1
|
Gao Z, Chen S, Du J, Wu Z, Ge W, Gao S, Zhou Z, Yang X, Xing Y, Shi M, Hu Y, Tang W, Xia J, Zhang X, Jiang J, Yang S. Quantitative analysis of fucosylated glycoproteins by immobilized lectin-affinity fluorescent labeling. RSC Adv 2023; 13:6676-6687. [PMID: 36860533 PMCID: PMC9969232 DOI: 10.1039/d3ra00072a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Human biofluids are often used to discover disease-specific glycosylation, since abnormal changes in protein glycosylation can discern physiopathological states. Highly glycosylated proteins in biofluids make it possible to identify disease signatures. Glycoproteomic studies on saliva glycoproteins showed that fucosylation was significantly increased during tumorigenesis and that glycoproteins became hyperfucosylated in lung metastases, and tumor stage is associated with fucosylation. Quantification of salivary fucosylation can be achieved by mass spectrometric analysis of fucosylated glycoproteins or fucosylated glycans; however, the use of mass spectrometry is non-trivial for clinical practice. Here, we developed a high-throughput quantitative method, lectin-affinity fluorescent labeling quantification (LAFLQ), to quantify fucosylated glycoproteins without relying on mass spectrometry. Lectins with a specific affinity for fucoses are immobilized on the resin and effectively capture fluorescently labeled fucosylated glycoproteins, which are further quantitatively characterized by fluorescence detection in a 96-well plate. Our results demonstrated that serum IgG can be accurately quantified by lectin and fluorescence detection. Quantification in saliva showed significantly higher fucosylation in lung cancer patients compared to healthy controls or other non-cancer diseases, suggesting that this method has the potential to quantify stage-related fucosylation in lung cancer saliva.
Collapse
Affiliation(s)
- Ziyuan Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
| | - Sufeng Chen
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Jing Du
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University Shanghai 200438 China
| | - Wei Ge
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University Lianyungang 222005 China
| | - Zeyang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Yufei Xing
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Minhua Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Yunyun Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Wen Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University Shanghai 200438 China
| | - Junhong Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
| |
Collapse
|
2
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
4
|
Yang S, Wang Y, Mann M, Wang Q, Tian E, Zhang L, Cipollo JF, Ten Hagen KG, Tabak LA. Improved online LC-MS/MS identification of O-glycosites by EThcD fragmentation, chemoenzymatic reaction, and SPE enrichment. Glycoconj J 2020; 38:145-156. [PMID: 33068214 DOI: 10.1007/s10719-020-09952-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
O-glycosylation is a highly diverse and complex form of protein post-translational modification. Mucin-type O-glycosylation is initiated by the transfer of N-acetyl-galactosamine (GalNAc) to the hydroxyl group of serine, threonine and tyrosine residues through catalysis by a family of glycosyltransferases, the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (E.C. 2.4.1.41) that are conserved across metazoans. In the last decade, structural characterization of glycosylation has substantially advanced due to the development of analytical methods and advances in mass spectrometry. However, O-glycosite mapping remains challenging since mucin-type O-glycans are densely packed, often protecting proteins from cleavage by proteases. Adding to the complexity is the fact that a given glycosite can be modified by different glycans, resulting in an array of glycoforms rising from one glycosite. In this study, we investigated conditions of solid phase extraction (SPE) enrichment, protease digestion, and Electron-transfer/Higher Energy Collision Dissociation (EThcD) fragmentation to optimize identification of O-glycosites in densely glycosylated proteins. Our results revealed that anion-exchange stationary phase is sufficient for glycopeptide enrichment; however, the use of a hydrophobic-containing sorbent was detrimental to the binding of polar-hydrophilic glycopeptides. Different proteases can be employed for enhancing coverage of O-glycosites, while derivatization of negatively charged amino acids or sialic acids would enhance the identification of a short O-glycopeptides. Using a longer than normal electron transfer dissociation (ETD) reaction time, we obtained enhanced coverage of peptide bonds that facilitated the localization of O-glycosites. O-glycosite mapping strategy via proteases, cut-off filtration and solid-phase chemoenzymatic processing. Glycopeptides are enriched by SPE column, followed by release of N-glycans, collection of higher MW O-glycopeptides via MW cut-off filter, O-glycopeptide release via O-protease, and finally detected by LC-MS/MS using EThcD.
