1
|
Li J, Adobo SD, Shi H, Judicael KAW, Lin N, Gao L. Screening Methods for Cervical Cancer. ChemMedChem 2024; 19:e202400021. [PMID: 38735844 DOI: 10.1002/cmdc.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Cervical cancer seriously affects the health of women worldwide. Persistent infection of high-risk HPV (Human Papilloma Virus) can lead to cervical cancer. There is a great need for timely and efficient screening methods for cervical cancer. The current screening methods for cervical cancer are mainly based on cervical cytology and HPV testing. Cervical cytology is made of Pap smear and liquid-based cytology, while HPV testing is based on immunological and nucleic acid level detection methods. This review introduces cervical cancer screening methods based on cytology and human papillomavirus testing in detail. The advantages and limitations of the screening methods are also summarized and compared.
Collapse
Affiliation(s)
- Jingyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | | | - Hui Shi
- Jiangsu Provincial Health Development Research Center, Nanjing, 210003, China
| | | | - Ning Lin
- Jiangsu Provincial Health Development Research Center, Nanjing, 210003, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Chen G, Yang L, Liu G, Zhu Y, Yang F, Dong X, Xu F, Zhu F, Cao C, Zhong D, Li S, Zhang H, Li B. Research progress in protein microarrays: Focussing on cancer research. Proteomics Clin Appl 2023; 17:e2200036. [PMID: 36316278 DOI: 10.1002/prca.202200036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 01/22/2023]
Abstract
Although several effective treatment modalities have been developed for cancers, the morbidity and mortality associated with cancer continues to increase every year. As one of the most exciting emerging technologies, protein microarrays represent a powerful tool in the field of cancer research because of their advantages such as high throughput, small sample usage, more flexibility, high sensitivity and direct readout of results. In this review, we focus on the research progress in four types of protein microarrays (proteome microarray, antibody microarray, lectin microarray and reversed protein array) with emphasis on their application in cancer research. Finally, we discuss the current challenges faced by protein microarrays and directions for future developments. We firmly believe that this novel systems biology research tool holds immense potential in cancer research and will become an irreplaceable tool in this field.
Collapse
Affiliation(s)
- Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yunfan Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Novel Antigenic Targets of HPV Therapeutic Vaccines. Vaccines (Basel) 2021; 9:vaccines9111262. [PMID: 34835193 PMCID: PMC8621534 DOI: 10.3390/vaccines9111262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Human papillomavirus (HPV) infection is the cause of the majority of cervical cancers and head and neck cancers worldwide. Although prophylactic vaccines and cervical cancer screening programs have shown efficacy in preventing HPV-associated cervical cancer, cervical cancer is still a major cause of morbidity and mortality, especially in third world countries. Furthermore, head and neck cancer cases caused by HPV infection and associated mortality are increasing. The need for better therapy is clear, and therapeutic vaccination generating cytotoxic T cells against HPV proteins is a promising strategy. This review covers the current scene of HPV therapeutic vaccines in clinical development and discusses relevant considerations for the design of future HPV therapeutic vaccines and clinical trials, such as HPV protein expression patterns, immunogenicity, and exhaustion in relation to the different stages and types of HPV-associated lesions and cancers. Ultimately, while the majority of the HPV therapeutic vaccines currently in clinical testing target the two HPV oncoproteins E6 and E7, we suggest that there is a need to include more HPV antigens in future HPV therapeutic vaccines to increase efficacy and find that especially E1 and E2 could be promising novel targets.
