1
|
Elmore JM, Griffin BD, Walley JW. Advances in functional proteomics to study plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102061. [PMID: 34102449 DOI: 10.1016/j.pbi.2021.102061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 05/20/2023]
Abstract
Pathogen infection triggers complex signaling networks in plant cells that ultimately result in either susceptibility or resistance. We have made substantial progress in dissecting many of these signaling events, and it is becoming clear that changes in proteome composition and protein activity are major drivers of plant-microbe interactions. Here, we highlight different approaches to analyze the functional proteomes of hosts and pathogens and discuss how they have been used to further our understanding of plant disease. Global proteome profiling can quantify the dynamics of proteins, posttranslational modifications, and biological pathways that contribute to immune-related outcomes. In addition, emerging techniques such as enzyme activity-based profiling, proximity labeling, and kinase-substrate profiling are being used to dissect biochemical events that operate during infection. Finally, we discuss how these functional approaches can be integrated with other profiling data to gain a mechanistic, systems-level view of plant and pathogen signaling.
Collapse
Affiliation(s)
- James M Elmore
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA.
| | - Brianna D Griffin
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA.
| |
Collapse
|
2
|
DeBlasio SL, Wilson JR, Tamborindeguy C, Johnson RS, Pinheiro PV, MacCoss MJ, Gray SM, Heck M. Affinity Purification-Mass Spectrometry Identifies a Novel Interaction between a Polerovirus and a Conserved Innate Immunity Aphid Protein that Regulates Transmission Efficiency. J Proteome Res 2021; 20:3365-3387. [PMID: 34019426 DOI: 10.1021/acs.jproteome.1c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vast majority of plant viruses are transmitted by insect vectors, with many crucial aspects of the transmission process being mediated by key protein-protein interactions. Still, very few vector proteins interacting with viruses have been identified and functionally characterized. Potato leafroll virus (PLRV) is transmitted most efficiently by Myzus persicae, the green peach aphid, in a circulative, non-propagative manner. Using affinity purification coupled to high-resolution mass spectrometry (AP-MS), we identified 11 proteins from M. persicaedisplaying a high probability of interaction with PLRV and an additional 23 vector proteins with medium confidence interaction scores. Three of these aphid proteins were confirmed to directly interact with the structural proteins of PLRV and other luteovirid species via yeast two-hybrid. Immunolocalization of one of these direct PLRV-interacting proteins, an orthologue of the human innate immunity protein complement component 1 Q subcomponent-binding protein (C1QBP), shows that MpC1QBP partially co-localizes with PLRV in cytoplasmic puncta and along the periphery of aphid gut epithelial cells. Artificial diet delivery to aphids of a chemical inhibitor of C1QBP leads to increased PLRV acquisition by aphids and subsequently increased titer in inoculated plants, supporting a role for C1QBP in the acquisition and transmission efficiency of PLRV by M. persicae. This study presents the first use of AP-MS for the in vivo isolation of a functionally relevant insect vector-virus protein complex. MS data are available from ProteomeXchange.org using the project identifier PXD022167.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States
| | - Jennifer R Wilson
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cecilia Tamborindeguy
- Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Patricia V Pinheiro
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Stewart M Gray
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Abstract
For the last century we have relied on model organisms to help understand fundamental biological processes. Now, with advancements in genome sequencing, assembly, and annotation, non-model organisms may be studied with the same advanced bioanalytical toolkit as model organisms. Proteomics is one such technique, which classically relies on predicted protein sequences to catalog and measure complex proteomes across tissues and biofluids. Applying proteomics to non-model organisms can advance and accelerate biomimicry studies, biomedical advancements, veterinary medicine, agricultural research, behavioral ecology, and food safety. In this postmodel organism era, we can study almost any species, meaning that many non-model organisms are, in fact, important emerging model organisms. Herein we specifically focus on eukaryotic organisms and discuss the steps to generate sequence databases, analyze proteomic data with or without a database, and interpret results as well as future research opportunities. Proteomics is more accessible than ever before and will continue to rapidly advance in the coming years, enabling critical research and discoveries in non-model organisms that were hitherto impossible.
