1
|
Lu P, Simas TAM, Delpapa E, ZhuGe R. Bitter taste receptors in the reproductive system: Function and therapeutic implications. J Cell Physiol 2024; 239:e31179. [PMID: 38219077 PMCID: PMC10922893 DOI: 10.1002/jcp.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Tiffany A. Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| |
Collapse
|
2
|
Schall PZ, Latham KE. Predictive modeling of oocyte maternal mRNA features for five mammalian species reveals potential shared and species-restricted regulators during maturation. Physiol Genomics 2024; 56:9-31. [PMID: 37842744 PMCID: PMC11281819 DOI: 10.1152/physiolgenomics.00048.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Oocyte maturation is accompanied by changes in abundances of thousands of mRNAs, many degraded and many preferentially stabilized. mRNA stability can be regulated by diverse features including GC content, codon bias, and motifs within the 3'-untranslated region (UTR) interacting with RNA binding proteins (RBPs) and miRNAs. Many studies have identified factors participating in mRNA splicing, bulk mRNA storage, and translational recruitment in mammalian oocytes, but the roles of potentially hundreds of expressed factors, how they regulate cohorts of thousands of mRNAs, and to what extent their functions are conserved across species has not been determined. We performed an extensive in silico cross-species analysis of features associated with mRNAs of different stability classes during oocyte maturation (stable, moderately degraded, and highly degraded) for five mammalian species. Using publicly available RNA sequencing data for germinal vesicle (GV) and MII oocyte transcriptomes, we determined that 3'-UTR length and synonymous codon usage are positively associated with stability, while greater GC content is negatively associated with stability. By applying machine learning and feature selection strategies, we identified RBPs and miRNAs that are predictive of mRNA stability, including some across multiple species and others more species-restricted. The results provide new insight into the mechanisms regulating maternal mRNA stabilization or degradation.NEW & NOTEWORTHY Conservation across species of mRNA features regulating maternal mRNA stability during mammalian oocyte maturation was analyzed. 3'-Untranslated region length and synonymous codon usage are positively associated with stability, while GC content is negatively associated. Just three RNA binding protein motifs were predicted to regulate mRNA stability across all five species examined, but associated pathways and functions are shared, indicating oocytes of different species arrive at comparable physiological destinations via different routes.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, United States
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, United States
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, United States
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
3
|
Ermisch AF, Bidne KL, Kurz SG, Bochantin KA, Wood JR. Ovarian inflammation mediated by Toll-like receptor 4 increased transcripts of maternal effect genes and decreased embryo development†. Biol Reprod 2023; 108:423-436. [PMID: 36461933 DOI: 10.1093/biolre/ioac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
Obese women are subfertile and have reduced assisted reproduction success, which may be due to reduced oocyte competence. We hypothesize that consumption of a high-fat/high-sugar diet induces ovarian inflammation, which is a primary contributor to decreased oocyte quality and pre-implantation embryo development. To test this hypothesis, C57BL/6 (B6) mice with a normal inflammatory response and C3H/HeJ (C3H) mice with a dampened inflammatory response due to dysfunctional Toll-like receptor 4 were fed either normal chow or high-fat/high-sugar diet. In both B6 and C3H females, high-fat/high-sugar diet induced excessive adiposity and hyperglycemia compared to normal chow-fed counterparts. Conversely, ovarian CD68 levels and oocyte expression of oxidative stress markers were increased when collected from B6 high-fat/high-sugar but not C3H high-fat/high-sugar mice. Following in vitro fertilization of in vivo matured oocytes, blastocyst development was decreased in B6-high-fat/high-sugar but not C3H high-fat/high-sugar mice. Expression of cumulus cell markers of oocyte quality were altered in both B6 high-fat/high-sugar and C3H high-fat/high-sugar. However, there were no diet-dependent differences in spindle abnormalities in either B6 or C3H mice, suggesting potential defects in cytoplasmic maturation. Indeed, there were significant increases in the abundance of maternal effect gene mRNAs in oocytes from only B6 high-fat/high-sugar mice. These differentially expressed genes encode proteins of the subcortical maternal complex and associated with mRNA metabolism and epigenetic modifications. These genes regulate maternal mRNA degradation at oocyte maturation, mRNA clearance at the zygotic genome activation, and methylation of imprinted genes suggesting a mechanism by which inflammation induced oxidative stress impairs embryo development.