Collapse
Affiliation(s)
- Shuang Yang
- Biological Chemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew Mann
- Biological Chemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qiong Wang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - E Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liping Zhang
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence A Tabak
- Biological Chemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Cao WQ, Liu MQ, Kong SY, Wu MX, Huang ZZ, Yang PY. Novel methods in glycomics: a 2019 update. Expert Rev Proteomics 2020; 17:11-25. [PMID: 31914820 DOI: 10.1080/14789450.2020.1708199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.
Collapse
Affiliation(s)
- Wei-Qian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Si-Yuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng-Xi Wu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Ze Huang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Saleh AM, Wilding KM, Calve S, Bundy BC, Kinzer-Ursem TL. Non-canonical amino acid labeling in proteomics and biotechnology. J Biol Eng 2019; 13:43. [PMID: 31139251 PMCID: PMC6529998 DOI: 10.1186/s13036-019-0166-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/11/2019] [Indexed: 02/03/2023] Open
Abstract
Metabolic labeling of proteins with non-canonical amino acids (ncAAs) provides unique bioorthogonal chemical groups during de novo synthesis by taking advantage of both endogenous and heterologous protein synthesis machineries. Labeled proteins can then be selectively conjugated to fluorophores, affinity reagents, peptides, polymers, nanoparticles or surfaces for a wide variety of downstream applications in proteomics and biotechnology. In this review, we focus on techniques in which proteins are residue- and site-specifically labeled with ncAAs containing bioorthogonal handles. These ncAA-labeled proteins are: readily enriched from cells and tissues for identification via mass spectrometry-based proteomic analysis; selectively purified for downstream biotechnology applications; or labeled with fluorophores for in situ analysis. To facilitate the wider use of these techniques, we provide decision trees to help guide the design of future experiments. It is expected that the use of ncAA labeling will continue to expand into new application areas where spatial and temporal analysis of proteome dynamics and engineering new chemistries and new function into proteins are desired.
Collapse
Affiliation(s)
- Aya M. Saleh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Kristen M. Wilding
- Department of Chemical Engineering, Brigham Young University, Provo, UT USA
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT USA
| | | |
Collapse
|
7
|
Ejendal KFK, Fraseur JG, Kinzer-Ursem TL. Protein Labeling and Bioconjugation Using N-Myristoyltransferase. Methods Mol Biol 2019; 2033:149-165. [PMID: 31332753 DOI: 10.1007/978-1-4939-9654-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methods that allow for labeling of proteins cotranslationally within protein expression systems have had wide-ranging applications in health, engineering, and medicine. Bioorthogonal chemistries that allow for conjugation of proteins or biomolecules of interest to substrates (fluorophores, gold nanoparticles, polymers, etc.) in living cells without prior enrichment or purification have likewise enabled advances in technology to study and engineer cellular and biomolecular systems. At the intersection of these, chemoenzymatic labeling of proteins at specific sites of interest and their subsequent selective bioconjugation to substrates without prior purification has dramatically streamlined workflows that allow proteins to reside in the native expression volumes as long as possible prior to conjugation, be readily isolated upon conjugation, and remain functionally active after conjugation. Here we present methods and protocols to express and label proteins of interest at the N-terminus with azide derivatives of myristic acid, a small, soluble, 14-carbon fatty acid, and conjugate the labeled protein to fluorophores and gold nanoparticle substrates. These methods can be extended to label proteins with other myristoyl derivatives and to conjugation to other solid or polymeric substrates of interest.
