1
|
Global Comparative Label-Free Yeast Proteome Analysis by LC-MS/MS After High-pH Reversed-Phase Peptide Fractionation Using Solid-Phase Extraction Cartridges. Methods Mol Biol 2021. [PMID: 34786677 DOI: 10.1007/978-1-0716-1822-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Discovery-driven comparative proteomics employing the bottom-up strategy with label-free quantification on high-resolution mass analyzers like an Orbitrap in a hybrid instrument has the capacity to reveal unique biological processes in the context of plant metabolic engineering. However, proteins are very heterogeneous in nature with a wide range of expression levels, and overall coverage may be suboptimal regarding both the number of protein identifications and sequence coverage of the identified proteins using conventional data-dependent acquisitions without sample fractionation before online nanoflow liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS). In this chapter, we detail a simple and robust method employing high-pH reversed-phase (HRP) peptide fractionation using solid-phase extraction cartridges for label-free proteomic analyses. Albeit HRP fractionation separates peptides according to their hydrophobicity like the subsequent nanoflow gradient reversed-phased LC relying on low pH mobile phase, the two methods are orthogonal. Presented here as a protocol with yeast (Saccharomyces cerevisiae) as a frequently used model organism and hydrogen peroxide to exert cellular stress and survey its impact compared to unstressed control as an example, the described workflow can be adapted to a wide range of proteome samples for applications to plant metabolic engineering research.
Collapse
|
2
|
Quantitative Proteomic Profiling of Fungal Growth, Development, and Ochratoxin A Production in Aspergillus ochraceus on High- and Low-NaCl Cultures. Toxins (Basel) 2021; 13:toxins13010051. [PMID: 33450861 PMCID: PMC7828334 DOI: 10.3390/toxins13010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Dry-cured meat products are worldwide food with high-salt content, and filamentous fungi are beneficial to the maturation process. However, some salt-tolerant strains of Aspergillus and Penicillium produce ochratoxin A (OTA) on these products and thus threaten food safety. In our study, proteomic analysis was performed to reveal the mechanism of adaptability to high-salt environment by Aspergillus ochraceus. Twenty g/L and 70 g/L NaCl substrates were used to provide medium- and high-NaCl content environments, respectively. The NaCl addition could induce fungal growth, but only 20 g/L NaCl addition could induce spore production while 70 g/L repressed it. Proteomics analysis identified 2646 proteins in A. ochraceus fc-1, of which 237 and 251 were differentially expressed with 20 g/L and 70 g/L NaCl addition, respectively. Potential factors affecting fungal growth and development were identified by GO and KEGG analyses of biological process, cellular component, and molecular function terms. The results revealed that ergosterol synthesis pathway was significantly upregulated with 20 g/L and 70 g/L NaCl addition. However, fungal growth and development including OTA production were complex processes associated with many factors including nutrient uptake, cell membrane integrity, cell cycle, energy metabolism, intracellular redox homeostasis, protein synthesis and processing, autophagy, and secondary metabolism. Reactive oxygen species may be an important window to understand the mechanism that medium-salt content was conducive to intracellular signal transduction while high-salt content caused oxidative stress. The findings would help to improve the processes and storage conditions of dry-cured meat products.
Collapse
|
3
|
Yan P, Wang T, Guzman ML, Peter RI, Chiosis G. Chaperome Networks - Redundancy and Implications for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:87-99. [PMID: 32297213 PMCID: PMC7279512 DOI: 10.1007/978-3-030-40204-4_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Radu I Peter
- Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Rizzolo K, Houry WA. Multiple functionalities of molecular chaperones revealed through systematic mapping of their interaction networks. J Biol Chem 2018; 294:2142-2150. [PMID: 30194284 DOI: 10.1074/jbc.tm118.002805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chaperones are a highly interactive group of proteins that function globally in many cellular processes involved in maintaining protein homeostasis. Traditional biochemical assays typically do not provide a complete view of the intricate networks through which chaperones collaborate to promote proteostasis. Recent advances in high-throughput systematic analyses of chaperone interactions have uncovered that chaperones display a remarkable cooperativity in their interactions with numerous client proteins. This cooperativity has been found to be a fundamental aspect of a properly functioning cell. Aberrant formation or improper regulation of these interactions can easily lead to disease states. Herein, we provide an overview of the use of large-scale interaction assays, whether physical (protein-protein) or genetic (epistatic), to study chaperone interaction networks. Importantly, we discuss the ongoing need for such studies to determine the mechanisms by which protein homeostasis is controlled in the cell.
Collapse
Affiliation(s)
- Kamran Rizzolo
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1 and
| | - Walid A Houry
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1 and .,the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Abstract
In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.