Collapse
Affiliation(s)
- Alison F Ermisch
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Katie L Bidne
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Scott G Kurz
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kerri A Bochantin
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
4
|
Zhang C, Dong X, Yuan X, Song J, Wang J, Liu B, Wu K. Proteomic analysis implicates that postovulatory aging leads to aberrant gene expression, biosynthesis, RNA metabolism and cell cycle in mouse oocytes. J Ovarian Res 2022; 15:112. [PMID: 36242049 PMCID: PMC9563439 DOI: 10.1186/s13048-022-01045-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Background In mammals, oocytes display compromised quality after experiencing a process of postovulatory aging. However, the mechanisms underlying are not yet fully understood. Here, we portrayed a protein expression profile of fresh and aging metaphase II (MII) mouse oocytes by means of four-dimensional label-free quantification mass spectrometry (4D-LFQ). Results The analysis of 4D-LFQ data illustrated that there were seventy-six differentially expressed proteins (DEPs) between two groups of MII stage oocytes. Fifty-three DEPs were up-regulated while twenty-three DEPs were down-regulated in the MII oocytes of the aging group, and Gene Ontology (GO) analysis revealed that these DEPs were mainly enriched in regulation of gene expression, biosynthesis, RNA metabolism and cell cycle. Our detailed analysis revealed that the expression of proteins that related to gene expression processes such as transcription, translation, post-translational modifications and epigenome was changed; the relative protein expression of RNA metabolic processes, such as RNA alternative splicing, RNA export from nucleus and negative regulation of transcription from RNA polymerase II promoter was also altered. Conclusion In conclusion, we identified considerable DEPs and discussed how they agreed with previous researches illustrating altered protein expression associated with the quality of oocytes. Our research provided a new perspective on the mechanisms of postovulatory aging and established a theoretical support for practical methods to control and reverse postovulatory aging. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01045-6.
Collapse
Affiliation(s)
- Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Xueqi Dong
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Xinyi Yuan
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Jinzhu Song
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Jiawei Wang
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Boyang Liu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
5
|
Gazo I, Naraine R, Lebeda I, Tomčala A, Dietrich M, Franěk R, Pšenička M, Šindelka R. Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon ( Acipenser ruthenus). Int J Mol Sci 2022; 23:6392. [PMID: 35742841 PMCID: PMC9223696 DOI: 10.3390/ijms23126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus were analyzed. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress response, which could be applied in toxicological studies on fish embryos. This study is the first complex analysis of the DNA damage response in endangered sturgeons.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology—Biocev, Academy of Science of Czech Republic, 252 50 Vestec, Czech Republic; (R.N.); (R.Š.)
| | - Ievgen Lebeda
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Aleš Tomčala
- Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic;
| | - Mariola Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology—Biocev, Academy of Science of Czech Republic, 252 50 Vestec, Czech Republic; (R.N.); (R.Š.)
| |
Collapse
|
6
|
Taher L, Israel S, Drexler HCA, Makalowski W, Suzuki Y, Fuellen G, Boiani M. The proteome, not the transcriptome, predicts that oocyte superovulation affects embryonic phenotypes in mice. Sci Rep 2021; 11:23731. [PMID: 34887460 PMCID: PMC8660899 DOI: 10.1038/s41598-021-03054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Superovulation is the epitome for generating oocytes for molecular embryology in mice, and it is used to model medically assisted reproduction in humans. However, whether a superovulated oocyte is normal, is an open question. This study establishes for the first time that superovulation is associated with proteome changes that affect phenotypic traits in mice, whereas the transcriptome is far less predictive. The proteins that were differentially expressed in superovulated mouse oocytes and embryos compared to their naturally ovulated counterparts were enriched in ontology terms describing abnormal mammalian phenotypes: a thinner zona pellucida, a smaller oocyte diameter, increased frequency of cleavage arrest, and defective blastocyst formation, which could all be verified functionally. Moreover, our findings indicate that embryos with such abnormalities are negatively selected during preimplantation, and ascribe these abnormalities to incomplete ovarian maturation during the time of the conventional superovulation, since they could be corrected upon postponement of the ovulatory stimulus by 24 h. Our data place constraints on the common view that superovulated oocytes are suitable for drawing general conclusions about developmental processes, and underscore the importance of including the proteins in a modern molecular definition of oocyte quality.