Collapse
|
4
|
Dahlstrom KR, Anderson KS, Guo M, Kwon MC, Messick CA, Pettaway CA, Asomaning N, Hopper M, Price A, Xu L, Day AT, Gillenwater AM, Sturgis EM. Screening for HPV-related oropharyngeal, anal, and penile cancers in middle-aged men: Initial report from the HOUSTON clinical trial. Oral Oncol 2021; 120:105397. [PMID: 34182223 DOI: 10.1016/j.oraloncology.2021.105397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Human papillomavirus (HPV)-related Oropharyngeal and Uncommon Cancers Screening Trial of Men (HOUSTON) was designed to determine the prevalence of IgG antibodies to HPV type 16 E proteins (HPV16EAbs), to screen for persistence of HPV and/or detect HPV-related premalignancies and cancers, and to assess acceptance of screening among middle-aged men. METHODS HOUSTON consists of a cross-sectional study and a longitudinal cohort study of men aged 50-64 years. Serologic HPV16EAb status and oral rinse HPV16 status were determined. All HPV16EAb-positive (HPV16EAb+) men and a matched cohort of HPV16EAb-negative (HPV16EAb-) men as well as all oral rinse HPV16-positive (HPV16+) men were included in the longitudinal study (blinded to their results) and underwent oropharyngeal screening every 6 months as well as one-time anal and penile screening. RESULTS Of 553 men enrolled in the cross-sectional study, six (1.1%) were HPV16EAb+ (two were also oral rinse HPV16+), and 41 (7.4%) were HPV16EAb- but oral rinse HPV16+. These 47 men, along with five matched controls, were invited to participate in the longitudinal study, and 42 (81%) agreed and completed baseline in-person screening, with 93% and 90% completeing 6-month and 12-month follow-up visits. One HPV16EAb+ (also oral rinse HPV16+) man, who declined participation in the longitudinal study, presented 4 months after enrollment with an early-stage HPV16-related pharyngeal cancer. Additionally, one HPV16EAb+ (oral rinse HPV16-) man and two oral rinse HPV16+ (HPV16EAb-) men were diagnosed with oncogenic HPV-associated anal dysplasia. CONCLUSIONS This biomarker panel deserves further prospective study to explore potential utility for HPV-related cancer screening among men.
Collapse
Affiliation(s)
- Kristina R Dahlstrom
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karen S Anderson
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Ming Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael C Kwon
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Craig A Messick
- Department of Colon and Rectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy Asomaning
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marika Hopper
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Anthony Price
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Li Xu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew T Day
- Department of Otolaryngology - Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ann M Gillenwater
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Erich M Sturgis
- Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
5
|
Yang Z, Francisco J, Reese AS, Spriggs DR, Im H, Castro CM. Addressing cervical cancer screening disparities through advances in artificial intelligence and nanotechnologies for cellular profiling. BIOPHYSICS REVIEWS 2021; 2:011303. [PMID: 33842926 PMCID: PMC8015256 DOI: 10.1063/5.0043089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Almost all cases of cervical cancer are caused by the human papilloma virus (HPV). Detection of pre-cancerous cervical changes provides a window of opportunity for cure of an otherwise lethal disease when metastatic. With a greater understanding of the biology and natural course of high-risk HPV infections, screening methods have shifted beyond subjective Pap smears toward more sophisticated and objective tactics. This has led to a substantial growth in the breadth and depth of HPV-based cervical cancer screening tests, especially in developed countries without constrained resources. Many low- and middle-income countries (LMICs) have less access to advanced laboratories and healthcare resources, so new point-of-care (POC) technologies have been developed to provide test results in real time, improve the efficiency of techniques, and increase screening adoption. In this Review, we will discuss how novel decentralized screening technologies and computational strategies improve upon traditional methods and how their realized promise could further democratize cervical cancer screening and promote greater disease prevention.