Collapse
Affiliation(s)
- Karin F K Ejendal
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Julia G Fraseur
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
De Vijlder T, Valkenborg D, Lemière F, Romijn EP, Laukens K, Cuyckens F. A tutorial in small molecule identification via electrospray ionization-mass spectrometry: The practical art of structural elucidation. MASS SPECTROMETRY REVIEWS 2018; 37:607-629. [PMID: 29120505 PMCID: PMC6099382 DOI: 10.1002/mas.21551] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 05/10/2023]
Abstract
The identification of unknown molecules has been one of the cornerstone applications of mass spectrometry for decades. This tutorial reviews the basics of the interpretation of electrospray ionization-based MS and MS/MS spectra in order to identify small-molecule analytes (typically below 2000 Da). Most of what is discussed in this tutorial also applies to other atmospheric pressure ionization methods like atmospheric pressure chemical/photoionization. We focus primarily on the fundamental steps of MS-based structural elucidation of individual unknown compounds, rather than describing strategies for large-scale identification in complex samples. We critically discuss topics like the detection of protonated and deprotonated ions ([M + H]+ and [M - H]- ) as well as other adduct ions, the determination of the molecular formula, and provide some basic rules on the interpretation of product ion spectra. Our tutorial focuses primarily on the fundamental steps of MS-based structural elucidation of individual unknown compounds (eg, contaminants in chemical production, pharmacological alteration of drugs), rather than describing strategies for large-scale identification in complex samples. This tutorial also discusses strategies to obtain useful orthogonal information (UV/Vis, H/D exchange, chemical derivatization, etc) and offers an overview of the different informatics tools and approaches that can be used for structural elucidation of small molecules. It is primarily intended for beginning mass spectrometrists and researchers from other mass spectrometry sub-disciplines that want to get acquainted with structural elucidation are interested in some practical tips and tricks.
Collapse
Affiliation(s)
- Thomas De Vijlder
- Pharmaceutical Development & Manufacturing Sciences (PDMS)Janssen Research & DevelopmentBeerseBelgium
| | - Dirk Valkenborg
- Interuniversity Institute for Biostatistics and Statistical BioinformaticsHasselt UniversityDiepenbeekBelgium
- Center for Proteomics (CFP)University of AntwerpAntwerpBelgium
- Flemish Institute for Technological Research (VITO)MolBelgium
| | - Filip Lemière
- Center for Proteomics (CFP)University of AntwerpAntwerpBelgium
- Department of Chemistry, Biomolecular and Analytical Mass SpectrometryUniversity of AntwerpAntwerpBelgium
| | - Edwin P. Romijn
- Pharmaceutical Development & Manufacturing Sciences (PDMS)Janssen Research & DevelopmentBeerseBelgium
| | - Kris Laukens
- Department of Mathematics and Computer Science, Advanced Database Research and Modelling (ADReM)University of AntwerpAntwerpBelgium
- Biomedical Informatics Network Antwerp (Biomina)University of AntwerpAntwerpBelgium
| | - Filip Cuyckens
- Pharmacokinetics, Dynamics & MetabolismJanssen Research & DevelopmentBeerseBelgium
| |
Collapse
|
9
|
Hu Y, Shah P, Clark DJ, Ao M, Zhang H. Reanalysis of Global Proteomic and Phosphoproteomic Data Identified a Large Number of Glycopeptides. Anal Chem 2018; 90:8065-8071. [PMID: 29741879 PMCID: PMC6440470 DOI: 10.1021/acs.analchem.8b01137] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein glycosylation plays fundamental roles in many cellular processes, and previous reports have shown dysregulation to be associated with several human diseases, including diabetes, cancer, and neurodegenerative disorders. Despite the vital role of glycosylation for proper protein function, the analysis of glycoproteins has been lagged behind to other protein modifications. In this study, we describe the reanalysis of global proteomic data from breast cancer xenograft tissues using recently developed software package GPQuest 2.0, revealing a large number of previously unidentified N-linked glycopeptides. More importantly, we found that using immobilized metal affinity chromatography (IMAC) technology for the enrichment of phosphopeptides had coenriched a substantial number of sialoglycopeptides, allowing for a large-scale analysis of sialoglycopeptides in conjunction with the analysis of phosphopeptides. Collectively, combined tandem mass spectrometry (MS/MS) analyses of global proteomic and phosphoproteomic data sets resulted in the identification of 6 724 N-linked glycopeptides from 617 glycoproteins derived from two breast cancer xenograft tissues. Next, we utilized GPQuest 2.0 for the reanalysis of global and phosphoproteomic data generated from 108 human breast cancer tissues that were previously analyzed by Clinical Proteomic Analysis Consortium (CPTAC). Reanalysis of the CPTAC data set resulted in the identification of 2 683 glycopeptides from the global proteomic data set and 4 554 glycopeptides from phosphoproteomic data set, respectively. Together, 11 292 N-linked glycopeptides corresponding to 1 731 N-linked glycosites from 883 human glycoproteins were identified from the two data sets. This analysis revealed an extensive number of glycopeptides hidden in the global and enriched in IMAC-based phosphopeptide-enriched proteomic data, information which would have remained unknown from the original study otherwise. The reanalysis described herein can be readily applied to identify glycopeptides from already existing data sets, providing insight into many important facets of protein glycosylation in different biological, physiological, and pathological processes.
