1
|
Sha H, Lu J, Chen J, Xiong J. A meta-analysis study of the robustness and universality of gut microbiota-shrimp diseases relationship. Environ Microbiol 2022; 24:3924-3938. [PMID: 35466526 DOI: 10.1111/1462-2920.16024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022]
Abstract
Intensive case study has shown dysbiosis in the gut microbiota-shrimp disease relationship, however, variability in experimental design and the diversity of diseases arise the question whether some gut indicators are robust and universal in response to shrimp health status, irrespective of causal agents. Through an unbiased subject-level meta-analysis framework, we re-analyzed 10 studies including 261 samples, 4 lifestages, 6 different diseases (the causal agents are virus, bacterial, eukaryotic pathogens, or unknown). Results showed that shrimp diseases reproducibly altered the structure of gut bacterial community, but not diversity. After ruling out the lifestage- and disease specific- discriminatory taxa (different diseases dependent indicators), we identify 18 common disease-discriminatory taxa (indicative of health status, irrespective of causal agents) that accurately diagnosed (90.0% accuracy) shrimp health status, regardless of different diseases. These optimizations substantially improved the performance (62.6% vs. 90.0%) diagnosing model. The robustness and universality of model was validated for effectiveness via leave-one-dataset-out validation and independent cohorts. Interspecies interaction and stability of the gut microbiotas were consistently compromised in diseased shrimp compared with corresponding healthy cohorts, while stochasticity and beta-dispersion exhibited the opposite trend. Collectively, our findings exemplify the utility of microbiome meta-analyses in identifying robust and reproducible features for quantitatively diagnosing disease incidence, and the downstream consequences for shrimp pathogenesis from an ecological prospective. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Haonan Sha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
2
|
Panigrahi A, Esakkiraj P, Saranya C, Das RR, Sundaram M, Sudheer NS, Biju IF, Jayanthi M. A Biofloc-Based Aquaculture System Bio-augmented with Probiotic Bacteria Bacillus tequilensis AP BFT3 Improves Culture Environment, Production Performances, and Proteomic Changes in Penaeus vannamei. Probiotics Antimicrob Proteins 2022; 14:277-287. [PMID: 35192183 DOI: 10.1007/s12602-022-09926-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Experiments were conducted to evaluate the probiotic effect of bio-augmented Bacillus tequilensis AP BFT3 on improving production, immune response, and proteomic changes of Penaeus vannamei reared in a biofloc system. Penaeus vannamei larvae (PL13) were stocked in 100-L tanks at a rate of 100 no per tank to study the effect of B. tequilensis AP BFT3 with and without biofloc (BFT-PRO and PRO). Control tanks devoid of probiotic strain were maintained in a clear water system. The growth and survival considerably increased in probiotic added biofloc reared shrimp than probiotic added clear water reared ones and control. Water quality significantly improved in probiotic added (PRO) and biofloc-probiotics (BFT-PRO) system than control. Microbiological investigations indicate increased heterotrophic bacterial load in BFT-PRO compared to the PRO and control. The quality of the isolated microbes was analyzed in terms of enzyme production, and an abundance of enzyme-producing bacterial population was observed in BFT-PRO shrimp. Immune-related genes were significantly upregulated in BFT-PRO shrimp, followed by the PRO and control. The proteomic data (2D gel electrophoresis and MALDI-TOF) of muscle tissue from the experimental animals identified 11 differentially expressed proteins. The Daxx OS and Lit v 1 tropomyosin was found upregulated in BFT-PRO shrimps. Downregulation of Na+/K+ATPase was observed in biofloc with probiotic-supplied groups. The findings revealed that the BFT system's efficacy could be improved through the addition of probiotics. The addition of B. tequilensis AP BFT3 as a probiotic in biofloc induced the expression of essential proteins, reducing contracting diseases during culture.
