu, 210033, China
| | - Perry G Wang
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.,Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
16
|
Mol P, Chatterjee O, Gopalakrishnan L, Mangalaparthi KK, Bhat F, Kumar M, Nair B, Shankar SK, Mahadevan A, Prasad TSK. Age-Associated Molecular Changes in Human Hippocampus Subfields as Determined by Quantitative Proteomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:382-391. [PMID: 35759428 DOI: 10.1089/omi.2022.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hippocampus demonstrates age-associated changes in functions, neuronal circuitry, and plasticity during various developmental stages. On the contrary, there is a significant knowledge gap on age-associated proteomic alterations in the hippocampus subfields. Using tandem mass tag-based high-resolution mass spectrometry and quantitative proteomics, we report here age-associated changes in the human hippocampus at the subregional level. We used formalin-fixed paraffin-embedded hippocampal tissue sections from a total of 12 healthy individuals, with 3 individuals from each of the 4 different age groups, specifically, 1-10, 21-30, 31-40, and 81-90 years. We found that lysosome and oxidative phosphorylation were the pathways enriched in the 81- to 90-year age group. On the contrray, nervous system development, synaptic plasticity and transmission, messenger RNA (mRNA) splicing, and electron transport chain (ETC) complex-I activity were the enriched biological processes observed in the younger age groups. In a hippocampus subfield context, our topline findings on age-associated proteome changes include altered expression of proteins associated with adult neurogenesis with age in the dentate gyrus and increased expression of immune response-associated proteins with age in certain cornu ammonis sectors of the hippocampus. Signal peptide analysis predicted hippocampal proteins with secretory potential. While these new findings warrant replication in larger study samples, the current data contribute to (1) our understanding of the molecular basis of proteomic changes across various age groups in hippocampus subfields in healthy individuals, and (2) the design and interpretation of future research on the age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Firdous Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
17
|
Voß H, Moritz M, Pelczar P, Gagliani N, Huber S, Nippert V, Schlüter H, Hahn J. Tissue Sampling and Homogenization with NIRL Enables Spatially Resolved Cell Layer Specific Proteomic Analysis of the Murine Intestine. Int J Mol Sci 2022; 23:ijms23116132. [PMID: 35682811 PMCID: PMC9181169 DOI: 10.3390/ijms23116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
For investigating the molecular physiology and pathophysiology in organs, the most exact data should be obtained; if not, organ-specific cell lines are analyzed, or the whole organ is homogenized, followed by the analysis of its biomolecules. However, if the morphological organization of the organ can be addressed, then, in the best case, the composition of molecules in single cells of the target organ can be analyzed. Laser capture microdissection (LCM) is a technique which enables the selection of specific cells of a tissue for further analysis of their molecules. However, LCM is a time-consuming two-dimensional technique, and optimal results are only obtained if the tissue is fixed, e.g., by formalin. Especially for proteome analysis, formalin fixation reduced the number of identifiable proteins, and this is an additional drawback. Recently, it was demonstrated that sampling of fresh-frozen (non-fixed) tissue with an infrared-laser is giving higher yields with respect to the absolute protein amount and number of identifiable proteins than conventional mechanical homogenization of tissues. In this study, the applicability of the infrared laser tissue sampling for the proteome analysis of different cell layers of murine intestine was investigated, using LC–MS/MS-based differential quantitative bottom-up proteomics. By laser ablation, eight consecutive layers of colon tissue were obtained and analyzed. However, a clear distinguishability of protein profiles between ascending, descending, and transversal colon was made, and we identified the different intestinal-cell-layer proteins, which are cell-specific, as confirmed by data from the Human Protein Atlas. Thus, for the first time, sampling directly from intact fresh-frozen tissue with three-dimensional resolution is giving access to the different proteomes of different cell layers of colon tissue.
Collapse
Affiliation(s)
- Hannah Voß
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Manuela Moritz
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Penelope Pelczar
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
| | - Vivien Nippert
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
- Correspondence: (H.S.); (J.H.); Tel.: +49-1575-6085997 (H.S.); +49-1522-2827168 (J.H.)
| | - Jan Hahn
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
- Correspondence: (H.S.); (J.H.); Tel.: +49-1575-6085997 (H.S.); +49-1522-2827168 (J.H.)
| |
Collapse
|
18
|
Systematic evaluation and optimization of protein extraction parameters in diagnostic FFPE specimens. Clin Proteomics 2022; 19:10. [PMID: 35501693 PMCID: PMC9063121 DOI: 10.1186/s12014-022-09346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives Formalin-fixed paraffin-embedded (FFPE) tissue is the standard material for diagnostic pathology but poses relevant hurdles to accurate protein extraction due to cross-linking and chemical alterations. While numerous extraction protocols and chemicals have been described, systematic comparative analyses are limited. Various parameters were thus investigated in their qualitative and quantitative effects on protein extraction (PE) efficacy. Special emphasis was put on preservation of membrane proteins (MP) as key subgroup of functionally relevant proteins. Methods Using the example of urothelial carcinoma, FFPE tissue sections were subjected to various deparaffinization, protein extraction and antigen retrieval protocols and buffers as well as different extraction techniques. Performance was measured by protein concentration and western blot analysis of cellular compartment markers as well as liquid chromatography-coupled mass spectrometry (LC–MS). Results Commercially available extraction buffers showed reduced extraction of MPs and came at considerably increased costs. On-slide extraction did not improve PE whereas several other preanalytical steps could be simplified. Systematic variation of temperature and exposure duration demonstrated a quantitatively relevant corridor of optimal antigen retrieval. Conclusions Preanalytical protein extraction can be optimized at various levels to improve unbiased protein extraction and to reduce time and costs. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09346-0.
Collapse
|
19
|
A Non-Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle Biopsy-Sized Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. Int J Mol Sci 2022; 23:ijms23084443. [PMID: 35457260 PMCID: PMC9031572 DOI: 10.3390/ijms23084443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Most human tumor tissues that are obtained for pathology and diagnostic purposes are formalin-fixed and paraffin-embedded (FFPE). To perform quantitative proteomics of FFPE samples, paraffin has to be removed and formalin-induced crosslinks have to be reversed prior to proteolytic digestion. A central component of almost all deparaffinization protocols is xylene, a toxic and highly flammable solvent that has been reported to negatively affect protein extraction and quantitative proteome analysis. Here, we present a 'green' xylene-free protocol for accelerated sample preparation of FFPE tissues based on paraffin-removal with hot water. Combined with tissue homogenization using disposable micropestles and a modified protein aggregation capture (PAC) digestion protocol, our workflow enables streamlined and reproducible quantitative proteomic profiling of FFPE tissue. Label-free quantitation of FFPE cores from human ductal breast carcinoma in situ (DCIS) xenografts with a volume of only 0.79 mm3 showed a high correlation between replicates (r2 = 0.992) with a median %CV of 16.9%. Importantly, this small volume is already compatible with tissue micro array (TMA) cores and core needle biopsies, while our results and its ease-of-use indicate that further downsizing is feasible. Finally, our FFPE workflow does not require costly equipment and can be established in every standard clinical laboratory.