Collapse
Affiliation(s)
- Michelle Heck
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY, USA
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Benjamin A. Neely
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC, USA
| |
Collapse
|
4
|
Kappagantu M, Collum TD, Dardick C, Culver JN. Viral Hacks of the Plant Vasculature: The Role of Phloem Alterations in Systemic Virus Infection. Annu Rev Virol 2020; 7:351-370. [PMID: 32453971 DOI: 10.1146/annurev-virology-010320-072410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For plant viruses, the ability to load into the vascular phloem and spread systemically within a host is an essential step in establishing a successful infection. However, access to the vascular phloem is highly regulated, representing a significant obstacle to virus loading, movement, and subsequent unloading into distal uninfected tissues. Recent studies indicate that during virus infection, phloem tissues are a source of significant transcriptional and translational alterations, with the number of virus-induced differentially expressed genes being four- to sixfold greater in phloem tissues than in surrounding nonphloem tissues. In addition, viruses target phloem-specific components as a means to promote their own systemic movement and disrupt host defense processes. Combined, these studies provide evidence that the vascular phloem plays a significant role in the mediation and control of host responses during infection and as such is a site of considerable modulation by the infecting virus. This review outlines the phloem responses and directed reprograming mechanisms that viruses employ to promote their movement through the vasculature.
Collapse
Affiliation(s)
- Madhu Kappagantu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA;
| | - Tamara D Collum
- Foreign Disease-Weed Science Research Unit, US Department of Agriculture Agricultural Research Service, Frederick, Maryland 21702, USA
| | - Christopher Dardick
- Appalachian Fruit Research Station, US Department of Agriculture Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - James N Culver
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA; .,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
5
|
Rosani U, Young T, Bai CM, Alfaro AC, Venier P. Dual Analysis of Virus-Host Interactions: The Case of Ostreid herpesvirus 1 and the Cupped Oyster Crassostrea gigas. Evol Bioinform Online 2019; 15:1176934319831305. [PMID: 30828244 PMCID: PMC6388457 DOI: 10.1177/1176934319831305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Dual analyses of the interactions between Ostreid herpesvirus 1 (OsHV-1) and the bivalve Crassostrea gigas during infection can unveil events critical to the onset and progression of this viral disease and can provide novel strategies for mitigating and preventing oyster mortality. Among the currently used “omics” technologies, dual transcriptomics (dual RNA-seq) coupled with the analysis of viral DNA in the host tissues has greatly advanced the knowledge of genes and pathways mostly contributing to host defense responses, expression profiles of annotated and unknown OsHV-1 open reading frames (ORFs), and viral genome variability. In addition to dual RNA-seq, proteomics and metabolomics analyses have the potential to add complementary information, needed to understand how a malacoherpesvirus can redirect and exploit the vital processes of its host. This review explores our current knowledge of “omics” technologies in the study of host-pathogen interactions and highlights relevant applications of these fields of expertise to the complex case of C gigas infections by OsHV-1, which currently threaten the mollusk production sector worldwide.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Targeted disruption of aphid transmission: a vision for the management of crop diseases caused by Luteoviridae members. Curr Opin Virol 2018; 33:24-32. [DOI: 10.1016/j.coviro.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
|
7
|
Xu Y, Da Silva WL, Qian Y, Gray SM. An aromatic amino acid and associated helix in the C-terminus of the potato leafroll virus minor capsid protein regulate systemic infection and symptom expression. PLoS Pathog 2018; 14:e1007451. [PMID: 30440046 PMCID: PMC6264904 DOI: 10.1371/journal.ppat.1007451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 11/29/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
The C-terminal region of the minor structural protein of potato leafroll virus (PLRV), known as the readthrough protein (RTP), is involved in efficient virus movement, tissue tropism and symptom development. Analysis of numerous C-terminal deletions identified a five-amino acid motif that is required for RTP function. A PLRV mutant expressing RTP with these five amino acids deleted (Δ5aa-RTP) was compromised in systemic infection and symptom expression. Although the Δ5aa-RTP mutant was able to move long distance, limited infection foci were observed in systemically infected leaves suggesting that these five amino acids regulate virus phloem loading in the inoculated leaves and/or unloading into the systemically infected tissues. The 5aa deletion did not alter the efficiency of RTP translation, nor impair RTP self-interaction or its interaction with P17, the virus movement protein. However, the deletion did alter the subcellular localization of RTP. When co-expressed with a PLRV infectious clone, a GFP tagged wild-type RTP was localized to discontinuous punctate spots along the cell periphery and was associated with plasmodesmata, although localization was dependent upon the developmental stage of the plant tissue. In contrast, the Δ5aa-RTP-GFP aggregated in the cytoplasm. Structural modeling indicated that the 5aa deletion would be expected to perturb an α-helix motif. Two of 30 plants infected with Δ5aa-RTP developed a wild-type virus infection phenotype ten weeks post-inoculation. Analysis of the virus population in these plants by deep sequencing identified a duplication of sequences adjacent to the deletion that were predicted to restore the α-helix motif. The subcellular distribution of the RTP is regulated by the 5-aa motif which is under strong selection pressure and in turn contributes to the efficient long distance movement of the virus and the induction of systemic symptoms.
