1
|
Chronic Training Induces Metabolic and Proteomic Response in Male and Female Basketball Players: Salivary Modifications during In-Season Training Programs. Healthcare (Basel) 2023; 11:healthcare11020241. [PMID: 36673609 PMCID: PMC9858989 DOI: 10.3390/healthcare11020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to characterize the salivary proteome and metabolome of highly trained female and male young basketball players, highlighting common and different traits. A total of 20 male and female basketball players (10 female and 10 male) and 20 sedentary control subjects (10 female and 10 male) were included in the study. The athletes exercised at least five times per week for 2 h per day. Saliva samples were collected mid-season, between 9:00 and 11:00 a.m. and away from sport competition. The proteome and metabolome were analyzed by using 2DE and GC-MS techniques, respectively. A computerized 2DE gel image analysis revealed 43 spots that varied in intensity among groups. Between these spots, 10 (23.2%) were differentially expressed among male athletes and controls, 22 (51.2%) between female basketball players and controls, 11 spots (25.6%) between male and female athletes, and 13 spots (30.2%) between male and female controls. Among the proteins identified were Immunoglobulin, Alpha-Amylase, and Dermcidin, which are inflammation-related proteins. In addition, several amino acids, such as glutamic acid, lysine, ornithine, glycine, tyrosine, threonine, and valine, were increased in trained athletes. In this study, we highlight that saliva is a useful biofluid to assess athlete performance and confirm that the adaptation of men and women to exercise has some common features, but also some different sex-specific behaviors, including differential amino acid utilization and expression of inflammation-related proteins, which need to be further investigated. Moreover, in the future, it will be interesting to examine the influence of sport-type on these differences.
Collapse
|
2
|
Qu M, Chen H, Lai H, Liu X, Wang D, Zhang X. Exposure to nanopolystyrene and its 4 chemically modified derivatives at predicted environmental concentrations causes differently regulatory mechanisms in nematode Caenorhabditis elegans. CHEMOSPHERE 2022; 305:135498. [PMID: 35777546 DOI: 10.1016/j.chemosphere.2022.135498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics represented by nanopolystyrene (NPS) and its chemically modified derivatives are environmentally ecotoxicological hotpots in recent years, but their toxicity and underlying mechanisms have not been fully identified. Here we employed Caenorhabditis elegans as an animal model to systematically compare the toxicity between nanopolystyrene and its 4 chemically modified derivatives (PS-PEG, PS-COOH, PS-SOOOH and PS-NH2) at predicted environmental concentrations. Our study demonstrated that compared with PS exposed group, PS-NH2 exposure (15 μg/L) caused a significant decline in lifespan by suppressed DAF-16/insulin signaling and shortened body length by inhibiting DBL-1/TGF β signaling. Different from PS-NH2 exposed group, PS-SOOOH exposure (15 μg/L) could not cause changes in lifespan, but shortened body length by inhibiting DBL-1/TGF β signaling. In addition, PS-COOH, PS-SOOOH or PS-NH2 exposure (1 μg/L or 15 μg/L) caused more serious toxicity in reducing locomotion behavior and causing gut barrier deficit. Hence the rank order in toxicity of PS-NH2>PS-SOOOH>PS-COOH>PS>PS-PEG was identified. Furthermore, we also presented evidence to support the contention that the observed toxic effects on nematodes were linked to oxide stress and activation of anti-oxidative molecules for reversing the adverse effects induced by nanopolystyrene and its 4 chemically modified derivatives. Our data highlighted nanoplastics may be charge-dependently toxic to environmental organisms, and the screened low toxic modification may support polystyrene nanoparticles continued application for daily consumer goods and biomedicine.
Collapse
Affiliation(s)
- Man Qu
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China.
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230000, China
| | - Hanpeng Lai
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Xing Liu
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, 210009, China
| |
Collapse
|
3
|
Espejo-Román JM, Rubio-Ruiz B, Cano-Cortés V, Cruz-López O, Gonzalez-Resines S, Domene C, Conejo-García A, Sánchez-Martín RM. Selective Anticancer Therapy Based on a HA-CD44 Interaction Inhibitor Loaded on Polymeric Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14040788. [PMID: 35456622 PMCID: PMC9032636 DOI: 10.3390/pharmaceutics14040788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA), through its interactions with the cluster of differentiation 44 (CD44), acts as a potent modulator of the tumor microenvironment, creating a wide range of extracellular stimuli for tumor growth, angiogenesis, invasion, and metastasis. An innovative antitumor treatment strategy based on the development of a nanodevice for selective release of an inhibitor of the HA-CD44 interaction is presented. Computational analysis was performed to evaluate the interaction of the designed tetrahydroisoquinoline-ketone derivative (JE22) with CD44 binding site. Cell viability, efficiency, and selectivity of drug release under acidic conditions together with CD44 binding capacity, effect on cell migration, and apoptotic activity were successfully evaluated. Remarkably, the conjugation of this CD44 inhibitor to the nanodevice generated a reduction of the dosis required to achieve a significant therapeutic effect.