Collapse
|
20
|
Evaluation of Fast and Sensitive Proteome Profiling of FF and FFPE Kidney Patient Tissues. Molecules 2022; 27:molecules27031137. [PMID: 35164409 PMCID: PMC8838561 DOI: 10.3390/molecules27031137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) human tissues is an important development spurred on by requests from stakeholder groups in clinical fields. One objective is to complement current diagnostic methods with new specific molecular information. An important goal is to achieve adequate and consistent protein recovery across and within large-scale studies. Here, we describe development of several protocols incorporating mass spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were applied on 4 and 15 μm thick FF tissues, and 4 μm thick FFPE tissues. We evaluated sensitivity and repeatability of the methods and found that the protocol containing Rapigest enabled detection of 630 proteins from FF tissue of 1 mm2 and 15 μm thick, whereas 498 and 297 proteins were detected with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer showed good extraction of the proteins from 4 μm thick FFPE tissue with the average of 270 protein identifications (1 mm2), similar to the results on 4 μm thick FF. Moreover, we found that temperature increases during incubation with urea on 4 μm thick FF tissue revealed a decrease in the number of identified proteins and increase in the number of the carbamylated peptides.
Collapse
|
21
|
Rossouw S, Bendou H, Bell L, Rigby J, Christoffels A. Effect of polyethylene glycol 20 000 on protein extraction efficiency of formalin-fixed paraffin-embedded tissues in South Africa. Afr J Lab Med 2021; 10:1122. [PMID: 34966662 PMCID: PMC8689371 DOI: 10.4102/ajlm.v10i1.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/08/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Optimal protocols for efficient and reproducible protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues are not yet standardised and new techniques are continually developed and improved. The effect of polyethylene glycol (PEG) 20 000 on protein extraction efficiency has not been evaluated using human FFPE colorectal cancer tissues and there is no consensus on the protein extraction solution required for efficient, reproducible extraction. OBJECTIVE The impact of PEG 20 000 on protein extraction efficiency, reproducibility and protein selection bias was evaluated using FFPE colonic tissue via liquid chromatography tandem mass spectrometry analysis. METHODS This study was conducted from August 2017 to July 2019 using human FFPE colorectal carcinoma tissues from the Anatomical Pathology department at Tygerberg Hospital in South Africa. Samples were analysed via label-free liquid chromatography tandem mass spectrometry to determine the impact of using PEG 20 000 in the protein extraction solution. Data were assessed regarding peptide and protein identifications, method efficiency, reproducibility, protein characteristics and organisation relating to gene ontology categories. RESULTS Polyethylene glycol 20 000 exclusion increased peptides and proteins identifications and the method was more reproducible compared to the samples processed with PEG 20 000. However, no differences were observed with regard to protein selection bias. We found that higher protein concentrations (> 10 µg) compromised the function of PEG. CONCLUSION This study indicates that protocols generating high protein yields from human FFPE tissues would benefit from the exclusion of PEG 20 000 in the protein extraction solution.
Collapse
Affiliation(s)
- Sophia Rossouw
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Hocine Bendou
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Observatory, Cape Town, South Africa
| | - Jonathan Rigby
- Department of Anatomical Pathology, National Health Laboratory Service, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
22
|
Eckert S, Chang YC, Bayer FP, The M, Kuhn PH, Weichert W, Kuster B. Evaluation of Disposable Trap Column nanoLC-FAIMS-MS/MS for the Proteomic Analysis of FFPE Tissue. J Proteome Res 2021; 20:5402-5411. [PMID: 34735149 DOI: 10.1021/acs.jproteome.1c00695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteomic biomarker discovery using formalin-fixed paraffin-embedded (FFPE) tissue requires robust workflows to support the analysis of large cohorts of patient samples. It also requires finding a reasonable balance between achieving a high proteomic depth and limiting the overall analysis time. To this end, we evaluated the merits of online coupling of single-use disposable trap column nanoflow liquid chromatography, high-field asymmetric-waveform ion-mobility spectrometry (FAIMS), and tandem mass spectrometry (nLC-FAIMS-MS/MS). The data show that ≤600 ng of peptide digest should be loaded onto the chromatographic part of the system. Careful characterization of the FAIMS settings enabled the choice of optimal combinations of compensation voltages (CVs) as a function of the employed LC gradient time. We found nLC-FAIMS-MS/MS to be on par with StageTip-based off-line basic pH reversed-phase fractionation in terms of proteomic depth and reproducibility of protein quantification (coefficient of variation ≤15% for 90% of all proteins) but requiring 50% less sample and substantially reducing sample handling. Using FFPE materials from the lymph node, lung, and prostate tissue as examples, we show that nLC-FAIMS-MS/MS can identify 5000-6000 proteins from the respective tissue within a total of 3 h of analysis time.
Collapse
Affiliation(s)
- Stephan Eckert
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising 85354, Germany.,Institute of Pathology, Technical University of Munich (TUM), Munich 81675, Germany.,German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Yun-Chien Chang
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising 85354, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising 85354, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising 85354, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich (TUM), Munich 81675, Germany.,German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich (TUM), Munich 81675, Germany.,German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising 85354, Germany.,German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich (TUM), Freising 85354, Germany
| |
Collapse
|
23
|
Wu R, Qin L, Chen L, Ma R, Chen D, Liu H, Xu H, Guo H, Zhou Y, Wang X. Copper adhesive tape attached to the reverse side of a non-conductive glass slide to achieve protein MALDI-imaging in FFPE-tissue sections. Chem Commun (Camb) 2021; 57:10707-10710. [PMID: 34542115 DOI: 10.1039/d1cc03629g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, copper adhesive tape attached to the reverse side of a glass slide was developed as a new method to achieve protein in situ detection and imaging in a formalin fixed paraffin-embedded (FFPE) tissue section on a non-conductive glass slide by MALDI-MSI. The use of this new method led to 223 protein ions being imaged from a rat brain FFPE-tissue section on a non-conductive glass slide by MALDI-MS, compared to only 145 and 163 protein ions detected on an ITO glass slide and an AnchorChip target plate, respectively. This new method has great potential to become standard practice for protein MALDI-imaging in FFPE-tissue sections on non-conductive glass slides.
Collapse
Affiliation(s)
- Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Rui Ma
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Difan Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
24
|
Mao Y, Wang X, Huang P, Tian R. Spatial proteomics for understanding the tissue microenvironment. Analyst 2021; 146:3777-3798. [PMID: 34042124 DOI: 10.1039/d1an00472g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human body comprises rich populations of cells, which are arranged into tissues and organs with diverse functionalities. These cells exhibit a broad spectrum of phenotypes and are often organized as a heterogeneous but sophisticatedly regulated ecosystem - tissue microenvironment, inside which every cell interacts with and is reciprocally influenced by its surroundings through its life span. Therefore, it is critical to comprehensively explore the cellular machinery and biological processes in the tissue microenvironment, which is best exemplified by the tumor microenvironment (TME). The past decade has seen increasing advances in the field of spatial proteomics, the main purpose of which is to characterize the abundance and spatial distribution of proteins and their post-translational modifications in the microenvironment of diseased tissues. Herein, we outline the achievements and remaining challenges of mass spectrometry-based tissue spatial proteomics. Exciting technology developments along with important biomedical applications of spatial proteomics are highlighted. In detail, we focus on high-quality resources built by scalpel macrodissection-based region-resolved proteomics, method development of sensitive sample preparation for laser microdissection-based spatial proteomics, and antibody recognition-based multiplexed tissue imaging. In the end, critical issues and potential future directions for spatial proteomics are also discussed.