Collapse
Affiliation(s)
- Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - David J. Clark
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| |
Collapse
|
10
|
Yang S, Chatterjee S, Cipollo J. The Glycoproteomics-MS for Studying Glycosylation in Cardiac Hypertrophy and Heart Failure. Proteomics Clin Appl 2018; 12:e1700075. [PMID: 29424483 DOI: 10.1002/prca.201700075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/10/2017] [Indexed: 12/13/2022]
Abstract
With recent advancements of analytical techniques and mass spectrometric instrumentations, proteomics has been widely exploited to study the regulation of protein expression associated with disease states. Many proteins may undergo abnormal change in response to the stimulants, leading to regulation of posttranslationally modified proteins. In this review, the physiological and pathological roles of protein glycosylation in cardiac hypertrophy is discussed, and how the signal pathways regulate heart function and leading to heart failure. The analytical methods for analysis of protein glycosylation, including glycans, glycosite, occupancy, and heterogeneity is emphasized. The rationale on glycoproteins as disease biomarkers is also discussed. The authors also propose potential research in this field and challenges in the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Subroto Chatterjee
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
11
|
Yang S, Hu Y, Sokoll L, Zhang H. Simultaneous quantification of N- and O-glycans using a solid-phase method. Nat Protoc 2017; 12:1229-1244. [PMID: 28518173 PMCID: PMC5877797 DOI: 10.1038/nprot.2017.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycosylation has a pivotal role in a diverse range of biological activities, modulating the structure and function of proteins. Glycogens coupled to the nitrogen atom (N-linked) of asparagine side chains or to the oxygen atom (O-linked) of serine and threonine side chains represent the two major protein glycosylation forms. N-glycans can be released by glycosidases, whereas O-glycans are often cleaved by chemical reaction. However, it is challenging to combine these enzymatic and chemical reactions in order to analyze both N- and O-glycans. We recently developed a glycoprotei n immobilization for glycan extraction (GIG) method that allows for the simultaneous analysis of N- and O-glycans on a solid support. GIG enables quantitative analysis of N-glycans and O-glycans from a single specimen and can be applied to a high-throughput automated platform. Here we provide a step-by-step GIG protocol that includes procedures for (i) protein immobilization on an aldehyde-active solid support by reductive amination; (ii) stabilization of fragile sialic acids by carbodiimide coupling; (iii) release of N-glycans by PNGase F digestion; (iv) release of O-glycans by β-elimination using ammonia in the presence of 1-phenyl-3-methyl-5-pyrazolone (PMP) to prevent alditol peeling from O-glycans; (v) mass spectrometry (MS) analysis; and (vi) data analysis for identification of glycans using in-house developed software (GIG Tool; free to download via http://www.biomarkercenter.org/gigtool). The GIG tool extracts precursor masses, oxonium ions and glycan fragments from tandem (liquid chromatography (LC)-MS/MS) mass spectra for glycan identification, and reporter ions from quaternary amine containing isobaric tag for glycan (QUANTITY) isobaric tags are used for quantification of the relative abundance of N-glycans. The GIG protocol takes ∼3 d.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lori Sokoll
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Yang S, Zhang L, Thomas S, Hu Y, Li S, Cipollo J, Zhang H. Modification of Sialic Acids on Solid Phase: Accurate Characterization of Protein Sialylation. Anal Chem 2017; 89:6330-6335. [PMID: 28505427 DOI: 10.1021/acs.analchem.7b01048] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialic acids play many important roles in several physiological and pathological processes, including cancers, infection, and blood diseases. Sialic acids are fragile and prone to fragmentation under electrospray ionization and matrix-assisted laser desorption/ionization. It is crucial to modify sialic acids for qualitative and quantitative identification of their change in abundance in complex biological samples. Permethylation is a method