Collapse
Affiliation(s)
- A Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India.
| | - P Esakkiraj
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - C Saranya
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - R R Das
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - M Sundaram
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - N S Sudheer
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - I F Biju
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| | - M Jayanthi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R. A. Puram, Chennai, 600 028, India
| |
Collapse
|
3
|
Mekata T. Strategy for understanding the biological defense mechanism involved in immune priming in kuruma shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104228. [PMID: 34363834 DOI: 10.1016/j.dci.2021.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Since the 1970s, individuals that survive a specific infectious disease among crustaceans reportedly develop resistance to the given virulence factors. Quasi-immune response is a similar phenomenon of acquired resistance against white spot syndrome virus, also found in kuruma shrimp. This phenomenon, resembling immunological memory, is collectively called immune priming and recently attracts increasing attention. In this study, I review, along with recent findings, past attempts to immunize shrimp by administration of the pathogen itself or recombinant proteins of viral constituent factors. Moreover, I aimed at investigating the diversity of pattern recognition receptors in kuruma shrimp from the currently available information that allows for a better understanding of immune priming. This review would potentially help to elucidate the underlying mechanisms of immune priming in the future.
Collapse
Affiliation(s)
- Tohru Mekata
- Pathology Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Mie, Japan.
| |
Collapse
|
4
|
Zhu P, Wang H, Zeng Q. Comparative transcriptome reveals the response of oriental river prawn (Macrobrachium nipponense) to sulfide toxicity at molecular level. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105700. [PMID: 33285378 DOI: 10.1016/j.aquatox.2020.105700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Aquatic environmental pollutants have various impacts on aquaculture. Specifically, sulfide has been established as being toxic to aquatic animals including the oriental river prawn Macrobrachium nipponense. In response, the hepatopancreas has been broadly studied, as it plays a pivotal role in arthropod nutrient digestion and absorption, energy supply, and organ development as well as in crustacean immunity. However, the underlying molecular mechanisms of hepatopancreas's response to sulfide toxicity are still poorly understand. Herein, we used Nova-seq 6000 platform to conduct a comparative transcriptome analysis of gene expression profiles in the hepatopancreas of M. nipponense, while it was under the influence of a semi-lethal sulfide concentration (3.20 mg/L at 48 h). A total of 139 million raw reads were obtained, in which 67,602 transcripts were clustered into 37,041 unigenes for further analysis. After constant sulfide exposure for 48 h, 235 differentially expressed genes, i.e., DEGs (151 up-regulated and 84 down-regulated) were identified in the sulfide treatment group (TGHP) compared with the control group (CGHP). We used GO and KEGG databases to annotate all the DEGs into 1180 functions and 123 pathways, respectively. The metabolic pathways included proximal tubule bicarbonate reclamation, sulfur metabolism, glycolysis and gluconeogenesis, and the TCA cycle; while immune-related pathways contained Ras, Rap1, focal adhesion and platelet activation. Additionally, apoptosis-involved pathways e.g., lysosome, also exhibited remarkable alteration in the presence of sulfide stress. Notably, responses to external stimuli and detoxification genes- such as GSKIP, CRT2, APOD, TRET1, CYP4C3 and HR39- were significantly altered by the sulfide stress, indicating that significant toxicity was transferred through energy metabolism, growth, osmoregulatory processes and immunity. Finally, we demonstrated that in the present of sulfide stress, M. nipponense altered the expression of detoxification- and extracellular stimulation-related genes, and displayed positive resistance via tight junction activation and lysosome pathways. The results of these novel experiments shed light on the hepatopancreas's molecular response to sulfide stress resistance and the corresponding adaptation mechanism; and enable us to identify several potential biomarkers for further studies.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hui Wang
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
5
|
Santos CA, Andrade SCS, Fernandes JMO, Freitas PD. Shedding the Light on Litopenaeus vannamei Differential Muscle and Hepatopancreas Immune Responses in White Spot Syndrome Virus (WSSV) Exposure. Genes (Basel) 2020; 11:E805. [PMID: 32708590 PMCID: PMC7397224 DOI: 10.3390/genes11070805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
White Spot Syndrome Virus (WSSV) is one of the main threats to farming Litopenaeus vannamei, the most important crustacean commercialized in aquaculture worldwide. Here, we performed RNA-seq analyses in hepatopancreas and muscle from WSSV-negative (healthy) and WSSV-positive (unhealthy) L. vannamei, previously exposed to the virus, to obtain new insights about the molecular basis of resistance to WSSV. We detected 71% of our reads mapped against the recently described L. vannamei genome. This is the first report mapping RNA-seq transcripts from shrimps exposed to WSSV against the species reference genome. Differentially expressed gene (DEG) analyses were performed for four independent comparisons, and 13,338 DEGs were identified. When the redundancies and isoforms were disregarded, we observed 8351 and 6514 DEGs, respectively. Interestingly, after crossing the data, we detected a common set of DEGs for hepatopancreas and healthy shrimps, as well as another one for muscle and unhealthy shrimps. Our findings indicate that genes related to apoptosis, melanization, and the Imd pathway are likely to be involved in response to WSSV, offering knowledge about WSSV defense in shrimps exposed to the virus but not infected. These data present potential to be applied in further genetic studies in penaeids and other farmed shrimp species.