Collapse
Affiliation(s)
- Yiheng Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. and Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Wang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China and Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Peiwu Huang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Friedrich C, Schallenberg S, Kirchner M, Ziehm M, Niquet S, Haji M, Beier C, Neudecker J, Klauschen F, Mertins P. Comprehensive micro-scaled proteome and phosphoproteome characterization of archived retrospective cancer repositories. Nat Commun 2021; 12:3576. [PMID: 34117251 PMCID: PMC8196151 DOI: 10.1038/s41467-021-23855-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are a valuable resource for retrospective clinical studies. Here, we evaluate the feasibility of (phospho-)proteomics on FFPE lung tissue regarding protein extraction, quantification, pre-analytics, and sample size. After comparing protein extraction protocols, we use the best-performing protocol for the acquisition of deep (phospho-)proteomes from lung squamous cell and adenocarcinoma with >8,000 quantified proteins and >14,000 phosphosites with a tandem mass tag (TMT) approach. With a microscaled approach, we quantify 7,000 phosphosites, enabling the analysis of FFPE biopsies with limited tissue amounts. We also investigate the influence of pre-analytical variables including fixation time and heat-assisted de-crosslinking on protein extraction efficiency and proteome coverage. Our improved workflows provide quantitative information on protein abundance and phosphosite regulation for the most relevant oncogenes, tumor suppressors, and signaling pathways in lung cancer. Finally, we present general guidelines to which methods are best suited for different applications, highlighting TMT methods for comprehensive (phospho-)proteome profiling for focused clinical studies and label-free methods for large cohorts.
Collapse
Affiliation(s)
- Corinna Friedrich
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany ,grid.419491.00000 0001 1014 0849Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), MDC graduate school, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Humboldt Universität zu Berlin, Institute of Chemistry, Berlin, Germany
| | - Simon Schallenberg
- grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marieluise Kirchner
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Ziehm
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Niquet
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mohamed Haji
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
| | - Christin Beier
- grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
| | - Jens Neudecker
- grid.6363.00000 0001 2218 4662Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7468.d0000 0001 2248 7639Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.5252.00000 0004 1936 973XInstitute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Mertins
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.419491.00000 0001 1014 0849Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Rossouw SC, Bendou H, Blignaut RJ, Bell L, Rigby J, Christoffels A. Evaluation of Protein Purification Techniques and Effects of Storage Duration on LC-MS/MS Analysis of Archived FFPE Human CRC Tissues. Pathol Oncol Res 2021; 27:622855. [PMID: 34257588 PMCID: PMC8262168 DOI: 10.3389/pore.2021.622855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
To elucidate cancer pathogenesis and its mechanisms at the molecular level, the collecting and characterization of large individual patient tissue cohorts are required. Since most pathology institutes routinely preserve biopsy tissues by standardized methods of formalin fixation and paraffin embedment, these archived FFPE tissues are important collections of pathology material that include patient metadata, such as medical history and treatments. FFPE blocks can be stored under ambient conditions for decades, while retaining cellular morphology, due to modifications induced by formalin. However, the effect of long-term storage, at resource-limited institutions in developing countries, on extractable protein quantity/quality has not yet been investigated. In addition, the optimal sample preparation techniques required for accurate and reproducible results from label-free LC-MS/MS analysis across block ages remains unclear. This study investigated protein extraction efficiency of 1, 5, and 10-year old human colorectal carcinoma resection tissue and assessed three different gel-free protein purification methods for label-free LC-MS/MS analysis. A sample size of n = 17 patients per experimental group (with experiment power = 0.7 and α = 0.05, resulting in 70% confidence level) was selected. Data were evaluated in terms of protein concentration extracted, peptide/protein identifications, method reproducibility and efficiency, sample proteome integrity (due to storage time), as well as protein/peptide distribution according to biological processes, cellular components, and physicochemical properties. Data are available via ProteomeXchange with identifier PXD017198. The results indicate that the amount of protein extracted is significantly dependent on block age (p < 0.0001), with older blocks yielding less protein than newer blocks. Detergent removal plates were the most efficient and overall reproducible protein purification method with regard to number of peptide and protein identifications, followed by the MagReSyn® SP3/HILIC method (with on-bead enzymatic digestion), and lastly the acetone precipitation and formic acid resolubilization method. Overall, the results indicate that long-term storage of FFPE tissues (as measured by methionine oxidation) does not considerably interfere with retrospective proteomic analysis (p > 0.1). Block age mainly affects initial protein extraction yields and does not extensively impact on subsequent label-free LC-MS/MS analysis results.
Collapse
Affiliation(s)
- Sophia C. Rossouw
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Hocine Bendou
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Renette J. Blignaut
- Department of Statistics and Population Studies, University of the Western Cape, Bellville, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Observatory, Cape Town, South Africa
| | - Jonathan Rigby
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Stellenbosch, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
27
|
Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, Rattray DG, Mahdessian D, Gingras AC, Warscheid B, Lehtiö J, Cristea IM, Foster LJ, Emili A, Lilley KS. Subcellular proteomics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:32. [PMID: 34549195 PMCID: PMC8451152 DOI: 10.1038/s43586-021-00029-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
Collapse
Affiliation(s)
- Josie A. Christopher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Charlotte Stadler
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yanbo Pan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David G. Rattray
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana Mahdessian
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signaling Research Centers, University of Freiburg, Freiburg, Germany
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| |
Collapse
|
28
|
Shidham VB. Cell-blocks and other ancillary studies (including molecular genetic tests and proteomics). Cytojournal 2021; 18:4. [PMID: 33880127 PMCID: PMC8053490 DOI: 10.25259/cytojournal_3_2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/28/2023] Open
Abstract
Many types of elective ancillary tests may be required to support the cytopathologic interpretations. Most of these tests can be performed on cell-blocks of different cytology specimens. The cell-block sections can be used for almost any special stains including various histochemistry stains and for special stains for different microorganisms including fungi, Pneumocystis jirovecii (carinii), and various organisms including acid-fast organisms similar to the surgical biopsy specimens. Similarly, in addition to immunochemistry, different molecular tests can be performed on cell-blocks. Molecular tests broadly can be divided into two main types Molecular genetic tests and Proteomics.
Collapse
Affiliation(s)
- Vinod B Shidham
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Center, and Detroit Medical Center, Detroit, Michigan, United States
| |
Collapse
|
29
|
Weke K, Singh A, Uwugiaren N, Alfaro JA, Wang T, Hupp TR, O'Neill JR, Vojtesek B, Goodlett DR, Williams SM, Zhou M, Kelly RT, Zhu Y, Dapic I. MicroPOTS Analysis of Barrett's Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress. J Proteome Res 2021; 20:2195-2205. [PMID: 33491460 PMCID: PMC8155554 DOI: 10.1021/acs.jproteome.0c00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Moving from macroscale
preparative systems in proteomics to micro-
and nanotechnologies offers researchers the ability to deeply profile
smaller numbers of cells that are more likely to be encountered in
clinical settings. Herein a recently developed microscale proteomic
method, microdroplet processing in one pot for trace samples (microPOTS),
was employed to identify proteomic changes in ∼200 Barrett’s
esophageal cells following physiologic and radiation stress exposure.