Collapse
Affiliation(s)
- Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, 8010, Graz, Austria.
| | - Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Niels Stensen Str. 14, 48149, Münster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany.
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
7
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
8
|
Pariset E, Penninckx S, Kerbaul CD, Guiet E, Macha AL, Cekanaviciute E, Snijders AM, Mao JH, Paris F, Costes SV. 53BP1 Repair Kinetics for Prediction of In Vivo Radiation Susceptibility in 15 Mouse Strains. Radiat Res 2020; 194:485-499. [PMID: 32991727 DOI: 10.1667/rade-20-00122.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 11/03/2022]
Abstract
We present a novel mathematical formalism to predict the kinetics of DNA damage repair after exposure to both low- and high-LET radiation (X rays; 350 MeV/n 40Ar; 600 MeV/n 56Fe). Our method is based on monitoring DNA damage repair protein 53BP1 that forms radiation-induced foci (RIF) at locations of DNA double-strand breaks (DSB) in the nucleus and comparing its expression in primary skin fibroblasts isolated from 15 mice strains. We previously reported strong evidence for clustering of nearby DSB into single repair units as opposed to the classic "contact-first" model where DSB are considered immobile. Here we apply this clustering model to evaluate the number of remaining RIF over time. We also show that the newly introduced kinetic metrics can be used as surrogate biomarkers for in vivo radiation toxicity, with potential applications in radiotherapy and human space exploration. In particular, we observed an association between the characteristic time constant of RIF repair measured in vitro and survival levels of immune cells collected from irradiated mice. Moreover, the speed of DNA damage repair correlated not only with radiation-induced cellular survival in vivo, but also with spontaneous cancer incidence data collected from the Mouse Tumor Biology database, suggesting a relationship between the efficiency of DSB repair after irradiation and cancer risk.
Collapse
Affiliation(s)
- Eloise Pariset
- Universities Space Research Association (USRA), Columbia, Maryland 21046.,Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| | - Sébastien Penninckx
- Namur Research Institute for Life Science, University of Namur, 5000 Namur, Belgium.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Elodie Guiet
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - François Paris
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France 44007
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| |
Collapse
|
9
|
Czajkowska K, Walewska A, Ishikawa T, Szczepańska K, Ajduk A. Age-related alterations in fertilization-induced Ca2+ oscillations depend on the genetic background of mouse oocytes†. Biol Reprod 2020; 103:986-999. [PMID: 32761132 PMCID: PMC7609943 DOI: 10.1093/biolre/ioaa139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/05/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022] Open
Abstract
Maternal aging affects various aspects of oocytes' physiology, including the functionality of their nuclear apparatus and mitochondria. In the present paper, we wished to investigate whether advanced reproductive age impacts oocytes' ability to generate proper Ca2+ oscillations in response to monospermic fertilization. We examined three different mouse strains/crosses: inbred C57BL/6Tar, outbred Tar:SWISS, and hybrid F1 (C57BL/6Tar × CBA/Tar). The females were either 2-4 months old (young) or 13-16 months old (aged). We observed that the Ca2+ oscillatory pattern is altered in a strain-dependent manner and changes were more profound in aged C57BL/6Tar and F1 than in aged Tar:SWISS oocytes. We also showed that maternal aging differently affects the size of Ca2+ store and expression of Itpr1, Atp2a2, Erp44, and Pdia3 genes involved in Ca2+ homeostasis in oocytes of C57BL/6Tar, Tar:SWISS, and F1 genetic background, which may explain partially the differences in the extent of age-dependent changes in the Ca2+ oscillations in those oocytes. Maternal aging did not have any visible impact on the distribution of the ER cisterns in oocytes of all three genetic types. Finally, we showed that maternal aging alters the timing of the first embryonic interphase onset and that this timing correlates in C57BL/6Tar and Tar:SWISS oocytes with the frequency of fertilization-induced Ca2+ oscillations. Our results indicate that extreme caution is required when conclusions about oocyte/embryo physiological response to aging are made and complement an increasing amount of evidence that mammalian (including human) susceptibility to aging differs greatly depending on the genetic background of the individual.