Collapse
Affiliation(s)
- Camilla A. Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 676, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil;
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil;
| | | | - Patrícia D. Freitas
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 676, Brazil
| |
Collapse
|
6
|
Wang W, Luo P, Pan C, Wang Q, Yuan H, Liu J, Jin C, Chen J, Wu W. LvPPAE2 induced by WSV056 confers host defense against WSSV in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 96:319-329. [PMID: 31805414 DOI: 10.1016/j.fsi.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Viral immediate early (IE) genes encode regulatory proteins that are critical for viral replication. WSV056 is an IE protein of white spot syndrome virus (WSSV), an important pathogen of farmed shrimp. It targets the host Rb protein(s) and, according to a previous study, may enhance the replication of the viral genome. However, the ectopic expression of WSV056 in transgenic Drosophila melanogaster exerted an inhibitory effect on the replication of Drosophila C virus (DCV). Transcriptome study using Affymetrix GeneChip suggested that the enrichment of serine proteases (SPs) likely accounts for DCV inhibition in WSV056-overexpressing Drosophila. Injection of recombinant WSV056 to the WSSV natural host Litopenaeus vannamei enhanced the expression of the SP family member prophenoloxidase-activating enzyme 2 (LvPPAE2) and conferred shrimp with more resistance to WSSV infection. LvPPAE2 knockdown contributed to decreased expression of antimicrobial peptides LvAlf1 and LvLyz1, reduced hemolymph phenoloxidase activity, and increased virus load, suggesting that LvPPAE2 is involved in the host defense against WSSV infection. Taken together, these results suggest that wsv056 plays a role in restricting viral replication by inducing the SP-mediated immune responses in the host.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 501301, China
| | - Changkun Pan
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Qingbai Wang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 501301, China
| | - Huifang Yuan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jieping Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Chunying Jin
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361000, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| | - Wenlin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
7
|
Guppy JL, Jones DB, Jerry DR, Wade NM, Raadsma HW, Huerlimann R, Zenger KR. The State of " Omics" Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization. Front Genet 2018; 9:282. [PMID: 30123237 PMCID: PMC6085479 DOI: 10.3389/fgene.2018.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Elucidating the underlying genetic drivers of production traits in agricultural and aquaculture species is critical to efforts to maximize farming efficiency. "Omics" based methods (i.e., transcriptomics, genomics, proteomics, and metabolomics) are increasingly being applied to gain unprecedented insight into the biology of many aquaculture species. While the culture of penaeid shrimp has increased markedly, the industry continues to be impeded in many regards by disease, reproductive dysfunction, and a poor understanding of production traits. Extensive effort has been, and continues to be, applied to develop critical genomic resources for many commercially important penaeids. However, the industry application of these genomic resources, and the translation of the knowledge derived from "omics" studies has not yet been completely realized. Integration between the multiple "omics" resources now available (i.e., genome assemblies, transcriptomes, linkage maps, optical maps, and proteomes) will prove critical to unlocking the full utility of these otherwise independently developed and isolated resources. Furthermore, emerging "omics" based techniques are now available to address longstanding issues with completing keystone genome assemblies (e.g., through long-read sequencing), and can provide cost-effective industrial scale genotyping tools (e.g., through low density SNP chips and genotype-by-sequencing) to undertake advanced selective breeding programs (i.e., genomic selection) and powerful genome-wide association studies. In particular, this review highlights the status, utility and suggested path forward for continued development, and improved use of "omics" resources in penaeid aquaculture.