From this small population of cells, microPOTS confidently identified
>1500 protein groups, and achieved a high reproducibility with
a Pearson’s
correlation coefficient value of R > 0.9 and over
50% protein overlap from replicates. A Barrett’s cell line
model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g.,
ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3,
S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared
to the untreated set. These results demonstrate the ability of microPOTS
to routinely identify and quantify differentially expressed proteins
from limited numbers of cells.
Collapse
Affiliation(s)
- Kenneth Weke
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Ashita Singh
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K.,Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Naomi Uwugiaren
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Javier A Alfaro
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - Tongjie Wang
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - Ted R Hupp
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - J Robert O'Neill
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K.,Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, U.K
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - David R Goodlett
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,University of Victoria - Genome British Columbia Proteomics Centre, Victoria, BC V8Z 7X8, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Irena Dapic
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
30
|
A Novel Nanoproteomic Approach for the Identification of Molecular Targets Associated with Thyroid Tumors. NANOMATERIALS 2020; 10:nano10122370. [PMID: 33260544 PMCID: PMC7761166 DOI: 10.3390/nano10122370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
A thyroid nodule is the most common presentation of thyroid cancer; thus, it is extremely important to differentiate benign from malignant nodules. Within malignant lesions, classification of a thyroid tumor is the primary step in the assessment of the prognosis and selection of treatment. Currently, fine-needle aspiration biopsy (FNAB) is the preoperative test most commonly used for the initial thyroid nodule diagnosis. However, due to some limitations of FNAB, different high-throughput “omics” approaches have emerged that could further support diagnosis based on histopathological patterns. In the present work, formalin-fixed paraffin-embedded (FFPE) tissue specimens from normal (non-neoplastic) thyroid (normal controls (NCs)), benign tumors (follicular thyroid adenomas (FTAs)), and some common types of well-differentiated thyroid carcinoma (follicular thyroid carcinomas (FTCs), conventional or classical papillary thyroid carcinomas (CV-PTCs), and the follicular variant of papillary thyroid carcinomas (FV-PTCs)) were analyzed. For the first time, FFPE thyroid samples were deparaffinized using an easy, fast, and non-toxic method. Protein extracts from thyroid tissue samples were analyzed using a nanoparticle-assisted proteomics approach combined with shotgun LC-MS/MS. The differentially regulated proteins found to be specific for the FTA, FTC, CV-PTC, and FV-PTC subtypes were analyzed with the bioinformatic tools STRING and PANTHER showing a profile of proteins implicated in the thyroid cancer metabolic reprogramming, cancer progression, and metastasis. These proteins represent a new source of potential molecular targets related to thyroid tumors.
Collapse
|
31
|
Coscia F, Doll S, Bech JM, Schweizer L, Mund A, Lengyel E, Lindebjerg J, Madsen GI, Moreira JM, Mann M. A streamlined mass spectrometry-based proteomics workflow for large-scale FFPE tissue analysis. J Pathol 2020; 251:100-112. [PMID: 32154592 DOI: 10.1002/path.5420] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Formalin fixation and paraffin-embedding (FFPE) is the most common method to preserve human tissue for clinical diagnosis, and FFPE archives represent an invaluable resource for biomedical research. Proteins in FFPE material are stable over decades but their efficient extraction and streamlined analysis by mass spectrometry (MS)-based proteomics has so far proven challenging. Herein we describe a MS-based proteomic workflow for quantitative profiling of large FFPE tissue cohorts directly from histopathology glass slides. We demonstrate broad applicability of the workflow to clinical pathology specimens and variable sample amounts, including low-input cancer tissue isolated by laser microdissection. Using state-of-the-art data dependent acquisition (DDA) and data independent acquisition (DIA) MS workflows, we consistently quantify a large part of the proteome in 100 min single-run analyses. In an adenoma cohort comprising more than 100 samples, total workup took less than a day. We observed a moderate trend towards lower protein identification in long-term stored samples (>15 years), but clustering into distinct proteomic subtypes was independent of archival time. Our results underscore the great promise of FFPE tissues for patient phenotyping using unbiased proteomics and they prove the feasibility of analyzing large tissue cohorts in a robust, timely, and streamlined manner. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fabian Coscia
- Clinical Proteomics Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jacob Mathias Bech
- Section for Molecular Disease Biology, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Mund
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Jan Lindebjerg
- Lillebaelt Hospital, Vejle Hospital, Department of Pathology, Vejle, Denmark
| | | | - José Ma Moreira
- Section for Molecular Disease Biology, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Clinical Proteomics Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
32
|
Sadick JS, Crawford LA, Cramer HC, Franck C, Liddelow SA, Darling EM. Generating Cell Type-Specific Protein Signatures from Non-symptomatic and Diseased Tissues. Ann Biomed Eng 2020; 48:2218-2232. [PMID: 32303872 PMCID: PMC7416432 DOI: 10.1007/s10439-020-02507-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Here we demonstrate a technique to generate proteomic signatures of specific cell types within heterogeneous populations. While our method is broadly applicable across biological systems, we have limited the current work to study neural cell types isolated from human, post-mortem Alzheimer's disease (AD) and aged-matched non-symptomatic (NS) brains. Motivating the need for this tool, we conducted an initial meta-analysis of current, human AD proteomics studies. While the results broadly corroborated major neurodegenerative disease hypotheses, cell type-specific predictions were limited. By adapting our Formaldehyde-fixed Intracellular Target-Sorted Antigen Retrieval (FITSAR) method for proteomics and applying this technique to characterize AD and NS brains, we generated enriched neuron and astrocyte proteomic profiles for a sample set of donors (available at www.fitsarpro.appspot.com ). Results showed the feasibility for using FITSAR to evaluate cell-type specific hypotheses. Our overall methodological approach provides an accessible platform to determine protein presence in specific cell types and emphasizes the need for protein-compatible techniques to resolve systems complicated by cellular heterogeneity.
Collapse
Affiliation(s)
- Jessica S Sadick
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Lorin A Crawford
- Department of Biostatistics, Brown University, Providence, RI, 02912, USA
- Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - Harry C Cramer
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
- School of Engineering, Brown University, Providence, RI, 02912, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christian Franck
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
- School of Engineering, Brown University, Providence, RI, 02912, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, 10016, USA
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Eric M Darling
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA.
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.
- School of Engineering, Brown University, Providence, RI, 02912, USA.
- Department of Orthopaedics, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
33
|
Griesser E, Wyatt H, Ten Have S, Stierstorfer B, Lenter M, Lamond AI. Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue. Mol Cell Proteomics 2020; 19:839-851. [PMID: 32132230 PMCID: PMC7196589 DOI: 10.1074/mcp.ra119.001889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Indexed: 11/10/2022] Open
Abstract
Laser-capture microdissection (LCM) allows the visualization and isolation of morphologically distinct subpopulations of cells from heterogeneous tissue specimens. In combination with formalin-fixed and paraffin-embedded (FFPE) tissue it provides a powerful tool for retrospective and clinically relevant studies of tissue proteins in a healthy and diseased context. We first optimized the protocol for efficient LCM analysis of FFPE tissue specimens. The use of SDS containing extraction buffer in combination with the single-pot solid-phase-enhanced sample preparation (SP3) digest method gave the best results regarding protein yield and protein/peptide identifications. Microdissected FFPE human substantia nigra tissue samples (∼3,000 cells) were then analyzed, using tandem mass tag (TMT) labeling and LC-MS/MS, resulting in the quantification of >5,600 protein groups. Nigral proteins were classified and analyzed by abundance, showing an enrichment of extracellular exosome and neuron-specific gene ontology (GO) terms among the higher abundance proteins. Comparison of microdissected samples with intact tissue sections, using a label-free shotgun approach, revealed an enrichment of neuronal cell type markers, such as tyrosine hydroxylase and alpha-synuclein, as well as proteins annotated with neuron-specific GO terms. Overall, this study provides a detailed protocol for laser-capture proteomics using FFPE tissue and demonstrates the efficiency of LCM analysis of distinct cell subpopulations for proteomic analysis using low sample amounts.