Collapse
Affiliation(s)
- Katarzyna Czajkowska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Walewska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Gegenfurtner K, Flenkenthaler F, Fröhlich T, Wolf E, Arnold GJ. The impact of transcription inhibition during in vitro maturation on the proteome of bovine oocytes†. Biol Reprod 2020; 103:1000-1011. [PMID: 32856698 DOI: 10.1093/biolre/ioaa149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
Proper oocyte maturation is a prerequisite for successful reproduction and requires the resumption of meiosis to the metaphase II stage (MII). In bovine oocytes, nuclear maturation has been shown to occur in in vitro maturing cumulus-enclosed oocytes (COCs) in the absence of transcription, but their developmental capacity is reduced compared to transcriptionally competent COCs. To assess the impact of transcription during in vitro maturation of bovine COCs on the quantitative oocyte proteome, a holistic nano-LC-MS/MS analysis of germinal vesicle oocytes and MII oocytes matured with or without addition of the transcription inhibitor actinomycin D (ActD) was carried out. Analyzing eight biological replicates for each of the three groups, a total of 2018 proteins was identified. These could be clearly classified into proteins depending or not depending on transcription during oocyte maturation. Proteins whose abundance increased after maturation irrespective of transcription inhibition - and hence independent of transcription - were related to the cell cycle, reflecting the progression of meiosis, and to cellular component organization, which is crucial for cytoplasmic maturation. In contrast, transcription-dependent proteins were associated with cell-cell adhesion and translation. Since a high rate of protein synthesis in oocytes has been shown to correlate with their developmental competence, oocyte maturation in transcriptionally impaired COCs is apparently disturbed. Our experiments reveal that impaired transcription during in vitro maturation of COCs has a substantial effect on specific components of the oocyte proteome, and that transcription is required for specific classes of oocyte proteins predominantly involved in translation.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany.,Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| |
Collapse
|
11
|
Konno S, Wakayama S, Ito D, Kazama K, Hirose N, Ooga M, Wakayama T. Removal of remodeling/reprogramming factors from oocytes and the impact on the full-term development of cloned embryos. Development 2020; 147:dev.190777. [PMID: 32665239 DOI: 10.1242/dev.190777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
The reason for the poor development of cloned embryos is not yet clear. Several reports have suggested that some nuclear remodeling/reprogramming factors (RRFs) are removed from oocytes at the time of enucleation, which might cause the low success rate of animal cloning. However, there is currently no method to manipulate the amount of RRFs in oocytes. Here, we describe techniques we have developed to gradually reduce RRFs in mouse oocytes by injecting somatic cell nuclei into oocytes. These injected nuclei were remodeled and reprogrammed using RRFs, and then RRFs were removed by subsequent deletion of somatic nuclei from oocytes. The size of the metaphase II spindle reduced immediately, but did recover when transferred into fresh oocytes. Though affected, the full-term developmental potential of these RRF-reduced oocytes with MII-spindle shrinkage was not lost after fertilization. When somatic cell nuclear transfer was performed, the successful generation of cloned mice was somewhat improved and abnormalities were reduced when oocytes with slightly reduced RRF levels were used. These results suggest that a change in RRFs in oocytes, as achieved by the method described in this paper or by enucleation, is important but not the main reason for the incomplete reprogramming of somatic cell nuclei.