Collapse
Affiliation(s)
- Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thaís L S Araujo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Jarnuczak AF, Albornoz MG, Eyers CE, Grant CM, Hubbard SJ. A quantitative and temporal map of proteostasis during heat shock in Saccharomyces cerevisiae. Mol Omics 2018; 14:37-52. [PMID: 29570196 DOI: 10.1039/c7mo00050b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Temperature fluctuation is a common environmental stress that elicits a molecular response in order to maintain intracellular protein levels. Here, for the first time, we report a comprehensive temporal and quantitative study of the proteome during a 240 minute heat stress, using label-free mass spectrometry. We report temporal expression changes of the hallmark heat stress proteins, including many molecular chaperones, tightly coupled to their protein clients. A notable lag of 30 to 120 minutes was evident between transcriptome and proteome levels for differentially expressed genes. This targeted molecular response buffers the global proteome; fewer than 15% of proteins display significant abundance change. Additionally, a parallel study in a Hsp70 chaperone mutant (ssb1Δ) demonstrated a significantly attenuated response, at odds with the modest phenotypic effects that are observed on growth rate. We cast the global changes in temporal protein expression into protein interaction and functional networks, to afford a unique, time-resolved and quantitative description of the heat shock response in an important model organism.
Collapse
Affiliation(s)
- Andrew F Jarnuczak
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
7
|
Rizzolo K, Kumar A, Kakihara Y, Phanse S, Minic Z, Snider J, Stagljar I, Zilles S, Babu M, Houry WA. Systems analysis of the genetic interaction network of yeast molecular chaperones. Mol Omics 2018; 14:82-94. [DOI: 10.1039/c7mo00142h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many molecular chaperones were found to be central drivers of the yeast whole genome genetic interaction network topology.
Collapse
Affiliation(s)
- Kamran Rizzolo
- Department of Biochemistry
- University of Toronto
- Toronto
- Canada
| | - Ashwani Kumar
- Department of Computer Science
- University of Regina
- Regina
- Canada
| | | | - Sadhna Phanse
- Department of Biochemistry
- Research and Innovation Centre
- University of Regina
- Regina
- Canada
| | - Zoran Minic
- Department of Biochemistry
- Research and Innovation Centre
- University of Regina
- Regina
- Canada
| | - Jamie Snider
- The Donnelly Centre
- University of Toronto
- Toronto
- Canada
| | - Igor Stagljar
- Department of Biochemistry
- University of Toronto
- Toronto
- Canada
- The Donnelly Centre
| | - Sandra Zilles
- Department of Computer Science
- University of Regina
- Regina
- Canada
| | - Mohan Babu
- Department of Biochemistry
- Research and Innovation Centre
- University of Regina
- Regina
- Canada
| | - Walid A. Houry
- Department of Biochemistry
- University of Toronto
- Toronto
- Canada
- Department of Chemistry
| |
Collapse
|
8
|
Sardiu ME, Gilmore JM, Groppe B, Florens L, Washburn MP. Identification of Topological Network Modules in Perturbed Protein Interaction Networks. Sci Rep 2017; 7:43845. [PMID: 28272416 PMCID: PMC5341041 DOI: 10.1038/srep43845] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks.
Collapse
Affiliation(s)
- Mihaela E Sardiu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Joshua M Gilmore
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Brad Groppe
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| |
Collapse
|
9
|
Chen Y, Lu Z, Chen D, Wei Y, Chen X, Huang J, Guan N, Lu Q, Wu R, Huang R. Transcriptomic analysis and driver mutant prioritization for differentially expressed genes from a Saccharomyces cerevisiae strain with high glucose tolerance generated by UV irradiation. RSC Adv 2017. [DOI: 10.1039/c7ra06146c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Driver mutations of a Saccharomyces cerevisiae mutant phenotype strain with high sugar tolerance were sought by the PheNetic network.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| | - Zhilong Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| | - Dong Chen
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| | - Xiaoling Chen
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Jun Huang
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Ni Guan
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Qi Lu
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Renzhi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| |
Collapse
|
10
|
Mackenzie RJ, Lawless C, Holman SW, Lanthaler K, Beynon RJ, Grant CM, Hubbard SJ, Eyers CE. Absolute protein quantification of the yeast chaperome under conditions of heat shock. Proteomics 2016; 16:2128-40. [PMID: 27252046 PMCID: PMC4996341 DOI: 10.1002/pmic.201500503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/05/2016] [Accepted: 05/31/2016] [Indexed: 11/10/2022]
Abstract
Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal-induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q-peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label-free quantification, many of the chaperones are upregulated with an average two-fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor-1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein-level response. Furthermore, this SRM data was used to calibrate label-free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level.
Collapse
Affiliation(s)
- Rebecca J Mackenzie
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK.,Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | - Craig Lawless
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | - Stephen W Holman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| | - Karin Lanthaler
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| | - Chris M Grant
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | - Simon J Hubbard
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | - Claire E Eyers
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| |
Collapse
|