Collapse
Affiliation(s)
- Eva Griesser
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom; Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Hannah Wyatt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martin Lenter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom.
| |
Collapse
|
34
|
Nicolet BP, Guislain A, van Alphen FPJ, Gomez-Eerland R, Schumacher TNM, van den Biggelaar M, Wolkers MC. CD29 identifies IFN-γ-producing human CD8 + T cells with an increased cytotoxic potential. Proc Natl Acad Sci U S A 2020; 117:6686-6696. [PMID: 32161126 PMCID: PMC7104308 DOI: 10.1073/pnas.1913940117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytotoxic CD8+ T cells can effectively kill target cells by producing cytokines, chemokines, and granzymes. Expression of these effector molecules is however highly divergent, and tools that identify and preselect CD8+ T cells with a cytotoxic expression profile are lacking. Human CD8+ T cells can be divided into IFN-γ- and IL-2-producing cells. Unbiased transcriptomics and proteomics analysis on cytokine-producing fixed CD8+ T cells revealed that IL-2+ cells produce helper cytokines, and that IFN-γ+ cells produce cytotoxic molecules. IFN-γ+ T cells expressed the surface marker CD29 already prior to stimulation. CD29 also marked T cells with cytotoxic gene expression from different tissues in single-cell RNA-sequencing data. Notably, CD29+ T cells maintained the cytotoxic phenotype during cell culture, suggesting a stable phenotype. Preselecting CD29-expressing MART1 TCR-engineered T cells potentiated the killing of target cells. We therefore propose that CD29 expression can help evaluate and select for potent therapeutic T cell products.
Collapse
Affiliation(s)
- Benoît P Nicolet
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
- Landsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Aurélie Guislain
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
- Landsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Floris P J van Alphen
- Department of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Raquel Gomez-Eerland
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ton N M Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Maartje van den Biggelaar
- Department of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands
- Department of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands;
- Landsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
35
|
Mantsiou A, Makridakis M, Fasoulakis K, Katafigiotis I, Constantinides CA, Zoidakis J, Roubelakis MG, Vlahou A, Lygirou V. Proteomics Analysis of Formalin Fixed Paraffin Embedded Tissues in the Investigation of Prostate Cancer. J Proteome Res 2019; 19:2631-2642. [PMID: 31682457 DOI: 10.1021/acs.jproteome.9b00587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of death in men worldwide. The molecular features, associated with the onset and progression of the disease, are under vigorous investigation. Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources for large-scale studies; however, their application in proteomics is limited due to protein cross-linking. In this study, the adjustment of a protocol for the proteomic analysis of FFPE tissues was performed which was followed by a pilot application on FFPE PCa clinical samples to investigate whether the optimized protocol can provide biologically relevant data for the investigation of PCa. For the optimization, FFPE mouse tissues were processed using seven protein extraction protocols including combinations of homogenization methods (beads, sonication, boiling) and buffers (SDS based and urea-thiourea based). The proteome extraction efficacy was then evaluated based on protein identifications and reproducibility using SDS electrophoresis and high resolution LC-MS/MS analysis. Comparison between the FFPE and matched fresh frozen (FF) tissues, using an optimized protocol involving protein extraction with an SDS-based buffer following beads homogenization and boiling, showed a substantial overlap in protein identifications with a strong correlation in relative abundances (rs = 0.819, p < 0.001). Next, FFPE tissues (3 sections, 15 μm each per sample) from 10 patients with PCa corresponding to tumor (GS = 6 or GS ≥ 8) and adjacent benign regions were processed with the optimized protocol. Extracted proteins were analyzed by GeLC-MS/MS followed by statistical and bioinformatics analysis. Proteins significantly deregulated between PCa GS ≥ 8 and PCa GS = 6 represented extracellular matrix organization, gluconeogenesis, and phosphorylation pathways. Proteins deregulated between cancerous and adjacent benign tissues, reflected increased translation, peptide synthesis, and protein metabolism in the former, which is consistent with the literature. In conclusion, the results support the relevance of the proteomic findings in the context of PCa and the reliability of the optimized protocol for proteomics analysis of FFPE material.
Collapse
Affiliation(s)
- Anna Mantsiou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Manousos Makridakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Konstantinos Fasoulakis
- Ippokrateio General Hospital of Athens, Department of Urology, 114 Vasilissis Sofias Avenue, Athens 11527, Greece
| | - Ioannis Katafigiotis
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Constantinos A Constantinides
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Maria G Roubelakis
- National and Kapodistrian University of Athens, Medical School, Laboratory of Biology, 75 Mikras Assias Street, Athens 11527, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
36
|
Snijders MLH, Zajec M, Walter LAJ, de Louw RMAA, Oomen MHA, Arshad S, van den Bosch TPP, Dekker LJM, Doukas M, Luider TM, Riegman PHJ, van Kemenade FJ, Clahsen-van Groningen MC. Cryo-Gel embedding compound for renal biopsy biobanking. Sci Rep 2019; 9:15250. [PMID: 31649317 PMCID: PMC6813323 DOI: 10.1038/s41598-019-51962-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
Optimal preservation and biobanking of renal tissue is vital for good diagnostics and subsequent research. Optimal cutting temperature (OCT) compound is a commonly used embedding medium for freezing tissue samples. However, due to interfering polymers in OCT, analysis as mass spectrometry (MS) is difficult. We investigated if the replacement of OCT with Cryo-Gel as embedding compound for renal biopsies would enable proteomics and not disturb other common techniques used in tissue diagnostics and research. For the present study, fresh renal samples were snap-frozen using Cryo-Gel, OCT and without embedding compound and evaluated using different techniques. In addition, tissue samples from normal spleen, skin, liver and colon were analyzed. Cryo-Gel embedded tissues showed good morphological preservation and no interference in immunohistochemical or immunofluorescent investigations. The quality of extracted RNA and DNA was good. The number of proteins identified using MS was similar between Cryo-Gel embedded samples, samples without embedding compound and OCT embedded samples. However, polymers in the OCT disturbed the signal in the MS, while this was not observed in the Cryo-Gel embedded samples. We conclude that embedding of renal biopsies in Cryo-Gel is an excellent and preferable alternative for OCT compound for both diagnostic and research purposes, especially in those cases where proteomic analysis might be necessary.