Collapse
Affiliation(s)
- Shunsuke Konno
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan .,Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
12
|
Alda-Catalinas C, Bredikhin D, Hernando-Herraez I, Santos F, Kubinyecz O, Eckersley-Maslin MA, Stegle O, Reik W. A Single-Cell Transcriptomics CRISPR-Activation Screen Identifies Epigenetic Regulators of the Zygotic Genome Activation Program. Cell Syst 2020; 11:25-41.e9. [PMID: 32634384 PMCID: PMC7383230 DOI: 10.1016/j.cels.2020.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/17/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023]
Abstract
Zygotic genome activation (ZGA) is an essential transcriptional event in embryonic development that coincides with extensive epigenetic reprogramming. Complex manipulation techniques and maternal stores of proteins preclude large-scale functional screens for ZGA regulators within early embryos. Here, we combined pooled CRISPR activation (CRISPRa) with single-cell transcriptomics to identify regulators of ZGA-like transcription in mouse embryonic stem cells, which serve as a tractable, in vitro proxy of early mouse embryos. Using multi-omics factor analysis (MOFA+) applied to ∼200,000 single-cell transcriptomes comprising 230 CRISPRa perturbations, we characterized molecular signatures of ZGA and uncovered 24 factors that promote a ZGA-like response. Follow-up assays validated top screen hits, including the DNA-binding protein Dppa2, the chromatin remodeler Smarca5, and the transcription factor Patz1, and functional experiments revealed that Smarca5’s regulation of ZGA-like transcription is dependent on Dppa2. Together, our single-cell transcriptomic profiling of CRISPRa-perturbed cells provides both system-level and molecular insights into the mechanisms that orchestrate ZGA. Large-scale pooled CRISPR-activation screen with single-cell RNA-seq for 230 genes MOFA+ identified 24 screen hits that induced a ZGA-like signature Nine genes were independently validated as regulators of ZGA-like transcription Smarca5 regulates ZGA-like transcription in a Dppa2-dependent manner
Collapse
Affiliation(s)
- Celia Alda-Catalinas
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Danila Bredikhin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | | | - Fátima Santos
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Oana Kubinyecz
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SA, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Centre for Trophoblast Research University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
13
|
Ganesh S, Horvat F, Drutovic D, Efenberkova M, Pinkas D, Jindrova A, Pasulka J, Iyyappan R, Malik R, Susor A, Vlahovicek K, Solc P, Svoboda P. The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution. Nucleic Acids Res 2020; 48:3211-3227. [PMID: 31956907 PMCID: PMC7102984 DOI: 10.1093/nar/gkz1239] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tens of thousands of rapidly evolving long non-coding RNA (lncRNA) genes have been identified, but functions were assigned to relatively few of them. The lncRNA contribution to the mouse oocyte physiology remains unknown. We report the evolutionary history and functional analysis of Sirena1, the most expressed lncRNA and the 10th most abundant poly(A) transcript in mouse oocytes. Sirena1 appeared in the common ancestor of mouse and rat and became engaged in two different post-transcriptional regulations. First, antisense oriented Elob pseudogene insertion into Sirena1 exon 1 is a source of small RNAs targeting Elob mRNA via RNA interference. Second, Sirena1 evolved functional cytoplasmic polyadenylation elements, an unexpected feature borrowed from translation control of specific maternal mRNAs. Sirena1 knock-out does not affect fertility, but causes minor dysregulation of the maternal transcriptome. This includes increased levels of Elob and mitochondrial mRNAs. Mitochondria in Sirena1−/− oocytes disperse from the perinuclear compartment, but do not change in number or ultrastructure. Taken together, Sirena1 contributes to RNA interference and mitochondrial aggregation in mouse oocytes. Sirena1 exemplifies how lncRNAs stochastically engage or even repurpose molecular mechanisms during evolution. Simultaneously, Sirena1 expression levels and unique functional features contrast with the lack of functional importance assessed under laboratory conditions.