Collapse
Affiliation(s)
- Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Washington Luis Da Silva
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Stewart M. Gray
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY, United States of America
- Emerging Pest and Pathogens Research Unit, USDA, ARS, Ithaca, NY, United States of America
| |
Collapse
|
8
|
DeBlasio SL, Xu Y, Johnson RS, Rebelo AR, MacCoss MJ, Gray SM, Heck M. The Interaction Dynamics of Two Potato Leafroll Virus Movement Proteins Affects Their Localization to the Outer Membranes of Mitochondria and Plastids. Viruses 2018; 10:E585. [PMID: 30373157 PMCID: PMC6265731 DOI: 10.3390/v10110585] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Luteoviridae is an agriculturally important family of viruses whose replication and transport are restricted to plant phloem. Their genomes encode for four proteins that regulate viral movement. These include two structural proteins that make up the capsid and two non-structural proteins known as P3a and P17. Little is known about how these proteins interact with each other and the host to coordinate virus movement within and between cells. We used quantitative, affinity purification-mass spectrometry to show that the P3a protein of Potato leafroll virus complexes with virus and that this interaction is partially dependent on P17. Bimolecular complementation assays (BiFC) were used to validate that P3a and P17 self-interact as well as directly interact with each other. Co-localization with fluorescent-based organelle markers demonstrates that P3a directs P17 to the mitochondrial outer membrane while P17 regulates the localization of the P3a-P17 heterodimer to plastids. Residues in the C-terminus of P3a were shown to regulate P3a association with host mitochondria by using mutational analysis and also varying BiFC tag orientation. Collectively, our work reveals that the PLRV movement proteins play a game of intracellular hopscotch along host organelles to transport the virus to the cell periphery.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle WA 98109, USA.
| | - Ana Rita Rebelo
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle WA 98109, USA.
| | - Stewart M Gray
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Michelle Heck
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
DeBlasio SL, Rebelo AR, Parks K, Gray SM, Heck MC. Disruption of Chloroplast Function Through Downregulation of Phytoene Desaturase Enhances the Systemic Accumulation of an Aphid-Borne, Phloem-Restricted Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1095-1110. [PMID: 29767548 DOI: 10.1094/mpmi-03-18-0057-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chloroplasts play a central role in pathogen defense in plants. However, most studies explaining the relationship between pathogens and chloroplasts have focused on pathogens that infect mesophyll cells. In contrast, the family Luteoviridae includes RNA viruses that replicate and traffic exclusively in the phloem. Recently, our lab has shown that Potato leafroll virus (PLRV), the type species in the genus Polerovirus, forms an extensive interaction network with chloroplast-localized proteins that is partially dependent on the PLRV capsid readthrough domain (RTD). In this study, we used virus-induced gene silencing to disrupt chloroplast function and assess the effects on PLRV accumulation in two host species. Silencing of phytoene desaturase (PDS), a key enzyme in carotenoid, chlorophyll, and gibberellic acid (GA) biosynthesis, resulted in a substantial increase in the systemic accumulation of PLRV. This increased accumulation was attenuated when plants were infected with a viral mutant that does not express the RTD. Application of GA partially suppressed the increase in virus accumulation in PDS-silenced plants, suggesting that GA signaling also plays a role in limiting PLRV infection. In addition, the fecundity of the aphid vector of PLRV was increased when fed on PDS-silenced plants relative to PLRV-infected plants.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Ana Rita Rebelo
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Katherine Parks
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Stewart M Gray
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 3 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Michelle C Heck
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
- 3 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
10
|
Folimonova SY, Tilsner J. Hitchhikers, highway tolls and roadworks: the interactions of plant viruses with the phloem. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:82-88. [PMID: 29476981 DOI: 10.1016/j.pbi.2018.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/24/2023]
Abstract
The phloem is of central importance to plant viruses, providing the route by which they spread throughout their host. Compared with virus movement in non-vascular tissue, phloem entry, exit, and long-distance translocation usually involve additional viral factors and complex virus-host interactions, probably, because the phloem has evolved additional protection against these molecular 'hitchhikers'. Recent progress in understanding phloem trafficking of endogenous mRNAs along with observations of membranous viral replication 'factories' in sieve elements challenge existing conceptions of virus long-distance transport. At the same time, the central role of the phloem in plant defences against viruses and the sophisticated viral manipulation of this host tissue are beginning to emerge.