Collapse
Affiliation(s)
| | - Marina Zajec
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | - Shazia Arshad
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Michail Doukas
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Liu S, Xu F, Yin Y, Zhang J, Wang F, Li Y, Xu P. LysargiNase enhances protein identification on the basis of trypsin on formalin-fixed paraffin-embedded samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1381-1389. [PMID: 31066118 DOI: 10.1002/rcm.8479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Formalin-Fixed Paraffin-Embedded (FFPE) samples are valuable for proteomic studies of disease. However, the crosslink among proteins, protein vs nucleic acid, and other covalent chemical modifications like methylation introduced by formaldehyde can interfere with trypsin digestion in proteomics studies. LysargiNase was reported to have a better full-cleavage rate at methylation and b ion coverage than trypsin. The contribution of LysargiNase in the proteomic study of FFPE samples was assessed and compared with trypsin in this study for the first time to facilitate proteomic research on FFPE samples. METHODS The FFPE proteins were extracted with an "antigen retrieval" method. Digestion parameters were optimized by visualization of the digests on the tricine gel by silver staining. Then the FFPE proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and cut into 16 gel bands and in-gel digested by trypsin and LysargiNase, respectively. Peptides were desalted with Stage-Tips and separated via liquid chromatography. Electrospray ionization was conducted and peptide mass was measured in the LTQ Orbitrap Velos in the data-dependent mode. RESULTS High concentrations of enzyme facilitate the digestion efficiency of FFPE samples. A total of 32,294 peptides and 3445 proteins were identified with LysargiNase and trypsin combined in two replicates. LysargiNase increased peptide identification by 18.9% and protein identification by 13.4% on the basis of trypsin. Consistently, LysargiNase increased C-terminal peptide identification by 47.7%. Moreover, LysargiNase showed better full-cleavage rate (49.3%) at methylated sites than trypsin (23.9%). LysargiNase and trypsin combined can improve the b-ion coverage by 50% on FFPE samples. CONCLUSIONS FFPE samples can be more efficiently digested at high concentrations of LysargiNase and trypsin. LysargiNase can better digest methylated peptides and improve the proteome identification by 13.4% and the b-ion coverage by 50% on the basis of trypsin in FFPE samples.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Feng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yanan Yin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of the Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Junling Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of the Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
- Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
38
|
Chapman J, Dogan A. Fibrinogen alpha amyloidosis: insights from proteomics. Expert Rev Proteomics 2019; 16:783-793. [PMID: 31443619 PMCID: PMC6788741 DOI: 10.1080/14789450.2019.1659137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Systemic amyloidosis is a diverse group of diseases that, although rare, pose a serious health issue and can lead to organ failure and death. Amyloid typing is essential in determining the causative protein and initiating proper treatment. Mass spectrometry-based proteomics is currently the most sensitive and accurate means of typing amyloid. Areas covered: Amyloidosis can be systemic or localized, acquired or hereditary, and can affect any organ or tissue. Diagnosis requires biopsy, histological analysis, and typing of the causative protein to determine treatment. The kidneys are the most commonly affected organ in systemic disease. Fibrinogen alpha chain amyloidosis (AFib) is the most prevalent form of hereditary renal amyloidosis. Select mutations in the fibrinogen Aα (FGA) gene lead to AFib. Expert commentary: Mass spectrometry is currently the most specific and sensitive method for amyloid typing. Identification of the mutated fibrinogen alpha chain can be difficult in the case of 'private' frameshift mutations, which dramatically change the sequences of the expressed fibrinogen alpha chain. A combination of expert pathologist review, mass spectrometry, and gene sequencing can allow for confident diagnosis and determination of the fibrinogen alpha chain mutated sequence.
Collapse
Affiliation(s)
- Jessica Chapman
- Hematopathology Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Ahmet Dogan
- Hematopathology Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
39
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Boos GS, Nobach D, Failing K, Eickmann M, Herden C. Optimization of RNA extraction protocol for long-term archived formalin-fixed paraffin-embedded tissues of horses. Exp Mol Pathol 2019; 110:104289. [PMID: 31348903 DOI: 10.1016/j.yexmp.2019.104289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/24/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
Abstract
A suitable RNA extraction protocol was established to gain high quality RNA from formalin-fixed paraffin-embedded tissues to perform reliable molecular assays either applicable for using FFPE tissue archives or tissues with harsh formalin-fixation. Eighteen FFPE samples from the central nervous system of horses, stored up to 11 years, were used as archive cases. To test the influence of the fixation period, brain, liver, kidney, and skeletal muscle tissue fragments from another horse, were treated either with water or tris-acetate-EDTA buffer after fixation under different timepoints with 10% unbuffered formalin. Two deparaffinization methods and three proteinase K-based lysis step were tested and translated into three protocols. After detailed statistical analysis it was determined that a longer period and increase in volume of proteinase K incubation provide higher yields and purity of RNA (P < 0.01) of archived samples. Alongside, amplification of equid-housekeeping gene up to 298 bp was successful with the protocol adaptations. For different formalin-fixation timepoints, it was demonstrated that the right choice for treatment and formalin-fixation period is organ-related (P ≤ 0.05). Essentially, little alterations to pre-existing extraction protocols unwound the RNA of up to 11-year-old samples, enabling the use of FFPE tissue archives or e.g. harshly fixed material needed in infection research under high biosafety levels for a variety of molecular analysis.
Collapse
Affiliation(s)
- Gisele Silva Boos
- Institute of Veterinary Pathology, Justus-Liebig-University, Gießen 35392, Germany.
| | - Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University, Gießen 35392, Germany
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, Justus-Liebig-Universität, Gießen 35392, Germany
| | - Markus Eickmann
- Institute of Virology, Philipps-University, Marburg 35043, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University, Gießen 35392, Germany; Center of Mind, Brain and Behavior, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
41
|
Compton CC, Robb JA, Anderson MW, Berry AB, Birdsong GG, Bloom KJ, Branton PA, Crothers JW, Cushman-Vokoun AM, Hicks DG, Khoury JD, Laser J, Marshall CB, Misialek MJ, Natale KE, Nowak JA, Olson D, Pfeifer JD, Schade A, Vance GH, Walk EE, Yohe SL. Preanalytics and Precision Pathology: Pathology Practices to Ensure Molecular Integrity of Cancer Patient Biospecimens for Precision Medicine. Arch Pathol Lab Med 2019; 143:1346-1363. [PMID: 31329478 DOI: 10.5858/arpa.2019-0009-sa] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biospecimens acquired during routine medical practice are the primary sources of molecular information about patients and their diseases that underlies precision medicine and translational research. In cancer care, molecular analysis of biospecimens is especially common because it often determines treatment choices and may be used to monitor therapy in real time. However, patient specimens are collected, handled, and processed according to routine clinical procedures during which they are subjected to factors that may alter their molecular quality and composition. Such artefactual alteration may skew data from molecular analyses, render analysis data uninterpretable, or even preclude analysis altogether if the integrity of a specimen is severely compromised. As a result, patient care and safety may be affected, and medical research dependent on patient samples may be compromised. Despite these issues, there is currently no requirement to control or record preanalytical variables in clinical practice with the single exception of breast cancer tissue handled according to the guideline jointly developed by the American Society of Clinical Oncology and College of American Pathologists (CAP) and enforced through the CAP Laboratory Accreditation Program. Recognizing the importance of molecular data derived from patient specimens, the CAP Personalized Healthcare Committee established the Preanalytics for Precision Medicine Project Team to develop a basic set of evidence-based recommendations for key preanalytics for tissue and blood specimens. If used for biospecimens from patients, these preanalytical recommendations would ensure the fitness of those specimens for molecular analysis and help to assure the quality and reliability of the analysis data.