Collapse
Affiliation(s)
- Sravya Ganesh
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Michaela Efenberkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Pinkas
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Jindrova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Josef Pasulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rajan Iyyappan
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Israel S, Ernst M, Psathaki OE, Drexler HCA, Casser E, Suzuki Y, Makalowski W, Boiani M, Fuellen G, Taher L. An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo. Sci Rep 2019; 9:13356. [PMID: 31527703 PMCID: PMC6746714 DOI: 10.1038/s41598-019-49817-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/27/2019] [Indexed: 01/28/2023] Open
Abstract
Early mouse embryos have an atypical translational machinery that consists of cytoplasmic lattices and is poorly competent for translation. Hence, the impact of transcriptomic changes on the operational level of proteins is predicted to be relatively modest. To investigate this, we performed liquid chromatography–tandem mass spectrometry and mRNA sequencing at seven developmental stages, from the mature oocyte to the blastocyst, and independently validated our data by immunofluorescence and qPCR. We detected and quantified 6,550 proteins and 20,535 protein-coding transcripts. In contrast to the transcriptome – where changes occur early, mostly at the 2-cell stage – our data indicate that the most substantial changes in the proteome take place towards later stages, between the morula and blastocyst. We also found little to no concordance between the changes in protein and transcript levels, especially for early stages, but observed that the concordance increased towards the morula and blastocyst, as did the number of free ribosomes. These results are consistent with the cytoplasmic lattice-to-free ribosome transition being a key mediator of developmental regulation. Finally, we show how these data can be used to appraise the strengths and limitations of mRNA-based studies of pre-implantation development and expand on the list of known developmental markers.
Collapse
Affiliation(s)
- Steffen Israel
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany
| | - Mathias Ernst
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann Str. 8, 18057, Rostock, Germany.,Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Olympia E Psathaki
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany.,University of Osnabrück, Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Integrated Bioimaging Facility Osnabrück (iBiOs), Barbarastr. 11, 49076, Osnabrück, Germany
| | - Hannes C A Drexler
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany
| | - Ellen Casser
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Niels Stensen Str. 14, 48149, Münster, Germany
| | - Michele Boiani
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany.
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann Str. 8, 18057, Rostock, Germany.
| | - Leila Taher
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann Str. 8, 18057, Rostock, Germany. .,Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
15
|
Differences in resistance against osmotic challenge among C57BL/6, DBA/2 and their hybrid mice metaphase II (MII) stage oocytes. ZYGOTE 2019; 27:250-254. [PMID: 31397238 DOI: 10.1017/s0967199418000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oocytes of B6D2F1 (BDF1) mice are often used as recipients for intracytoplasmic sperm injection because of their cell membrane resistance against capillary penetration. It is assumed that oocytes of BDF1 mice have superior traits because of their hybrid vigour. However, the mechanisms of hybrid vigour are unclear. In this study, we focused on the membrane resistance of MII stage oocytes against changes in extracellular osmotic pressure. As a result, MII stage oocytes of inbred C57BL/6 and DBA/2 mice showed high tolerance in either a hypertonic or a hypotonic environment. Conversely, MII stage oocytes of hybrid BDF1 and D2B6F1 mice showed high tolerance in both hypertonic and hypotonic environments. Therefore, it is considered that MII stage oocytes of hybrid mice have superior traits than those of inbred mice. Our findings demonstrated that the hybrid vigour exists in the form of resistance to extracellular osmotic environment in hybrid MII stage oocytes.