Collapse
Affiliation(s)
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| |
Collapse
|
11
|
Insect Transmission of Plant Pathogens: a Systems Biology Perspective. mSystems 2018; 3:mSystems00168-17. [PMID: 29629417 PMCID: PMC5881024 DOI: 10.1128/msystems.00168-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022] Open
Abstract
Insect-vectored pathogens pose one of the greatest threats to plant and animal, including human, health on a global scale. Few effective control strategies have been developed to thwart the transmission of any insect-transmitted pathogen. Most have negative impacts on the environment and human health and are unsustainable. Plant pathogen transmission by insect vectors involves a combination of coevolving biological players: plant hosts, insect vectors, plant pathogens, and bacterial endosymbionts harbored by the insect. Our ability to help growers to control vector-borne disease depends on our ability to generate pathogen- and/or disease-resistant crops by traditional or synthetic approaches and to block pathogen transmission by the insect vector. Systems biology studies have led to the reexamination of existing paradigms on how pathogens interact with insect vectors, including the bacterial symbionts, and have identified vector-pathogen interactions at the molecular and cellular levels for the development of novel transmission interdiction strategies.
Collapse
|
12
|
Bendix C, Lewis JD. The enemy within: phloem-limited pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:238-254. [PMID: 27997761 PMCID: PMC6638166 DOI: 10.1111/mpp.12526] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 05/06/2023]
Abstract
The growing impact of phloem-limited pathogens on high-value crops has led to a renewed interest in understanding how they cause disease. Although these pathogens cause substantial crop losses, many are poorly characterized. In this review, we present examples of phloem-limited pathogens that include intracellular bacteria with and without cell walls, and viruses. Phloem-limited pathogens have small genomes and lack many genes required for core metabolic processes, which is, in part, an adaptation to the unique phloem environment. For each pathogen class, we present multiple case studies to highlight aspects of disease caused by phloem-limited pathogens. The pathogens presented include Candidatus Liberibacter asiaticus (citrus greening), Arsenophonus bacteria, Serratia marcescens (cucurbit yellow vine disease), Candidatus Phytoplasma asteris (Aster Yellows Witches' Broom), Spiroplasma kunkelii, Potato leafroll virus and Citrus tristeza virus. We focus on commonalities in the virulence strategies of these pathogens, and aim to stimulate new discussions in the hope that widely applicable disease management strategies can be found.