Collapse
Affiliation(s)
- Carolyn C Compton
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - James A Robb
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Matthew W Anderson
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Anna B Berry
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - George G Birdsong
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Kenneth J Bloom
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Philip A Branton
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jessica W Crothers
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Allison M Cushman-Vokoun
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - David G Hicks
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Joseph D Khoury
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jordan Laser
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Carrie B Marshall
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Michael J Misialek
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Kristen E Natale
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jan Anthony Nowak
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Damon Olson
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - John D Pfeifer
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Andrew Schade
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Gail H Vance
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Eric E Walk
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Sophia Louise Yohe
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| |
Collapse
|
42
|
Cole LM, Clench MR, Francese S. Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:77-123. [PMID: 31236840 DOI: 10.1007/978-3-030-12298-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science.This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies.In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution.With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies.Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest.
Collapse
Affiliation(s)
- L M Cole
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - M R Clench
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - S Francese
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
43
|
Mascini NE, Teunissen J, Noorlag R, Willems SM, Heeren RM. Tumor classification with MALDI-MSI data of tissue microarrays: A case study. Methods 2018; 151:21-27. [DOI: 10.1016/j.ymeth.2018.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/04/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022] Open
|
44
|
Piehowski PD, Petyuk VA, Sontag RL, Gritsenko MA, Weitz KK, Fillmore TL, Moon J, Makhlouf H, Chuaqui RF, Boja ES, Rodriguez H, Lee JSH, Smith RD, Carrick DM, Liu T, Rodland KD. Residual tissue repositories as a resource for population-based cancer proteomic studies. Clin Proteomics 2018; 15:26. [PMID: 30087585 PMCID: PMC6074037 DOI: 10.1186/s12014-018-9202-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/27/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Mass spectrometry-based proteomics has become a powerful tool for the identification and quantification of proteins from a wide variety of biological specimens. To date, the majority of studies utilizing tissue samples have been carried out on prospectively collected fresh frozen or optimal cutting temperature (OCT) embedded specimens. However, such specimens are often difficult to obtain, in limited in supply, and clinical information and outcomes on patients are inherently delayed as compared to banked samples. Annotated formalin fixed, paraffin embedded (FFPE) tumor tissue specimens are available for research use from a variety of tissue banks, such as from the surveillance, epidemiology and end results (SEER) registries' residual tissue repositories. Given the wealth of outcomes information associated with such samples, the reuse of archived FFPE blocks for deep proteomic characterization with mass spectrometry technologies would provide a valuable resource for population-based cancer studies. Further, due to the widespread availability of FFPE specimens, validation of specimen integrity opens the possibility for thousands of studies that can be conducted worldwide. METHODS To examine the suitability of the SEER repository tissues for proteomic and phosphoproteomic analysis, we analyzed 60 SEER patient samples, with time in storage ranging from 7 to 32 years; 60 samples with expression proteomics and 18 with phosphoproteomics, using isobaric labeling. Linear modeling and gene set enrichment analysis was used to evaluate the impacts of collection site and storage time. RESULTS All samples, regardless of age, yielded suitable protein mass after extraction for expression analysis and 18 samples yielded sufficient mass for phosphopeptide analysis. Although peptide, protein, and phosphopeptide identifications were reduced by 50, 20 and 76% respectively, from comparable OCT specimens, we found no statistically significant differences in protein quantitation correlating with collection site or specimen age. GSEA analysis of GO-term level measurements of protein abundance differences between FFPE and OCT embedded specimens suggest that the formalin fixation process may alter representation of protein categories in the resulting dataset. CONCLUSIONS These studies demonstrate that residual FFPE tissue specimens, of varying age and collection site, are a promising source of protein for proteomic investigations if paired with rigorously verified mass spectrometry workflows.
Collapse
Affiliation(s)
- Paul D. Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Ryan L. Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Marina A. Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Thomas L. Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Hala Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850 USA
| | - Rodrigo F. Chuaqui
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850 USA
| | - Emily S. Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Jerry S. H. Lee
- Center for Strategic Scientific Initiatives, National Cancer Institute, Bethesda, MD 20892 USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Danielle M. Carrick
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD 20850 USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| |
Collapse
|
45
|
Biomedical analysis of formalin-fixed, paraffin-embedded tissue samples: The Holy Grail for molecular diagnostics. J Pharm Biomed Anal 2018; 155:125-134. [PMID: 29627729 DOI: 10.1016/j.jpba.2018.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
More than a century ago in 1893, a revolutionary idea about fixing biological tissue specimens was introduced by Ferdinand Blum, a German physician. Since then, a plethora of fixation methods have been investigated and used. Formalin fixation with paraffin embedment became the most widely used types of fixation and preservation method, due to its proper architectural conservation of tissue structures and cellular shape. The huge collection of formalin-fixed, paraffin-embedded (FFPE) sample archives worldwide holds a large amount of unearthed information about diseases that could be the Holy Grail in contemporary biomarker research utilizing analytical omics based molecular diagnostics. The aim of this review is to critically evaluate the omics options for FFPE tissue sample analysis in the molecular diagnostics field.
Collapse
|
46
|
Ayub Y, Mollel JT, Mbugi EV. Potential Value of Qiagen and PrepIT•MAX Kits in Extraction of Mycobacterial DNA From Presumptive Tuberculosis Archived Formalin-Fixed Paraffin-Embedded Tissues. East Afr Health Res J 2018; 2:18-25. [PMID: 34308170 PMCID: PMC8279293 DOI: 10.24248/eahrj-d-17-00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND DNA analysis has potential for screening for and diagnosing a variety of conditions as well as the characterization of various pathogens for many purposes including to identify genetic disorders and mutations, study genetic diversity, and establish evolutional trends. METHODS Our study compared the performance of 2 DNA extraction kits: Qiagen and prepIT•MAX. The study tested 160 formalin-fixed paraffin-embedded (FFPE) human tissue samples that had been collected at Muhimbili National Hospital (MNH) between 2010 and 2016. For each sample, DNA extraction was performed using both the Qiagen and prepIT•MAX kits followed by polymerase chain reaction (PCR) tests to target the RNA polymerase gene and gel electrophoresis. RESULTS The findings showed that the Qiagen was 3 times superior to the prepIT•MAX kit in successfully extracting mycobacterial DNA from presumptive tuberculosis (TB) FFPE tissues. Of the 160 previously Ziehl-Neelsen stain-negative Mycobacterium tuberculosis suspicious tissue samples, 12 (7.5%) tested positive with the PCR. Of the 12 PCR-detected positive samples, 8 (66.7%) yielded positive results with the Qiagen kit only and 4 (33.3%) yielded positive results with both Qiagen and prepIT•MAX kits. Additionally, 10 (83.3%) came from well-formed granuloma, 1 (8%) from caseous necrosis, and 1 (8.3%) Langhans-type giant cells endorsing their potential for housing infection such as TB adenitis. CONCLUSIONS A combination of molecular techniques, microscopy, and pathological features increases detection of M. tuberculosis from FFPE tissues. Both the Qiagen and the prepIT•MAX DNA extraction kits have shown a remarkable capability for extracting DNA from M. tuberculosis, although examination of FFPE tissues is not an intended use for the prepIT MAX, according to the manufacturer. In resource-limited countries, however, these kits may complement each other. We recommend further studies for validation and optimization, which includes the cost effectiveness of prepIT•MAX extraction kit to advocate for its use in extraction of mycobacterial DNA from FFPE tissues.
