1
|
Kim J, Jin P, Yang W, Kim WJ. Proteomic profiling of bladder cancer for precision medicine in the clinical setting: A review for the busy urologist. Investig Clin Urol 2020; 61:539-554. [PMID: 33135400 PMCID: PMC7606121 DOI: 10.4111/icu.20200317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 01/03/2023] Open
Abstract
At present, proteomic methods have successfully identified potential biomarkers of urological malignancies, such as prostate cancer (PC), bladder cancer (BC), and renal cell carcinoma (RCC), reflecting different numbers of key cellular processes, including extracellular environment modification, invasion and metastasis, chemotaxis, differentiation, metabolite transport, and apoptosis. The potential application of proteomics in the detection of clinical markers of urological malignancies can help improve patient assessment through early cancer detection, prognosis, and treatment response prediction. A variety of proteomic studies have already been carried out to find prognostic BC biomarkers, and a large number of potential biomarkers have been reported. It is worth noting that proteomics research has not been applied to the study of predictive markers; this may be due to the incompatibility between the number of measured variables and the available sample size, which has become particularly evident in the study of therapeutic response. On the contrary, prognostic correlation is more common, which is also reflected in existing research. We are now entering an era of clinical proteomics. Driven by proteomic-based workflows, computing tools, and the applicability of cross-correlation of proteomic data, it is now feasible to use proteomic analysis to support personalized medicine. In this paper, we will summarize the current emerging technologies for advanced discovery, targeted proteomics, and proteomic applications in BC, particularly in discovery of human-based biomarkers.
Collapse
Affiliation(s)
- Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Jin
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Shengjing Hospital of China Medical University , Shenyang, China
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wun Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
- Institute of UroTech, Cheongju, Korea.
| |
Collapse
|
2
|
Silva TA, Azevedo H. Comparative bioinformatics analysis of prognostic and differentially expressed genes in non-muscle and muscle invasive bladder cancer. J Proteomics 2020; 229:103951. [PMID: 32860965 DOI: 10.1016/j.jprot.2020.103951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
Bladder cancer (BC) is classified into non-muscle (NMIBC) and muscle invasive (MIBC) diseases. Several molecular alterations were previously associated with NMIBC and MIBC, but few studies have systematically compared the molecular differences between these subtypes. Here, we analyzed prognostic and differentially expressed genes in NMIBC and MIBC, using an integrative bioinformatics approach. These genes were used in functional enrichment and co-expression protein interaction (COPI) network analyses to reveal common and exclusive biological functions involved in NMIBC and MIBC. In NMIBC, the enriched functions were related to oxidative stress response, cell cycle, glutathione metabolism, ubiquitination and protein translation. Conversely, enriched functions in MIBC were extracellular matrix organization, cell migration and actin cytoskeleton. Several genes in NMIBC did not overlap with those reported to MIBC, suggesting these subtypes may have distinct underlying mechanisms. Particularly, MIBC genes were enriched for functions involved in cell migration and invasion, which could help to molecularly differentiate NMIBC and MIBC. The analysis of COPI networks disclosed high centrality nodes that may be essential for NMIBC and MIBC. Further research will determine to which extent NMIBC and MIBC share common biological functions and identify potential candidates for the differential diagnosis, prognosis and treatment of NMIBC and MIBC. SIGNIFICANCE: This study has systematically compared prognostic and differentially expressed genes between non-muscle (NMIBC) and muscle invasive (MIBC) bladder cancer, using an integrative bioinformatics approach. Many genes and biological functions were exclusively associated with either NMIBC or MIBC, suggesting that these disease subtypes could be driven by distinct molecular mechanisms. Particularly, prognostic and differentially expressed genes in MIBC were involved in cell migration and invasion, which can help to molecularly differentiate the NMIBC and MIBC subtypes. Moreover, the analysis of co-expression protein interaction networks identified high centrality nodes that could be potential candidates for the prognosis and treatment of NMIBC and MIBC.