Collapse
Affiliation(s)
- Jarrod L. Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - David B. Jones
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Dean R. Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Nicholas M. Wade
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Aquaculture Program, CSIRO Agriculture & Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Herman W. Raadsma
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Roger Huerlimann
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kyall R. Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
8
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Patel DM, Brinchmann MF. Skin mucus proteins of lumpsucker ( Cyclopterus lumpus). Biochem Biophys Rep 2017; 9:217-225. [PMID: 28956008 PMCID: PMC5614610 DOI: 10.1016/j.bbrep.2016.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022] Open
Abstract
Fish skin mucus serves as a first line of defense against pathogens and external stressors. In this study the proteomic profile of lumpsucker skin mucus was characterized using 2D gels coupled with tandem mass spectrometry. Mucosal proteins were identified by homology searches across the databases SwissProt, NCBInr and vertebrate EST. The identified proteins were clustered into ten groups based on their gene ontology biological process in PANTHER (www.patherdb.org). Calmodulin, cystatin-B, histone H2B, peroxiredoxin1, apolipoprotein A1, natterin-2, 14-3-3 protein, alfa enolase, pentraxin, warm temperature acclimation 65 kDa (WAP65kDa) and heat shock proteins were identified. Several of the proteins are known to be involved in immune and/or stress responses. Proteomic profile established in this study could be a benchmark for differential proteomics studies. A proteome reference map of lumpsucker skin mucus was established. Proteins involved in immune and stress responses were identified in skin mucus of Cyclopterus lumpus. Mucosal proteins identified could be potential biomarkers.
Collapse
|
10
|
Jeswin J, Xie XL, Ji QL, Wang KJ, Liu HP. Proteomic analysis by iTRAQ in red claw crayfish, Cherax quadricarinatus, hematopoietic tissue cells post white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2016; 50:288-96. [PMID: 26845698 PMCID: PMC7111676 DOI: 10.1016/j.fsi.2016.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/08/2016] [Accepted: 01/29/2016] [Indexed: 05/23/2023]
Abstract
To elucidate proteomic changes of Hpt cells from red claw crayfish, Cherax quadricarinatus, we have carried out isobaric tags for relative and absolute quantitation (iTRAQ) of cellular proteins at both early (1 hpi) and late stage (12 hpi) post white spot syndrome virus (WSSV) infection. Protein database search revealed 594 protein hits by Mascot, in which 17 and 30 proteins were present as differentially expressed proteins at early and late viral infection, respectively. Generally, these differentially expressed proteins include: 1) the metabolic process related proteins in glycolysis and glucogenesis, DNA replication, nucleotide/amino acid/fatty acid metabolism and protein biosynthesis; 2) the signal transduction related proteins like small GTPases, G-protein-alpha stimulatory subunit, proteins bearing PDZ- or 14-3-3-domains that help holding together and organize signaling complexes, casein kinase I and proteins of the MAP-kinase signal transduction pathway; 3) the immune defense related proteins such as α-2 macroglobulin, transglutaminase and trans-activation response RNA-binding protein 1. Taken together, these protein information shed new light on the host cellular response against WSSV infection in a crustacean cell culture.
Collapse
Affiliation(s)
- Joseph Jeswin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiao-lu Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Qiao-lin Ji
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Ke-jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Hai-peng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
11
|
Chen LH, Lin SW, Liu KF, Chang CI, Hseu JR, Tsai JM. Comparative proteomic analysis of Litopenaeus vannamei gills after vaccination with two WSSV structural proteins. FISH & SHELLFISH IMMUNOLOGY 2016; 49:306-314. [PMID: 26766180 DOI: 10.1016/j.fsi.2015.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most devastating viral pathogens of cultured shrimp worldwide. Recently published papers show the ability of WSSV structural protein VP28 to vaccinate shrimp and raise protection against the virus. This study attempted to identify the joining proteins of the aforementioned shrimp quasi-immune response by proteomic analysis. The other envelope protein, VP36B, was used as the non-protective subunit vaccine control. Shrimp were intramuscularly injected with rVPs or PBS on day 1 and day 4 and then on day 7 their gill tissues were sampled. The two-dimensional electrophoresis (2-DE) patterns of gill proteins between vaccinated and PBS groups were compared and 20 differentially expressed proteins identified by mass spectrometry, some of which were validated in gill and hemocyte tissues using real-time quantitative RT-PCR. Many of identified proteins and their expression levels also linked with the shrimp response during WSSV infection. The list of up-regulated protein spots found exclusively in rVP28-vaccinated shrimp include calreticulin and heat shock protein 70 with chaperone properties, ubiquitin, and others. The two serine proteases, chymotrypsin and trypsin, were significantly increased in shrimp of both vaccinated groups compared to PBS controls. The information presented here should be useful for gaining insight into invertebrate immunity.