Collapse
Affiliation(s)
- José M. Espejo-Román
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Belén Rubio-Ruiz
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Victoria Cano-Cortés
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Olga Cruz-López
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Saúl Gonzalez-Resines
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, UK; (S.G.-R.); (C.D.)
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, UK; (S.G.-R.); (C.D.)
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ana Conejo-García
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
- Correspondence: (A.C.-G.); (R.M.S.-M.)
| | - Rosario M. Sánchez-Martín
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (B.R.-R.); (V.C.-C.); (O.C.-L.)
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
- Correspondence: (A.C.-G.); (R.M.S.-M.)
| |
Collapse
|
4
|
Militello R, Pinto G, Illiano A, Luti S, Magherini F, Amoresano A, Modesti PA, Modesti A. Modulation of Plasma Proteomic Profile by Regular Training in Male and Female Basketball Players: A Preliminary Study. Front Physiol 2022; 13:813447. [PMID: 35360242 PMCID: PMC8964093 DOI: 10.3389/fphys.2022.813447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Monitoring fatigue and recovery during training periods contributes to identifying the best training methods to achieve sports performance. To date, little is known about sex-related differences in sports adaptations. The aim of the present study is to identify sex-related sports adaptation proteins in female basketball players and male basketball players using proteomics approach on plasma samples withdrawn from athletes during in-season training period but far from a competition. A cohort of 20 professional basketball players, 10 female (BF) and 10 male (BM), and 20 sedentary male (10 CM) and female (10 CF) as control, of comparable age and BMI, were involved in this study. Protein profiles of plasma samples obtained from BM, BF, CM, and CF were analyzed by two-dimensional electrophoresis (2-DE). Differentially expressed proteins were identified by mass spectrometry. The computational 2-DE gel image analysis pointed out 33 differentially expressed protein spots (ANOVA p-value < 0.05) and differences between male and female basketball players are more evident among the players than controls. The expression profile of 54.5% of the total proteins is affected by sports activity. Furthermore, 14 proteins are differentially expressed in basket female players in comparison with their relative controls while seven are differentially expressed in basket male players in comparison with their controls. In conclusion, we identify in female athletes a reduction in proteins related to transcription regulation, most of these modulate chronic inflammation confirming the anti-inflammatory effect of regular training in female muscle metabolism. In male and female athletes, we found a decrease in Transthyretin involved in muscle homeostasis and regeneration and Dermcidin a stress-induced myokine linked to inflammatory and it will be interesting to fully understand the role of its different isoforms in male and female skeletal muscle contraction.
Collapse
Affiliation(s)
- Rosamaria Militello
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Gabriella Pinto
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Department of Chemical Sciences, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy
| | - Anna Illiano
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Department of Chemical Sciences, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy
| | - Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Francesca Magherini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | | | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| |
Collapse
|
5
|
Cano-Cortes MV, Altea-Manzano P, Laz-Ruiz JA, Unciti-Broceta JD, Lopez-Delgado FJ, Espejo-Roman JM, Diaz-Mochon JJ, Sanchez-Martin RM. An effective polymeric nanocarrier that allows for active targeting and selective drug delivery in cell coculture systems. NANOSCALE 2021; 13:3500-3511. [PMID: 33560282 DOI: 10.1039/d0nr07145e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this manuscript, we report the development of a versatile, robust, and stable targeting nanocarrier for active delivery. This nanocarrier is based on bifunctionalized polymeric nanoparticles conjugated to a monoclonal antibody that allows for active targeting of either (i) a fluorophore for tracking or (ii) a drug for monitoring specific cell responses. This nanodevice can efficiently discriminate between cells in coculture based on the expression levels of cell surface receptors. As a proof of concept, we have demonstrated efficient delivery using a broadly established cell surface receptor as the target, the epidermal growth factor receptor (EGFR), which is overexpressed in several types of cancers. Additionally, a second validation of this nanodevice was successfully carried out using another cell surface receptor as the target, the cluster of differentiation 147 (CD147). Our results suggest that this versatile nanocarrier can be expanded to other cell receptors and bioactive cargoes, offering remarkable discrimination efficiency between cells with different expression levels of a specific marker. This work supports the ability of nanoplatforms to boost and improve the progress towards personalized medicine.