Collapse
Affiliation(s)
- Tiago Aparecido Silva
- Department of Surgery, Division of Urology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Hatylas Azevedo
- Department of Surgery, Division of Urology, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Chen Z, Dodig-Crnković T, Schwenk JM, Tao SC. Current applications of antibody microarrays. Clin Proteomics 2018; 15:7. [PMID: 29507545 PMCID: PMC5830343 DOI: 10.1186/s12014-018-9184-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
The concept of antibody microarrays is one of the most versatile approaches within multiplexed immunoassay technologies. These types of arrays have increasingly become an attractive tool for the exploratory detection and study of protein abundance, function, pathways, and potential drug targets. Due to the properties of the antibody microarrays and their potential use in basic research and clinical analytics, various types of antibody microarrays have already been developed. In spite of the growing number of studies utilizing this technique, few reviews about antibody microarray technology have been presented to reflect the quality and future uses of the generated data. In this review, we provide a summary of the recent applications of antibody microarray techniques in basic biology and clinical studies, providing insights into the current trends and future of protein analysis.
Collapse
Affiliation(s)
- Ziqing Chen
- Key Laboratory of Systems Biomedicine, (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Tea Dodig-Crnković
- Affinity Proteomics, SciLifeLab, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Jochen M. Schwenk
- Affinity Proteomics, SciLifeLab, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Sheng-ce Tao
- Key Laboratory of Systems Biomedicine, (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
4
|
Abstract
Precision medicine is designed to tailor treatments for individual patients by factoring in each person's specific biology and mechanism of disease. This paradigm shifted from a "one size fits all" approach to "personalized and precision care" requires multiple layers of molecular profiling of biomarkers for accurate diagnosis and prediction of treatment responses. Intensive studies are also being performed to understand the complex and dynamic molecular profiles of bladder cancer. These efforts involve looking bladder cancer mechanism at the multiple levels of the genome, epigenome, transcriptome, proteome, lipidome, metabolome etc. The aim of this short review is to outline the current technologies being used to investigate molecular profiles and discuss biomarker candidates that have been investigated as possible diagnostic and prognostic indicators of bladder cancer.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Young Joon Byun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Brandi J, Manfredi M, Speziali G, Gosetti F, Marengo E, Cecconi D. Proteomic approaches to decipher cancer cell secretome. Semin Cell Dev Biol 2017; 78:93-101. [PMID: 28684183 DOI: 10.1016/j.semcdb.2017.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/17/2023]
Abstract
In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy; ISALIT S.r.l., Novara, Italy.
| | - Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| | - Fabio Gosetti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| |
Collapse
|
6
|
Dettlaff K, Stawny M, Ogrodowczyk M, Jelińska A, Bednarski W, Wątróbska-Świetlikowska D, Keck RW, Khan OA, Mostafa IH, Jankun J. Formulation and characterization of EGCG for the treatment of superficial bladder cancer. Int J Mol Med 2017. [PMID: 28627636 PMCID: PMC5504970 DOI: 10.3892/ijmm.2017.3024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the United States, the annual incidence of bladder cancer is approximately 70,000 new cases, with a mortality rate of approximately 15,000/year. The most common subtype (70%) of bladder cancer is superficial, namely hte non-muscle invasive disease form limited to the urothelium. The rate of progression and recurrence is up to 40 and 70%, respectively. Urothelial cell carcinoma of the bladder is typically treated with transurethral resection. The cancerous cells can float onto the adjacent epithelium, increasing the risk of recurrence. The standard of care is to offer adjuvant intravesical agents to reduce the risk of progression and recurrence. Current intravesical treatments are costly and are associated with special biohazard