of choice for sialic acid stabilization, but the harsh conditions during permethylation may lead to the decomposition of O-acetyl groups. Esterification or amidation in solution effectively protects sialic acids, yet it is not trivial to purify glycans from their reagents. Quantitative analysis of glycans can be achieved by labeling their reducing end using fluorescent tags. Loss of sialic acids during labeling is a major concern. In this study, we demonstrated the utility of sialic acids modification for the analysis of sialyl oligosaccharides and glycopeptides. Without modification, sialic acids are partially or completely lost during sample preparation, leading to the presence of false glycans or glycopeptides in the sample. The stabilized sialic acids not only result in accurate identification of sialylated glycans but also improve the characterization of intact glycopeptides. The modification of sialic acids on the solid support facilitates analysis of glycans and their intact glycoproteins.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States.,Laboratory for Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Lei Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Stefani Thomas
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Shuwei Li
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park , Rockville, Maryland 20850, United States
| | - John Cipollo
- Laboratory for Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| |
Collapse
|
13
|
Adua E, Russell A, Roberts P, Wang Y, Song M, Wang W. Innovation Analysis on Postgenomic Biomarkers: Glycomics for Chronic Diseases. ACTA ACUST UNITED AC 2017; 21:183-196. [DOI: 10.1089/omi.2017.0035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Eric Adua
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Alyce Russell
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Peter Roberts
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
14
|
Yang S, Höti N, Yang W, Liu Y, Chen L, Li S, Zhang H. Simultaneous analyses of N-linked and O-linked glycans of ovarian cancer cells using solid-phase chemoenzymatic method. Clin Proteomics 2017; 14:3. [PMID: 28100988 PMCID: PMC5237303 DOI: 10.1186/s12014-017-9137-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glycans play critical roles in a number of biological activities. Two common types of glycans, N-linked and O-linked, have been extensively analyzed in the last decades. N-glycans are typically released from glycoproteins by enzymes, while O-glycans are released from glycoproteins by chemical methods. It is important to identify and quantify both N- and O-linked glycans of glycoproteins to determine the changes of glycans. METHODS The effort has been dedicated to study glycans from ovarian cancer cells treated with O-linked glycosylation inhibitor qualitatively and quantitatively. We used a solid-phase chemoenzymatic approach to systematically identify and quantify N-glycans and O-glycans in the ovarian cancer cells. It consists of three steps: (1) immobilization of proteins from cells and derivatization of glycans to protect sialic acids; (2) release of N-glycans by PNGase F and quantification of N-glycans by isobaric tags; (3) release and quantification of O-glycans by β-elimination in the presence of 1-phenyl-3-methyl-5-pyrazolone (PMP). RESULTS We used ovarian cancer cell lines to study effect of O-linked glycosylation inhibitor on protein glycosylation. Results suggested that the inhibition of O-linked glycosylation reduced the levels of O-glycans. Interestingly, it appeared to increase N-glycan level in a lower dose of the O-linked glycosylation inhibitor. The sequential release and analyses of N-linked and O-linked glycans using chemoenzymatic approach are a platform for studying N-glycans and O-glycans in complex biological samples. CONCLUSION The solid-phase chemoenzymatic method was used to analyze both N-linked and O-linked glycans sequentially released from the ovarian cancer cells. The biological studies on O-linked glycosylation inhibition indicate the effects of O-glycosylation inhibition to glycan changes in both O-linked and N-linked glycan expression.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Yang Liu
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Shuwei Li
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, Rockville, MD 20850 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| |