Collapse
|
16
|
Tanabe Y, Kuwayama H, Wakayama S, Nagatomo H, Ooga M, Kamimura S, Kishigami S, Wakayama T. Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction 2017; 154:859-866. [PMID: 28971892 DOI: 10.1530/rep-17-0372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023]
Abstract
Recently, it has become possible to generate cloned mice using a somatic cell nucleus derived from not only F1 strains but also inbred strains. However, to date, all cloned mice have been generated using F1 mouse oocytes as the recipient cytoplasm. Here, we attempted to generate cloned mice from oocytes derived from the ICR-outbred mouse strain. Cumulus cell nuclei derived from BDF1 and ICR mouse strains were injected into enucleated oocytes of both strains to create four groups. Subsequently, the quality and developmental potential of the cloned embryos were examined. ICR oocytes were more susceptible to damage associated with nuclear injection than BDF1 oocytes, but their activation rate and several epigenetic markers of reconstructed cloned oocytes/embryos were similar to those of BDF1 oocytes. When cloned embryos were cultured for up to 4 days, those derived from ICR oocytes demonstrated a significantly decreased rate of development to the blastocyst stage, irrespective of the nuclear donor mouse strain. However, when cloned embryos derived from ICR oocytes were transferred to female recipients at the two-cell stage, healthy cloned offspring were obtained at a success rate similar to that using BDF1 oocytes. The ICR mouse strain is very popular for biological research and less expensive to establish than most other strains. Thus, the results of this study should promote the study of nuclear reprogramming not only by reducing the cost of experiments but also by allowing us to study the effect of oocyte cytoplasm by comparing it between strains.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Hiroki Kuwayama
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| | | | - Masatoshi Ooga
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan.,Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental SciencesUniversity of Yamanashi, Yamanashi, Japan .,Advanced Biotechnology CenterUniversity of Yamanashi, Yamanashi, Japan
| |
Collapse
|
17
|
Wei J, Antony J, Meng F, MacLean P, Rhind R, Laible G, Oback B. KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency. Sci Rep 2017; 7:7514. [PMID: 28790329 PMCID: PMC5548918 DOI: 10.1038/s41598-017-06569-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 06/14/2017] [Indexed: 02/03/2023] Open
Abstract
Correct reprogramming of epigenetic marks is essential for somatic cells to regain pluripotency. Repressive histone (H) lysine (K) methylation marks are known to be stable and difficult to reprogram. In this study, we generated transgenic mice and mouse embryonic fibroblasts (MEFs) for the inducible expression of KDM4B, a demethylase that removes H3 K9 and H3K36 trimethylation (me3) marks (H3K9/36me3). Upon inducing Kdm4b, H3K9/36me3 levels significantly decreased compared to non-induced controls. Concurrently, H3K9me1 levels significantly increased, while H3K9me2 and H3K27me3 remained unchanged. The global transcriptional impact of Kdm4b-mediated reduction in H3K9/36me3 levels was examined by comparative microarray analysis and mRNA-sequencing of three independent transgenic MEF lines. We identified several commonly up-regulated targets, including the heterochromatin-associated zinc finger protein 37 and full-length endogenous retrovirus repeat elements. Following optimized zona-free somatic nuclear transfer, reduced H3K9/36me3 levels were restored within hours. Nevertheless, hypo-methylated Kdm4b MEF donors reprogrammed six-fold better into cloned blastocysts than non-induced donors. They also reprogrammed nine-fold better into induced pluripotent stem cells that gave rise to teratomas and chimeras. In summary, we firmly established H3K9/36me3 as a major roadblock to somatic cell reprogramming and identified transcriptional targets of derestricted chromatin that could contribute towards improving this process in mouse.
Collapse
Affiliation(s)
- Jingwei Wei
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Animal Science Institute, Guangxi University, Nanning, P.R. China
| | - Jisha Antony
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,University of Otago, Department of Pathology, Dunedin, 9016, New Zealand
| | - Fanli Meng
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Paul MacLean
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Rebekah Rhind
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Götz Laible
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Björn Oback
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.
| |
Collapse
|
18
|
Labrecque R, Fournier E, Sirard MA. Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Mol Reprod Dev 2016; 83:558-69. [DOI: 10.1002/mrd.22651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/19/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Rémi Labrecque
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| | - Eric Fournier
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| | - Marc-André Sirard
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| |
Collapse
|
19
|
Fulka H, Aoki F. Nucleolus Precursor Bodies and Ribosome Biogenesis in Early Mammalian Embryos: Old Theories and New Discoveries. Biol Reprod 2016; 94:143. [PMID: 26935600 DOI: 10.1095/biolreprod.115.136093] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/22/2016] [Indexed: 11/01/2022] Open
Abstract
In mammals, mature oocytes and early preimplantation embryos contain transcriptionally inactive structures termed nucleolus precursor bodies instead of the typical fibrillo-granular nucleoli. These nuclear organelles are essential and strictly of maternal origin. If they are removed from oocytes, the resulting embryos are unable to replace them and consequently fail to develop. Historically, nucleolus precursor bodies have been perceived as a passive repository site of nucleolar proteins that are required for embryos to form fully functional nucleoli. Recent results, however, contradict this long-standing dogma and show that these organelles are dispensable for nucleologenesis and ribosome biogenesis. In this article, we discuss the possible roles of nucleolus precursor bodies and propose how they might be involved in embryogenesis. Furthermore, we argue that these organelles are essential only shortly after fertilization and suggest that they might actively participate in centromeric chromatin establishment.