Collapse
Affiliation(s)
| | | | - Alexandra S. Reese
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - David R. Spriggs
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Hyungsoon Im
- Authors to whom all correspondence should be addressed: and
| | | |
Collapse
|
6
|
Dong Z, Hu R, Du Y, Tan L, Li L, Du J, Bai L, Ma Y, Cui H. Immunodiagnosis and Immunotherapeutics Based on Human Papillomavirus for HPV-Induced Cancers. Front Immunol 2021; 11:586796. [PMID: 33488587 PMCID: PMC7820759 DOI: 10.3389/fimmu.2020.586796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Infection with human papillomavirus (HPV) is one of the main causes of malignant neoplasms, especially cervical, anogenital, and oropharyngeal cancers. Although we have developed preventive vaccines that can protect from HPV infection, there are still many new cases of HPV-related cancers worldwide. Early diagnosis and therapy are therefore important for the treatment of these diseases. As HPVs are the major contributors to these cancers, it is reasonable to develop reagents, kits, or devices to detect and eliminate HPVs for early diagnosis and therapeutics. Immunological methods are precise strategies that are promising for the accurate detection and blockade of HPVs. During the last decades, the mechanism of how HPVs induce neoplasms has been extensively elucidated, and several oncogenic HPV early proteins, including E5, E6, and E7, have been shown to be positively related to the oncogenesis and malignancy of HPV-induced cancers. These oncoproteins are promising biomarkers for diagnosis and as targets for the therapeutics of HPV-related cancers. Importantly, many specific monoclonal antibodies (mAbs), or newly designed antibody mimics, as well as new immunological kits, devices, and reagents have been developed for both the immunodiagnosis and immunotherapeutics of HPV-induced cancers. In the current review, we summarize the research progress in the immunodiagnosis and immunotherapeutics based on HPV for HPV-induced cancers. In particular, we depict the most promising serological methods for the detection of HPV infection and several therapeutical immunotherapeutics based on HPV, using immunological tools, including native mAbs, radio-labelled mAbs, affitoxins (affibody-linked toxins), intracellular single-chain antibodies (scFvs), nanobodies, therapeutical vaccines, and T-cell-based therapies. Our review aims to provide new clues for researchers to develop novel strategies and methods for the diagnosis and treatment of HPV-induced tumors.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yan Du
- Department of Ultrasound, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of Immunology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Juan Du
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longchang Bai
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yingkang Ma
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture & Textile & Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
7
|
A decade of Nucleic Acid Programmable Protein Arrays (NAPPA) availability: News, actors, progress, prospects and access. J Proteomics 2018; 198:27-35. [PMID: 30553075 DOI: 10.1016/j.jprot.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022]
Abstract
Understanding the dynamic of the proteome is a critical challenge because it requires high sensitive methodologies in high-throughput formats in order to decipher its modifications and complexity. While molecular biology provides relevant information about cell physiology that may be reflected in post-translational changes, High-Throughput (HT) experimental proteomic techniques are essential to provide valuable functional information of the proteins, peptides and the interconnections between them. Hence, many methodological developments and innovations have been reported during the last decade. To study more dynamic protein networks and fine interactions, Nucleic Acid Programmable Protein Arrays (NAPPA) was introduced a decade ago. The tool is rapidly maturing and serving as a gateway to characterize biological systems and diseases thanks primarily to its accuracy, reproducibility, throughput and flexibility. Currently, NAPPA technology has proved successful in several research areas adding valuable information towards innovative diagnostic and therapeutic applications. Here, the basic and latest advances within this modern technology in basic, translational research are reviewed, in addition to presenting its exciting new directions. Our final goal is to encourage more scientists/researchers to incorporate this method, which can help to remove bottlenecks in their particular research or biomedical projects. SIGNIFICANCE: Nucleic Acid Programmable Protein Arrays (NAPPA) is becoming an essential tool for functional proteomics and protein-protein interaction studies. The technology impacts decisively on projects aiming massive screenings and the latest innovations like the multiplexing capability or printing consistency make this a promising method to be integrated in novel and combinatorial proteomic approaches.
Collapse
|
8
|
Boda D, Docea AO, Calina D, Ilie MA, Caruntu C, Zurac S, Neagu M, Constantin C, Branisteanu DE, Voiculescu V, Mamoulakis C, Tzanakakis G, Spandidos DA, Drakoulis N, Tsatsakis AM. Human papilloma virus: Apprehending the link with carcinogenesis and unveiling new research avenues (Review). Int J Oncol 2018; 52:637-655. [PMID: 29393378 PMCID: PMC5807043 DOI: 10.3892/ijo.2018.4256] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Human papilloma viruses (HPV) are a small group of non‑enveloped viruses belonging to the Papillomaviridae family with strong similarities to polyoma viruses. The viral particles consist of a genome in the form of a circular double‑stranded DNA, encompassing eight open reading frames, as well as a non‑enveloped icosahedral capsid. HPV infection is considered the most common sexually transmitted disease in both sexes and is strongly implicated in the pathogenesis of different types of cancer. 'High‑risk' mucosal HPV types, predominantly types 16, 18, 31, 33 and 35, are associated with most cervical, penile, vulvar, vaginal, anal, oropharyngeal cancers and pre‑cancers. Screening for HPV is necessary for the prognosis and for determining treatment strategies for cancer. Novel HPV markers, including proteomic and genomic markers, as well as anti‑papillomavirus vaccines are currently available. The aim of this comprehensive review was to thoroughly present the updated information on virus development, cancer occurrence, treatment and prevention strategies, in an attempt to shed further light into the field, including novel research avenues.