Collapse
Affiliation(s)
- Yunus Ayub
- Biochemistry Department, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ministry of Health, Community Development, Gender, Elders & Children, Department of Human Resources Development, Singida Health Laboratory Assistants Training Centre, Singida, Tanzania
| | - Jackson T Mollel
- Department of Biological and Pre-Clinical studies, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Erasto V Mbugi
- Biochemistry Department, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
47
|
Ongay S, Langelaar-Makkinje M, Stoop MP, Liu N, Overkleeft H, Luider TM, Groothuis GMM, Bischoff R. Cleavable Crosslinkers as Tissue Fixation Reagents for Proteomic Analysis. Chembiochem 2018; 19:736-743. [PMID: 29356267 DOI: 10.1002/cbic.201700625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Formaldehyde fixation is widely used for long-term maintenance of tissue. However, due to formaldehyde-induced crosslinks, fixed tissue proteins are difficult to extract, which hampers mass spectrometry (MS) proteomic analyses. Recent years have seen the use of different combinations of high temperature and solubilizing agents (usually derived from antigen retrieval techniques) to unravel formaldehyde-fixed paraffin-embedded tissue proteomes. However, to achieve protein extraction yields similar to those of fresh-frozen tissue, high-temperature heating is necessary. Such harsh extraction conditions can affect sensitive amino acids and post-translational modifications, resulting in the loss of important information, while still not resulting in protein yields comparable to those of fresh-frozen tissue. Herein, the objective is to evaluate cleavable protein crosslinkers as fixatives that allow tissue preservation and efficient protein extraction from fixed tissue for MS proteomics under mild conditions. With this goal in mind, disuccinimidyl tartrate (DST) and dithiobis(succinimidylpropionate) (DSP) are investigated as cleavable fixating reagents. These compounds crosslink proteins by reacting with amino groups, leading to amide bond formation, and can be cleaved with sodium metaperiodate (cis-diols, DST) or reducing agents (disulfide bonds, DSP), respectively. Results show that cleavable protein crosslinking with DST and DSP allows tissue fixation with morphology preservation comparable to that of formaldehyde. In addition, cleavage of DSP improves protein recovery from fixed tissue by a factor of 18 and increases the number of identified proteins by approximately 20 % under mild extraction conditions compared with those of formaldehyde-fixed paraffin-embedded tissue. A major advantage of DSP is the introduction of well-defined protein modifications that can be taken into account during database searching. In contrast to DSP fixation, DST fixation followed by cleavage with sodium metaperiodate, although effective, results in side reactions that prevent effective protein extraction and interfere with protein identification. Protein crosslinkers that can be cleaved under mild conditions and result in defined modifications, such as DSP, are thus viable alternatives to formaldehyde as tissue fixatives to facilitate protein analysis from paraffin-embedded, fixed tissue.
Collapse
Affiliation(s)
- Sara Ongay
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Miriam Langelaar-Makkinje
- Department Pharmacokinetics, Toxicology and Targeting, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Marcel P Stoop
- Department of Neurology, Erasmus University Medical Center, P. O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Nora Liu
- Department of Bio-Organic Synthesis, Leiden University, P. O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Hermen Overkleeft
- Department of Bio-Organic Synthesis, Leiden University, P. O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus University Medical Center, P. O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Geny M M Groothuis
- Department Pharmacokinetics, Toxicology and Targeting, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| |
Collapse
|
48
|
Longuespée R, Casadonte R, Schwamborn K, Reuss D, Kazdal D, Kriegsmann K, von Deimling A, Weichert W, Schirmacher P, Kriegsmann J, Kriegsmann M. Proteomics in Pathology. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/16/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Rémi Longuespée
- Institute of Pathology; University Hospital Heidelberg; Heidelberg Germany
| | | | | | - David Reuss
- Department of Neuropathology, Institute of Pathology; University Hospital Heidelberg; Heidelberg Germany
- Clinical Cooperation Unit Neuropathology; German Cancer Center; Heidelberg Germany
| | - Daniel Kazdal
- Institute of Pathology; University Hospital Heidelberg; Heidelberg Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology; University Hospital Heidelberg; Heidelberg Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology; University Hospital Heidelberg; Heidelberg Germany
- Clinical Cooperation Unit Neuropathology; German Cancer Center; Heidelberg Germany
| | - Wilko Weichert
- Institute of Pathology; Technical University of Munich; Munich Germany
| | - Peter Schirmacher
- Institute of Pathology; University Hospital Heidelberg; Heidelberg Germany
| | - Jörg Kriegsmann
- Proteopath GmbH; Trier Germany
- Center for Histology; Cytology and Molecular Diagnostics; Trier Germany
| | - Mark Kriegsmann
- Institute of Pathology; University Hospital Heidelberg; Heidelberg Germany
| |
Collapse
|
49
|
Sadick JS, Darling EM. Processing fixed and stored adipose-derived stem cells for quantitative protein array assays. Biotechniques 2017; 63:275-280. [PMID: 29235974 DOI: 10.2144/000114620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/06/2017] [Indexed: 01/05/2023] Open
Abstract
Accurately characterizing cellular subpopulations is essential for elucidating the mechanisms underlying normal and pathological biology. Isolation of specific cell types can be accomplished by labeling unique cell-associated proteins with fluorescent antibodies. Cell fixation is commonly used to prepare these samples and allow for long-term storage, but this poses challenges for subsequent protein analysis. We previously established the FITSAR (formaldehyde-fixed intracellular target-sorted antigen retrieval) method, in which protein can be isolated and characterized from fixed, enriched cell subpopulations. Here, we improve on this method by allowing compatibility with highly sensitive multiplex protein arrays and demonstrating applicability to long-term stored samples. Feasibility experiments demonstrated parallel detection of cell adhesion molecules (CAMs) using an enzyme-linked immunosorbent assay (ELISA) panel with human adipose-derived stem cells (ASCs) stored for up to 1 month.
Collapse
Affiliation(s)
- Jessica S Sadick
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI
| | - Eric M Darling
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI.,Center for Biomedical Engineering, Brown University, Providence, RI.,School of Engineering, Brown University, Providence, RI.,Department of Orthopaedics, Brown University, Providence, RI
| |
Collapse
|
50
|
DIGE Saturation Labeling for Scarce Amounts of Protein from Formalin-Fixed Paraffin-Embedded (FFPE) Tissue. Methods Mol Biol 2017. [PMID: 29019127 DOI: 10.1007/978-1-4939-7268-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, we describe the utility of difference gel electrophoresis (DIGE) as a proteomics platform for the global detection of expressed proteins in formalin-fixed paraffin-embedded (FFPE) tissues and its use for biomarker discovery/identification of proteins that may contribute to cancer development and progression. Formalin fixation and paraffin embedding of tissue is the standard processing methodology practiced in pathology laboratories worldwide, resulting in a highly stable form of tissue that is easily stored due to its inherent stability at room temperature. Consequently, FFPE tissues represent an attractive reservoir of clinical material for conducting retrospective protein biomarker analysis. A limitation for proteomics research in this type of clinical sample is the amount of viable protein that can be obtained from fixed tissues. Tissue biopsies are precious samples that can generally be acquired in very small amounts due to the invasive nature of the sample collection, mainly during surgery or biopsy. Subsequently, the amount of extracted protein can be, in many cases, very limited. The saturation DIGE technology has emerged as a useful method for protein analysis where only scarce amounts of protein are available. This approach can be adapted successfully to label low-level protein isolated from FFPE tissue.
Collapse
|