Collapse
Affiliation(s)
- Claire Bendix
- United States Department of AgriculturePlant Gene Expression CenterAlbanyCA94710USA
| | - Jennifer D. Lewis
- United States Department of AgriculturePlant Gene Expression CenterAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCA94720USA
| |
Collapse
|
13
|
DeBlasio SL, Bereman MS, Mahoney J, Thannhauser TW, Gray SM, MacCoss MJ, Cilia Heck M. Evaluation of a Bead-Free Coimmunoprecipitation Technique for Identification of Virus-Host Protein Interactions Using High-Resolution Mass Spectrometry. J Biomol Tech 2017; 28:111-121. [PMID: 28785175 DOI: 10.7171/jbt.17-2803-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein interactions between virus and host are essential for viral propagation and movement, as viruses lack most of the proteins required to thrive on their own. Precision methods aimed at disrupting virus-host interactions represent new approaches to disease management but require in-depth knowledge of the identity and binding specificity of host proteins within these interaction networks. Protein coimmunoprecipitation (co-IP) coupled with mass spectrometry (MS) provides a high-throughput way to characterize virus-host interactomes in a single experiment. Common co-IP methods use antibodies immobilized on agarose or magnetic beads to isolate virus-host complexes in solutions of host tissue homogenate. Although these workflows are well established, they can be fairly laborious and expensive. Therefore, we evaluated the feasibility of using antibody-coated microtiter plates coupled with MS analysis as an easy, less expensive way to identify host proteins that interact with Potato leafroll virus (PLRV), an insect-borne RNA virus that infects potatoes. With the use of the bead-free platform, we were able to detect 36 plant and 1 nonstructural viral protein significantly coimmunoprecipitating with PLRV. Two of these proteins, a 14-3-3 signal transduction protein and malate dehydrogenase 2 (mMDH2), were detected as having a weakened or lost association with a structural mutant of the virus, demonstrating that the bead-free method is sensitive enough to detect quantitative differences that can be used to pin-point domains of interaction. Collectively, our analysis shows that the bead-free platform is a low-cost alternative that can be used by core facilities and other investigators to identify plant and viral proteins interacting with virions and/or the viral structural proteins.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- U.S. Department of Agriculture, Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York 14853, USA.,Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Michael S Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh-Durham North Carolina 27695, USA
| | | | - Theodore W Thannhauser
- U.S. Department of Agriculture, Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York 14853, USA
| | - Stewart M Gray
- U.S. Department of Agriculture, Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York 14853, USA.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA; and
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, USA
| | - Michelle Cilia Heck
- U.S. Department of Agriculture, Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York 14853, USA.,Boyce Thompson Institute, Ithaca, New York 14853, USA.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA; and
| |
Collapse
|
14
|
Doumayrou J, Sheber M, Bonning BC, Miller WA. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector. Viruses 2016; 8:E312. [PMID: 27869713 PMCID: PMC5127026 DOI: 10.3390/v8110312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/14/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022] Open
Abstract
Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.
Collapse
Affiliation(s)
- Juliette Doumayrou
- Department of Plant Pathology & Microbiology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA.
| | - Melissa Sheber
- Department of Plant Pathology & Microbiology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA.
| | - Bryony C Bonning
- Department of Entomology, 339 Science II, Iowa State University, Ames, IA 50011, USA.
| | - W Allen Miller
- Department of Plant Pathology & Microbiology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
15
|
DeBlasio SL, Johnson RS, MacCoss MJ, Gray SM, Cilia M. Model System-Guided Protein Interaction Mapping for Virus Isolated from Phloem Tissue. J Proteome Res 2016; 15:4601-4611. [DOI: 10.1021/acs.jproteome.6b00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stacy L. DeBlasio
- Agricultural
Research Service, USDA, Ithaca, New York 14853, United States
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States
| | - Richard S. Johnson
- Department
of Genome Sciences, University of Washington, Seattle Washington 98109, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, University of Washington, Seattle Washington 98109, United States
| | - Stewart M. Gray
- Agricultural
Research Service, USDA, Ithaca, New York 14853, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Cilia
- Agricultural
Research Service, USDA, Ithaca, New York 14853, United States
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
DeBlasio SL, Chavez JD, Alexander MM, Ramsey J, Eng JK, Mahoney J, Gray SM, Bruce JE, Cilia M. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology. J Virol 2016; 90:1973-87. [PMID: 26656710 PMCID: PMC4733995 DOI: 10.1128/jvi.01706-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Mariko M Alexander
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - John Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Jimmy K Eng
- University of Washington Proteomics Resources, Seattle, Washington, USA
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Stewart M Gray
- USDA-Agricultural Research Service, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michelle Cilia
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Insect vector-mediated transmission of plant viruses. Virology 2015; 479-480:278-89. [DOI: 10.1016/j.virol.2015.03.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
|