Collapse
|
15
|
Zhou S, Dong X, Veillon L, Huang Y, Mechref Y. LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 2017; 409:453-466. [PMID: 27796453 PMCID: PMC5444817 DOI: 10.1007/s00216-016-9996-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
The biosynthesis of glycans is a template-free process; hence compositionally identical glycans may contain highly heterogeneous structures. Meanwhile, the functions of glycans in biological processes are significantly influenced by the glycan structure. Structural elucidation of glycans is an essential component of glycobiology. Although NMR is considered the most powerful approach for structural glycan studies, it suffers from low sensitivity and requires highly purified glycans. Although mass spectrometry (MS)-based methods have been applied in numerous glycan structure studies, there are challenges in preserving glycan structure during ionization. Permethylation is an efficient derivatization method that improves glycan structural stability. In this report, permethylated glycans are isomerically separated; thus facilitating structural analysis of a mixture of glycans by LC-MS/MS. Separation by porous graphitic carbon liquid chromatography at high temperatures in conjunction with tandem mass spectrometry (PGC-LC-MS/MS) was utilized for unequivocal characterization of glycan isomers. Glycan fucosylation sites were confidently determined by eliminating fucose rearrangement and assignment of diagnostic ions, achieved by permethylation and PGC-LC at high temperatures, respectively. Assigning monosaccharide residues to specific glycan antennae was also achieved. Galactose linkages were also distinguished from each other by CID/HCD tandem MS. This was attainable because of the different bond energies associated with monosaccharide linkages. Graphical Abstract LC-MS and tandem MS of terminal galactose isomers.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
16
|
Bennun SV, Hizal DB, Heffner K, Can O, Zhang H, Betenbaugh MJ. Systems Glycobiology: Integrating Glycogenomics, Glycoproteomics, Glycomics, and Other ‘Omics Data Sets to Characterize Cellular Glycosylation Processes. J Mol Biol 2016; 428:3337-3352. [PMID: 27423401 DOI: 10.1016/j.jmb.2016.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
|
17
|
Yang S, Wang M, Chen L, Yin B, Song G, Turko IV, Phinney KW, Betenbaugh MJ, Zhang H, Li S. QUANTITY: An Isobaric Tag for Quantitative Glycomics. Sci Rep 2015; 5:17585. [PMID: 26616285 PMCID: PMC4663469 DOI: 10.1038/srep17585] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022] Open
Abstract
Glycan is an important class of macromolecules that play numerous biological functions. Quantitative glycomics - analysis of glycans at global level - however, is far behind genomics and proteomics owing to technical challenges associated with their chemical properties and structural complexity. As a result, technologies that can facilitate global glycan analysis are highly sought after. Here, we present QUANTITY (Quaternary Amine Containing Isobaric Tag for Glycan), a quantitative approach that can not only enhance detection of glycans by mass spectrometry, but also allow high-throughput glycomic analysis from multiple biological samples. This robust tool enabled us to accomplish glycomic survey of bioengineered Chinese Hamster Ovary (CHO) cells with knock-in/out enzymes involved in protein glycosylation. Our results demonstrated QUANTITY is an invaluable technique for glycan analysis and bioengineering.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Meiyao Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, Rockville, MD, USA.,Analytical Biotechnology, MedImmune LLC, Gaithersburg, MD, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Bojiao Yin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Guoqiang Song
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Illarion V Turko
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, Rockville, MD, USA.,Biomolecular Measurement Division, National Institute of Standard and Technology, Gaithersburg, MD, USA
| | - Karen W Phinney
- Biomolecular Measurement Division, National Institute of Standard and Technology, Gaithersburg, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Shuwei Li
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, Rockville, MD, USA
| |
Collapse
|