Collapse
Affiliation(s)
- Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 030167 Bucharest
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 030167 Bucharest
- Department of Biochemistry
| | - Constantin Caruntu
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 030167 Bucharest
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest
- Department of Physiology
| | - Sabina Zurac
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 030167 Bucharest
- Colentina University Hospital, Sector 2 19-21, Bucharest
| | - Monica Neagu
- ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest
| | | | | | - Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens
| | - Aristides M. Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
9
|
Race CM, Kwon LE, Foreman MT, Huang Q, Inan H, Kesiraju S, Le P, Lim SJ, Smith AM, Zangar RC, Demirci U, Anderson KS, Cunningham BT. An Automated Microfluidic Assay for Photonic Crystal Enhanced Detection and Analysis of an Antiviral Antibody Cancer Biomarker in Serum. IEEE SENSORS JOURNAL 2018; 18:1464-1473. [PMID: 29881332 PMCID: PMC5986186 DOI: 10.1109/jsen.2017.2777529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report on the implementation of an automated platform for detecting the presence of an antibody biomarker for human papillomavirus-associated oropharyngeal cancer from a single droplet of serum, in which a nanostructured photonic crystal surface is used to amplify the output of a fluorescence-linked immunosorbent assay. The platform is comprised of a microfluidic cartridge with integrated photonic crystal chips that interfaces with an assay instrument that automates the introduction of reagents, wash steps, and surface drying. Upon assay completion, the cartridge interfaces with a custom laser-scanning instrument that couples light into the photonic crystal at the optimal resonance condition for fluorescence enhancement. The instrument is used to measure the fluorescence intensity values of microarray spots corresponding to the biomarkers of interest, in addition to several experimental controls that verify correct functioning of the assay protocol. In this work, we report both dose-response characterization of the system using anti-E7 antibody introduced at known concentrations into serum and characterization of a set of clinical samples from which results were compared with a conventional enzyme-linked immunosorbent assay (ELISA) performed in microplate format. The demonstrated capability represents a simple, rapid, automated, and high-sensitivity method for multiplexed detection of protein biomarkers from a low-volume test sample.
Collapse
Affiliation(s)
| | - Lydia E Kwon
- Department of Bioengineering
- College of Medicine, University of Illinois at Urbana-Champaign
| | | | | | - Hakan Inan
- Canary Center for Cancer Early Detection, Stanford University
| | | | | | | | | | | | - Utkan Demirci
- Canary Center for Cancer Early Detection, Stanford University
| | | | - Brian T Cunningham
- Department of Electrical and Computer Engineering
- Department of Bioengineering
| |
Collapse
|
10
|
Zhang K, Liu Z, Li J, Li J, Yan J, Su Y, Li S, Li J. Analysis of human papilloma virus type 52 integration status in exfoliated cervical cells. Exp Ther Med 2017; 14:5817-5824. [PMID: 29285126 PMCID: PMC5740806 DOI: 10.3892/etm.2017.5279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/22/2017] [Indexed: 11/25/2022] Open
Abstract
To explore the significance of human papilloma virus type 52 (HPV52) infection and its integration in cells within cervical lesions, the expression levels of HPV52 were detected using polymerase chain reaction (PCR). The copy numbers of HPV52 E2, HPV52 E6 and the reference gene β-actin were determined by quantitative PCR to analyze the association between HPV52 integration and cervical lesions. HPV52 integration was analyzed by the amplification of papillomavirus oncogene transcripts. A total of 13 samples from 468 cases were positive for HPV52. Among the samples, 1 case with an E2/E6 ratio >1 was purely episomal, 3 cases with an E2/E6 ratio of 0 were purely integrated, and 9 cases with an E2/E6 ratio of between 0 and 1 were a mixture of integrated and episomal. With the progression of cervical disease, the prevalence of the episomal type decreased gradually, and the prevalence of the integrated (episomal and integrated) forms increased. The pure integration of HPV52 occurred in chromosomes 2, 5 and 8. These results indicate that HPV52 integration into the host genome may be a key factor in cervical lesions. Thus, patients at high risk for cervical lesions may potentially be identified by screening for HPV52 infection and integration.