Collapse
Affiliation(s)
- Helena Fulka
- Institute of Animal Science, Prague, Czech Republic Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
20
|
Brayboy LM, Wessel GM. The double-edged sword of the mammalian oocyte--advantages, drawbacks and approaches for basic and clinical analysis at the single cell level. Mol Hum Reprod 2016; 22:200-7. [PMID: 26590170 PMCID: PMC4767051 DOI: 10.1093/molehr/gav064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/30/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022] Open
Abstract
Oocytes are usually the largest cells in the body and as such offer unique opportunities for single-cell analysis. Unfortunately, these cells are also some of the rarest in the mammalian female, usually necessitating single-cell analysis. In cases of infertility in humans, determining the quality of the oocyte is often restricted to a morphological analysis or to the study of cellular behaviors in the developing embryo. Minimally invasive approaches could greatly assist the clinician to prioritize oocytes for fertilization or following fertilization, which embryo to transfer back into the woman. Transcriptomics of human and mouse oocytes may have great utility, and recently it was learned that the polar body faithfully reflects the transcript prevalence in the oocyte. The polar body may thus serve as a minimally invasive proxy for an oocyte in the clinic. In the mouse, the transcriptomes of oocytes from mice of the same strain are markedly similar; no significant differences are apparent in transcript prevalence or identity. In human oocytes however, the transcript pool is highly variable. This is likely the result of different histories of each oocyte, in the age of the donor woman, the different hormonal exposures and the prolonged time from specification of the primary oocyte to the fully grown and ovulated egg. This variability in human oocytes also emphasizes the need for cell-by-cell analysis of the oocytes in vitro; which oocytes have a better potential for fertilization and development? To this end, new imaging capabilities are being employed. For example, a single-cell analytical device for oocytes (the simple perfusion apparatus, or SPA) enables investigators to load multiple oocytes in individual wells, to visualize them on the microscope and to use controlled temperature and media flow by perfusion for optimal clinical applications. Recently, developed Raman microspectroscopy approaches suggest that this imaging modality may enable more in-depth analysis of the molecular characteristics of an oocyte that, in combination with the SPA and transcriptomic approaches, might assist the clinician to prioritize more effectively human oocytes and embryos for transfer into women. This review is intended to update the reader on the status of the examination of single oocytes from a variety of approaches and to emphasize areas that may be primed for advancement in the near future.
Collapse
Affiliation(s)
- L M Brayboy
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital, Warren Alpert Medical School, Brown University, 101 Dudley, Fl1, Providence, RI 020905, USA
| | - G M Wessel
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
21
|
Wessel GM. Picking the right tool for the job--Phosphoproteomics of egg activation. Proteomics 2015; 15:3925-7. [PMID: 26573262 DOI: 10.1002/pmic.201500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/11/2015] [Indexed: 11/07/2022]
Abstract
Eggs are the rarest cell in the human body, yet their study is essential for the fields of fertility, reproduction, and fetal health. Guo et al. (Proteomics 2015, 15, 4080-4095) use a "surrogate" animal to discover the phosphoproteomic pathways involved in egg activation. With datasets of several thousand phosphosites on 2500 different proteins, these investigators have defined new pathways, connections to pathways, and priorities in searches for how eggs are activated at fertilization. These results in a sea urchin are now transposable to mammals for testing on a per candidate strategy.
Collapse
Affiliation(s)
- Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|