Collapse
Affiliation(s)
- Maria Victoria Cano-Cortes
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| | - Patricia Altea-Manzano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Campus GasthuisberǵHerestraat 49, 3000 Leuven, Belgium
| | - Jose Antonio Laz-Ruiz
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| | | | - Francisco Javier Lopez-Delgado
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and DestiNA Genomica S.L. PTS Granada, Avenida de la Innovación 1, Edificio BIC, 18016, Granada, Spain
| | - Jose Manuel Espejo-Roman
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| | - Juan Jose Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain. and Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain and Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, 18071, Spain
| |
Collapse
|
6
|
Cano-Cortes MV, Laz-Ruiz JA, Diaz-Mochon JJ, Sanchez-Martin RM. Characterization and Therapeutic Effect of a pH Stimuli Responsive Polymeric Nanoformulation for Controlled Drug Release. Polymers (Basel) 2020; 12:polym12061265. [PMID: 32492910 PMCID: PMC7361709 DOI: 10.3390/polym12061265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the large number of polymeric nanodelivery systems that have been recently developed, there is still room for improvement in terms of therapeutic efficiency. Most reported nanodevices for controlled release are based on drug encapsulation, which can lead to undesired drug leakage with a consequent reduction in efficacy and an increase in systemic toxicity. Herein, we present a strategy for covalent drug conjugation to the nanodevice to overcome this drawback. In particular, we characterize and evaluate an effective therapeutic polymeric PEGylated nanosystem for controlled pH-sensitive drug release on a breast cancer (MDA-MB-231) and two lung cancer (A549 and H520) cell lines. A significant reduction in the required drug dose to reach its half maximal inhibitory concentration (IC50 value) was achieved by conjugation of the drug to the nanoparticles, which leads to an improvement in the therapeutic index by increasing the efficiency. The genotoxic effect of this nanodevice in cancer cells was confirmed by nucleus histone H2AX specific immunostaining. In summary, we successfully characterized and validated a pH responsive therapeutic polymeric nanodevice in vitro for controlled anticancer drug release.
Collapse
Affiliation(s)
- Maria Victoria Cano-Cortes
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain; (M.V.C.-C.); (J.A.L.-R.)
- Department of Medicinal & Organic Chemistry, Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospital, Av. del Conocimiento, s/n, 18016 Granada, Spain
| | - Jose Antonio Laz-Ruiz
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain; (M.V.C.-C.); (J.A.L.-R.)
- Department of Medicinal & Organic Chemistry, Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospital, Av. del Conocimiento, s/n, 18016 Granada, Spain
| | - Juan Jose Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain; (M.V.C.-C.); (J.A.L.-R.)
- Department of Medicinal & Organic Chemistry, Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospital, Av. del Conocimiento, s/n, 18016 Granada, Spain
- Correspondence: (J.J.D.-M.); or (R.M.S.-M.); Tel.: +34-958-715-500 (R.M.S.-M.)
| | - Rosario Maria Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain; (M.V.C.-C.); (J.A.L.-R.)
- Department of Medicinal & Organic Chemistry, Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospital, Av. del Conocimiento, s/n, 18016 Granada, Spain
- Correspondence: (J.J.D.-M.); or (R.M.S.-M.); Tel.: +34-958-715-500 (R.M.S.-M.)
| |
Collapse
|
7
|
Costa PM, Fadeel B. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol Appl Pharmacol 2015; 299:101-11. [PMID: 26721310 DOI: 10.1016/j.taap.2015.12.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global 'omics' approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Pedro M Costa
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Wang L, Yang L, Pan L, Kadasala NR, Xue L, Schuster RJ, Parker LL, Wei A, Tao WA. Time-Resolved Proteomic Visualization of Dendrimer Cellular Entry and Trafficking. J Am Chem Soc 2015; 137:12772-12775. [PMID: 26425924 DOI: 10.1021/jacs.5b07875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Our understanding of the complex cell entry pathways would greatly benefit from a comprehensive characterization of key proteins involved in this dynamic process. Here we devise a novel proteomic strategy named TITAN (Tracing Internalization and TrAfficking of Nanomaterials) to reveal real-time protein-dendrimer interactions using a systems biology approach. Dendrimers functionalized with photoreactive cross-linkers were internalized by HeLa cells and irradiated at set time intervals, then isolated and subjected to quantitative proteomics. In total, 809 interacting proteins cross-linked with dendrimers were determined by TITAN in a detailed temporal manner during dendrimer internalization, traceable to at least two major endocytic mechanisms, clathrin-mediated and caveolar/raft-mediated endocytosis. The direct involvement of the two pathways was further established by the inhibitory effect of dynasore on dendrimer uptake and changes in temporal profiles of key proteins.
Collapse
Affiliation(s)
- Linna Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Li Yang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Li Pan
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Naveen Reddy Kadasala
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Liang Xue
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Robert J Schuster
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Laurie L Parker
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Alexander Wei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, United States
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States.,Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, United States
| |
Collapse
|