Collapse
Affiliation(s)
- Ke Zhang
- Hebei Key Laboratory for Chronic Diseases/Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Zhanjun Liu
- Hebei Key Laboratory for Chronic Diseases/Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Ji Li
- Hebei Key Laboratory for Chronic Diseases/Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Juan Li
- Hebei Key Laboratory for Chronic Diseases/Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jianghong Yan
- Hebei Key Laboratory for Chronic Diseases/Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yunchuan Su
- Hebei Key Laboratory for Chronic Diseases/Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Shuying Li
- Hebei Key Laboratory for Chronic Diseases/Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jintao Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P.R. China
| |
Collapse
|
11
|
Kontostathi G, Zoidakis J, Anagnou NP, Pappa KI, Vlahou A, Makridakis M. Proteomics approaches in cervical cancer: focus on the discovery of biomarkers for diagnosis and drug treatment monitoring. Expert Rev Proteomics 2017; 13:731-45. [PMID: 27398979 DOI: 10.1080/14789450.2016.1210514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The HPV virus accounts for the majority of cervical cancer cases. Although a diagnostic tool (Pap Test) is widely available, cervical cancer incidence still remains high worldwide, and especially in developing countries, attributed to a large extent to suboptimal sensitivities of the Pap test and unavailability of the test in developing countries. AREAS COVERED Proteomics approaches have been used in order to understand the HPV virus correlation to cervical cancer pathology, as well as to discover putative biomarkers for early cervical cancer diagnosis and drug mode of action. Expert commentary: The present review summarizes the latest in vitro and in vivo proteomic studies for the discovery of putative cervical cancer biomarkers and the evaluation of available drugs and treatments.
Collapse
Affiliation(s)
- Georgia Kontostathi
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece.,b Laboratory of Biology , University of Athens School of Medicine , Athens , Greece
| | - Jerome Zoidakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Nicholas P Anagnou
- b Laboratory of Biology , University of Athens School of Medicine , Athens , Greece.,c Cell and Gene Therapy Laboratory , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Kalliopi I Pappa
- c Cell and Gene Therapy Laboratory , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece.,d First Department of Obstetrics and Gynecology , University of Athens School of Medicine , Athens , Greece
| | - Antonia Vlahou
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Manousos Makridakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| |
Collapse
|
12
|
Ewaisha R, Panicker G, Maranian P, Unger ER, Anderson KS. Serum Immune Profiling for Early Detection of Cervical Disease. Am J Cancer Res 2017; 7:3814-3823. [PMID: 29109779 PMCID: PMC5667406 DOI: 10.7150/thno.21098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/09/2017] [Indexed: 12/25/2022] Open
Abstract
Background: The most recent (2012) worldwide estimates from International Agency for Research on Cancer indicate that approximately 528,000 new cases and 270,000 deaths per year are attributed to cervical cancer worldwide. The disease is preventable with HPV vaccination and with early detection and treatment of pre-invasive cervical intraepithelial neoplasia, CIN. Antibodies (Abs) to HPV proteins are under investigation as potential biomarkers for early detection. Methods: To detect circulating HPV-specific IgG Abs, we developed programmable protein arrays (NAPPA) that display the proteomes of two low-risk HPV types (HPV6 and 11) and ten oncogenic high-risk HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52 and 58). Arrays were probed with sera from women with CIN 0/I (n=78), CIN II/III (n=84), or invasive cervical cancer (ICC, n=83). Results: Abs to any early (E) HPV protein were detected less frequently in women with CIN 0/I (23.7%) than women with CIN II/III (39.0%) and ICC (46.1%, p<0.04). Of the E Abs, anti-E7 Abs were the most frequently detected (6.6%, 19.5%, and 30.3%, respectively). The least frequently detected Abs were E1 and E2-Abs in CIN 0/I (1.3%) and E1-Abs in CIN II/III (1.2%) and ICC (7.9%). HPV16-specific Abs correlated with HPV16 DNA detected in the cervix in 0% of CIN 0/I, 21.2% of CIN II/III, and 45.5% of ICC. A significant number (29 - 73%) of E4, E7, L1, and L2 Abs had cross-reactivity between HPV types. Conclusion: HPV protein arrays provide a valuable high-throughput tool for measuring the breadth, specificity, and heterogeneity of the serologic response to HPV in cervical disease.
Collapse
|