handling protocols. Patients are treated with intravesical therapy with bacillus Calmetter-Guerin (BCG) bacterium, or mitomycin C (MMC) following resection, both of which can cause moderate to severe side-effects which are rarely life-threatening. We previously examined the efficacy of epigallocatechin-3-gallate (EGCG)in comparison with MMC to prevent tumor cell implantation/growth in an animal model of superficial bladder cancer. Experiments revile that EGCG is slightly more effective than MMC at decreasing tumor cell implantation and consequent cancer growth in a bladder. This treatment requires the stringent sterile requirement of EGCG. EGCG can be unstable when sterilized at high temperatures. Thus, we evaluated two low temperature sterilization methods, such as ionizing radiation or the filtration method followed by freeze-drying. Both methods ensure the sterility of the sample; however, infrared and HPLC analysis revealed a slightly better stability of irradiated EGCG over the filtration method. The concentration of stable free radicals following irradiation was low, which are unlikely to exert any damaging effects to EGCG. Therefore, we consider that radiation will be the preferred method of EGCG sterilization, and that this may prove useful for the effective use of EGCG in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Katarzyna Dettlaff
- Department of Pharmaceutical Chemistry, Poznań University of Medical Sciences, 60‑780 Poznań, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznań University of Medical Sciences, 60‑780 Poznań, Poland
| | - Magdalena Ogrodowczyk
- Department of Pharmaceutical Chemistry, Poznań University of Medical Sciences, 60‑780 Poznań, Poland
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Poznań University of Medical Sciences, 60‑780 Poznań, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland
| | | | - Rick W Keck
- Urology Research Center, Department of Urology, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Omar A Khan
- Urology Research Center, Department of Urology, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Ibrahim H Mostafa
- Urology Research Center, Department of Urology, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Jerzy Jankun
- Urology Research Center, Department of Urology, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
7
|
Duriez E, Masselon CD, Mesmin C, Court M, Demeure K, Allory Y, Malats N, Matondo M, Radvanyi F, Garin J, Domon B. Large-Scale SRM Screen of Urothelial Bladder Cancer Candidate Biomarkers in Urine. J Proteome Res 2017; 16:1617-1631. [PMID: 28287737 DOI: 10.1021/acs.jproteome.6b00979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Urothelial bladder cancer is a condition associated with high recurrence and substantial morbidity and mortality. Noninvasive urinary tests that would detect bladder cancer and tumor recurrence are required to significantly improve patient care. Over the past decade, numerous bladder cancer candidate biomarkers have been identified in the context of extensive proteomics or transcriptomics studies. To translate these findings in clinically useful biomarkers, the systematic evaluation of these candidates remains the bottleneck. Such evaluation involves large-scale quantitative LC-SRM (liquid chromatography-selected reaction monitoring) measurements, targeting hundreds of signature peptides by monitoring thousands of transitions in a single analysis. The design of highly multiplexed SRM analyses is driven by several factors: throughput, robustness, selectivity and sensitivity. Because of the complexity of the samples to be analyzed, some measurements (transitions) can be interfered by coeluting isobaric species resulting in biased or inconsistent estimated peptide/protein levels. Thus the assessment of the quality of SRM data is critical to allow flagging these inconsistent data. We describe an efficient and robust method to process large SRM data sets, including the processing of the raw data, the detection of low-quality measurements, the normalization of the signals for each protein, and the estimation of protein levels. Using this methodology, a variety of proteins previously associated with bladder cancer have been assessed through the analysis of urine samples from a large cohort of cancer patients and corresponding controls in an effort to establish a priority list of most promising candidates to guide subsequent clinical validation studies.