Collapse
Affiliation(s)
- Li-Hao Chen
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, 81157, Taiwan, ROC
| | - Shi-Wei Lin
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, 81157, Taiwan, ROC
| | - Kuan-Fu Liu
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Council of Agriculture, Pingtung, 92845, Taiwan, ROC
| | - Chin-I Chang
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, Keelung, 20246, Taiwan, ROC
| | - Jinn-Rong Hseu
- Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, Tainan, 72453, Taiwan, ROC
| | - Jyh-Ming Tsai
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung, 81157, Taiwan, ROC.
| |
Collapse
|
12
|
Marco-Ramell A, de Almeida AM, Cristobal S, Rodrigues P, Roncada P, Bassols A. Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. MOLECULAR BIOSYSTEMS 2016; 12:2024-35. [DOI: 10.1039/c5mb00788g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public.
Collapse
Affiliation(s)
- A. Marco-Ramell
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| | - A. M. de Almeida
- Instituto de Biologia Experimental e Tecnologica
- Oeiras
- Portugal
- CIISA/FMV – Centro Interdisciplinar de Investigação em Sanidade Animal
- Faculdade de Medicina Veterinária
| | - S. Cristobal
- Department of Clinical and Experimental Medicine
- Cell Biology
- Faculty of Medicine
- Linköping University
- Linköping
| | - P. Rodrigues
- CCMAR
- Center of Marine Science
- University of Algarve
- 8005-139 Faro
- Portugal
| | - P. Roncada
- Istituto Sperimentale Italiano L. Spallanzani
- Milano
- Italy
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| |
Collapse
|
13
|
Differential proteome profile of skin mucus of gilthead seabream (Sparus aurata) after probiotic intake and/or overcrowding stress. J Proteomics 2015; 132:41-50. [PMID: 26617323 DOI: 10.1016/j.jprot.2015.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Gilthead seabream (Sparus aurata L.) is the major cultured fish species in the Mediterranean area. High density stocking causes stress and increases the impact of diseases leading to economic losses. Probiotics could represent a solution to prevent diseases through several mechanisms such as improving the immune status and/or mucosal microbiota or competing with pathogens. The probiotic Shewanella putrefaciens, also known as Pdp11, was firstly isolated from the skin of healthy gilthead seabream. Our study focuses on the skin mucus proteome after dietary probiotic Pdp11 intake in fish maintained under normal or overcrowding conditions. 2-DE of skin mucus followed by LC-MS/MS analysis was done for each experimental group and differentially expressed proteins were identified. The results showed differentially expressed proteins especially involved in immune processes, such as lysozyme, complement C3, natural killer cell enhancing factor and nonspecific cytotoxic cell receptor protein 1, whose transcript profiles were studied by qPCR. A consistency between lysozyme protein levels in the mucus and lysozyme mRNA levels in skin was found. Further research is necessary to unravel the implications of skin mucosal immunity on fish welfare and disease. BIOLOGICAL SIGNIFICANCE The present work reveals the proteomic changes, which are taking place in the skin mucus of stressed and non-stressed gilthead seabream after Pdp11 probiotic intake. The study contributes to improving the knowledge on skin mucosal immunology of this relevant farmed fish species. Furthermore, the paper shows for the first time how a suitable proteomic methodology, in this case 2-DE followed by LC-MS/MS is useful to perform a comparative study with a non-invasive technique of skin mucus of gilthead seabream.