Collapse
Affiliation(s)
- Elodie Duriez
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Christophe D Masselon
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Cédric Mesmin
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Magali Court
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Kevin Demeure
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH) , Luxembourg L-1526, Luxembourg
| | | | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) , Madrid 28029, Spain
| | - Mariette Matondo
- Department of Biology, Institute of Molecular Systems Biology, ETHZ , Zürich 8093, Switzerland
| | - François Radvanyi
- Institut Curie , Centre de Recherche, Paris 75005, France.,CNRS, UMR144, Equipe Oncologie Moléculaire , Paris 75248, France
| | - Jérôme Garin
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Bruno Domon
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
8
|
Abstract
Research efforts targeting the identification of bladder cancer biomarkers have been extensive during the past decade. Investigations have been performed at the genome, transcriptome, proteome, and metabolome levels and outputs have started appearing including the sketching of disease molecular subtypes. Proteins are directly linked to cell phenotype hence they accumulate special interest as both biomarkers and therapeutic targets. Multiple technical challenges exist, of the main, being the protein concentration vast dynamic range and presence of proteins in modified forms. The scope of this review is to summarize the contribution of proteomics research in this quest of bladder cancer biomarkers. To obtain an unbiased and comprehensive overview, the scientific literature was searched for manuscripts describing proteomic studies on urothelial cancer from the last ten years and those including independent verification studies in urine, tissue and blood are briefly presented. General observations include: a) in most cases, suboptimal experimental design including healthy controls in biomarker discovery and frequently biomarker verification, is followed; b) variability in protein findings between studies can be observed, to some extent reflecting complexity of experimental approaches and proteome itself; c) consistently reported biomarkers include mainly plasma proteins and d) compilation of protein markers into diagnostic panels appears the most promising way forward. Two main avenues of research can now be foreseen: targeting integration of the existing disparate data with proteomic findings being placed in the context of existing knowledge on bladder cancer subtypes and in parallel, accumulation of clinical samples to support proper validation studies of promising marker combinations.
Collapse
Affiliation(s)
| | - Antonia Vlahou
- Biomedical Research Foundation Academy of Athens , Biotechnology Division, Athens, Greece
| |
Collapse
|
9
|
Kibat J, Schirrmann T, Knape MJ, Helmsing S, Meier D, Hust M, Schröder C, Bertinetti D, Winter G, Pardes K, Funk M, Vala A, Giese N, Herberg FW, Dübel S, Hoheisel JD. Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. N Biotechnol 2015; 33:574-81. [PMID: 26709003 DOI: 10.1016/j.nbt.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Many diagnostic and therapeutic concepts require antibodies of high specificity. Recombinant binder libraries and related selection approaches allow the efficient isolation of antibodies against almost every target of interest. Nevertheless, it cannot be guaranteed that selected antibodies perform well and interact specifically enough with analytes unless an elaborate characterisation is performed. Here, we present an approach to shorten this process by combining the selection of suitable antibodies with the identification of informative target molecules by means of antibody microarrays, thereby reducing the effort of antibody characterisation by concentrating on relevant molecules. In a pilot scheme, a library of 456 single-chain variable fragment (scFv) binders to 134 antigens was used. They were arranged in a microarray format and incubated with the protein content of clinical tissue samples isolated from pancreatic ductal adenocarcinoma and healthy pancreas, as well as recurrent and non-recurrent bladder tumours. We observed significant variation in the expression of the E3 ubiquitin-protein ligase (CHFR) as well as the glutamate receptor interacting protein 2 (GRIP2), for example, always with more than one of the scFvs binding to these targets. Only the relevant antibodies were then characterised further on antigen microarrays and by surface plasmon resonance experiments so as to select the most specific and highest affinity antibodies. These binders were in turn used to confirm a microarray result by immunohistochemistry analysis.
Collapse
Affiliation(s)
- Janek Kibat
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ) , Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Thomas Schirrmann
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; YUMAB GmbH, Rebenring 33, 38106 Braunschweig, Germany
| | - Matthias J Knape
- Department of Biochemistry, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Saskia Helmsing
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Doris Meier
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Christoph Schröder
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ) , Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Sciomics GmbH, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Khalid Pardes
- The Novo Nordisk Foundation Centre for Protein Research, Protein Structure and Function Program, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mia Funk
- The Novo Nordisk Foundation Centre for Protein Research, Protein Structure and Function Program, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Andrea Vala
- The Novo Nordisk Foundation Centre for Protein Research, Protein Structure and Function Program, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nathalia Giese
- Department of Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Stefan Dübel
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ) , Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Nijaguna MB, Schröder C, Patil V, Shwetha SD, Hegde AS, Chandramouli BA, Arivazhagan A, Santosh V, Hoheisel JD, Somasundaram K. Definition of a serum marker panel for glioblastoma discrimination and identification of Interleukin 1β in the microglial secretome as a novel mediator of endothelial cell survival induced by C-reactive protein. J Proteomics 2015; 128:251-61. [PMID: 26232108 DOI: 10.1016/j.jprot.2015.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/04/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n=27) and GBM (n=28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p<0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-FcγRIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1β (IL1β) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1β neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1β which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma discrimination, identified IL1β as a potential candidate for developing targeted therapy.
Collapse
Affiliation(s)
- Mamatha B Nijaguna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Christoph Schröder
- Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shivayogi D Shwetha
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Alangar S Hegde
- Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India
| | - Bangalore A Chandramouli
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Jörg D Hoheisel
- Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
11
|
A new spot quality control for protein macroarray based on immunological detection. Talanta 2015; 138:176-182. [DOI: 10.1016/j.talanta.2015.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/20/2015] [Accepted: 01/25/2015] [Indexed: 11/22/2022]
|
12
|
Cutler P, Voshol H. Proteomics in pharmaceutical research and development. Proteomics Clin Appl 2015; 9:643-50. [PMID: 25763573 DOI: 10.1002/prca.201400181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/10/2015] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
In the 20 years since its inception, the evolution of proteomics in pharmaceutical industry has mirrored the developments within academia and indeed other industries. From initial enthusiasm and subsequent disappointment in global protein expression profiling, pharma research saw the biggest impact when relating to more focused approaches, such as those exploring the interaction between proteins and drugs. Nowadays, proteomics technologies have been integrated in many areas of pharmaceutical R&D, ranging from the analysis of therapeutic proteins to the monitoring of clinical trials. Here, we review the development of proteomics in the drug discovery process, placing it in a historical context as well as reviewing the current status in light of the contributions to this special issue, which reflect some of the diverse demands of the drug and biomarker pipelines.
Collapse
Affiliation(s)
- Paul Cutler
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Analytical Sciences and Imaging, Basel, Switzerland
| |
Collapse
|
13
|
Lee MS, Kim JH, Lee JS, Yun SJ, Kim WJ, Ahn H, Park J. Prognostic Significance of CREB-Binding Protein and CD81 Expression in Primary High Grade Non-Muscle Invasive Bladder Cancer: Identification of Novel Biomarkers for Bladder Cancer Using Antibody Microarray. PLoS One 2015; 10:e0125405. [PMID: 25915404 PMCID: PMC4411067 DOI: 10.1371/journal.pone.0125405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
High-grade (HG) bladder cancers (BCs) are genetically unstable and have an unpredictable course. The identification of prognostic factors in HG non-muscle invasive BC (NMIBC) is crucial for improving patients’ quality of life and preventing BC-specific mortality. Here, we used an antibody microarray (AbM) to identify novel candidate biomarkers in primary HG NMIBC and validated the prognostic significance of the candidate biomarkers. Three pairs of tissue samples from primary HG NMIBC and normal urothelium were analyzed using an AbM kit containing 656 antibodies, and differentially expressed proteins were identified. Among the 42 upregulated and 14 downregulated proteins with statistical significance in BC tissues, CREB-binding protein and CD81 were selected as representative upregulated and downregulated candidate biomarkers, respectively. We then validated the expression of these candidate biomarkers in primary human urothelial cells and BC cell lines by western blotting and immunofluorescence assays, and the results were consistent with the AbM expression profiles. Additionally, Kaplan-Meier survival using immunohistochemical data from an independent primary HG NMIBC cohort comprising 113 patients showed that expression of the 2 biomarkers was significantly associated with recurrence-free and progression-free survival. In multivariate analysis, the 2 biomarkers remained significant predictors for recurrence-free survival. Taken together, our findings suggest that expression of CREB-binding protein and CD81 in BC tissue specimens may have prognostic value in patients with primary HG NMIBC.
Collapse
Affiliation(s)
- Myung-Shin Lee
- Department of Microbiology, Eulji University School of Medicine, Daejeon, South Korea
| | - Joo Heon Kim
- Department of Pathology, Eulji University School of Medicine, Daejeon, South Korea
| | - Ji-Su Lee
- Department of Microbiology, Eulji University School of Medicine, Daejeon, South Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hanjong Ahn
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinsung Park
- Department of Urology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, South Korea
- * E-mail:
| |
Collapse
|