Collapse
|
14
|
Chung JS, Pitula JS, Schott E, Alvarez JV, Maurer L, Lycett KA. Elevated water temperature increases the levels of reo-like virus and selected innate immunity genes in hemocytes and hepatopancreas of adult female blue crab, Callinectes sapidus. FISH & SHELLFISH IMMUNOLOGY 2015; 47:511-520. [PMID: 26384846 DOI: 10.1016/j.fsi.2015.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Seasonal changes in water temperature directly affect the aquatic ecosystem. The blue crab, Callinectes sapidus, inhabiting the Chesapeake Bay has been adapted to seasonal changes of the environmental conditions. In this, the animals halt their physiological process of the growth and reproduction during colder months while they resume these processes as water temperatures increase. We aimed to understand the effect of the elevated temperatures on a disease progression of reo-like virus (CsRLV) and innate immunity of adult female C. sapidus. Following a rise in water temperature from 10 to 23 °C, CsRLV levels in infected crabs rose significantly in hemocytes and multiple organs. However, in hemocytes, the elevated temperature had no effect on the levels of three innate immune genes: Cas-ecCuZnSOD-2, CasPPO and CasLpR three carbohydrate metabolic genes: CasTPS, CasGlyP; and CasTreh and the total hemocyte counts (THC). Interestingly, the hemocytes of CsRLV infected animals exposed to 23 °C for 10 days had significantly elevated levels of Cas-ecCuZnSOD-2 and CasTPS, compared to those of the uninfected ones also exposed to the same condition and compared to hatchery-raised females kept at 23 °C. Despite the lack of changes in THC, the types of hemocytes from the animals with high CsRLV levels differed from those of uninfected ones and from hatchery animals kept at 23 °C: CsRLV-infected crabs had hemocytes of smaller size with less cytosolic complexity than uninfected crabs. It therefore appears that the change in temperature influences rapid replication of CsRLV in all internal tissues examined. This implies that CsRLV may have broad tissue tropism. Interestingly, the digestive tract (mid- and hindgut) contains significantly higher levels of CsRLV than hemocytes while hepatopancreas and ovary have lower levels than hemocytes. Innate immune responses differ by tissue: midgut and hepatopancreas with upregulated Cas-ecCuZnSOD-2 similar to that found in hemocytes. By contrast, hepatopancreas showed a down-regulated CasTPS, suggesting carbohydrate stress during infection.
Collapse
Affiliation(s)
- J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | - J S Pitula
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - E Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - J V Alvarez
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - L Maurer
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - K A Lycett
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
15
|
Vasanth G, Kiron V, Kulkarni A, Dahle D, Lokesh J, Kitani Y. A Microbial Feed Additive Abates Intestinal Inflammation in Atlantic Salmon. Front Immunol 2015; 6:409. [PMID: 26347738 PMCID: PMC4541333 DOI: 10.3389/fimmu.2015.00409] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023] Open
Abstract
The efficacy of a microbial feed additive (Bactocell®) in countering intestinal inflammation in Atlantic salmon was examined in this study. Fish were fed either the additive-coated feed (probiotic) or feed without it (control). After an initial 3-week feeding, an inflammatory condition was induced by anally intubating all the fish with oxazolone. The fish were offered the feeds for 3 more weeks. Distal intestine from the groups was obtained at 4 h, 24 h, and 3 weeks, after oxazolone treatment. Inflammatory responses were prominent in both groups at 24 h, documented by changes in intestinal micromorphology, expression of inflammation-related genes, and intestinal proteome. The control group was characterized by edema, widening of intestinal villi and lamina propria, infiltration of granulocytes and lymphocytes, and higher expression of genes related to inflammatory responses, mul1b, il1b, tnfa, ifng, compared to the probiotic group or other time points of the control group. Further, the protein expression in the probiotic group at 24 h after inducing inflammation revealed five differentially regulated proteins – Calr, Psma5, Trp1, Ctsb, and Naga. At 3 weeks after intubation, the inflammatory responses subsided in the probiotic group. The findings provide evidence that the microbial additive contributes to intestinal homeostasis in Atlantic salmon.
Collapse
Affiliation(s)
- Ghana Vasanth
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Amod Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| |
Collapse
|
16
|
Evaluation of immune and apoptosis related gene responses using an RNAi approach in vaccinated Penaeus monodon during oral WSSV infection. Mar Genomics 2014; 18 Pt A:55-65. [DOI: 10.1016/j.margen.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/10/2023]
|