1
|
Aol L, Zhou X, Hao H, Nie J, Zhang W, Yao D, Su L, Xue W. LncRNAs modulating tooth development and alveolar resorption: Systematic review. Heliyon 2024; 10:e39895. [PMID: 39524731 PMCID: PMC11550122 DOI: 10.1016/j.heliyon.2024.e39895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Tooth development is an intricate process that encompasses cellular activities, molecular signaling pathways, and gene expression patterns. Disruptions in any of the processes can lead to structural anomalies, impairments in function, and increased vulnerability to oral disorders. Alveolar resorption, which refers to the pathological loss of alveolar bone around teeth, poses a substantial clinical problem in periodontal disorders such as periodontitis. Long non-coding RNAs (LncRNAs) have been implicated in the regulation of these physiological and pathological processes, and they exert their impact on gene expression through both transcriptional and post-transcriptional mechanisms. However, they also interact with certain microRNAs (mi-RNAs), thereby modulating the expression of downstream genes that are involved in tooth development. An exemplar is lncRNA ZFAS1, which has been demonstrated to regulate gene expression and impact these physiological and pathological processes. As a result, lncRNAs contribute to these processes by interacting with chromatin regulators, RNA enhancers, mi-RNAs, and their modulating signaling pathways involved in tooth development and alveolar resorption. Taken together, this review explores and gives a systematic account of the recent research findings that enhance our understanding of the molecular mechanisms that drive these processes and their potential consequences for the remodeling of teeth and bones in the oral cavity.
Collapse
Affiliation(s)
- Lilliane Aol
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhong Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Hao
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaqi Nie
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanjun Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dunjie Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanlin Xue
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Mullin BH, Ribet ABP, Pavlos NJ. Bone Trans-omics: Integrating Omics to Unveil Mechanistic Molecular Networks Regulating Bone Biology and Disease. Curr Osteoporos Rep 2023; 21:493-502. [PMID: 37410317 PMCID: PMC10543827 DOI: 10.1007/s11914-023-00812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE OF REVIEW Recent advancements in "omics" technologies and bioinformatics have afforded researchers new tools to study bone biology in an unbiased and holistic way. The purpose of this review is to highlight recent studies integrating multi-omics data gathered from multiple molecular layers (i.e.; trans-omics) to reveal new molecular mechanisms that regulate bone biology and underpin skeletal diseases. RECENT FINDINGS Bone biologists have traditionally relied on single-omics technologies (genomics, transcriptomics, proteomics, and metabolomics) to profile measureable differences (both qualitative and quantitative) of individual molecular layers for biological discovery and to investigate mechanisms of disease. Recently, literature has grown on the implementation of integrative multi-omics to study bone biology, which combines computational and informatics support to connect multiple layers of data derived from individual "omic" platforms. This emerging discipline termed "trans-omics" has enabled bone biologists to identify and construct detailed molecular networks, unveiling new pathways and unexpected interactions that have advanced our mechanistic understanding of bone biology and disease. While the era of trans-omics is poised to revolutionize our capacity to answer more complex and diverse questions pertinent to bone pathobiology, it also brings new challenges that are inherent when trying to connect "Big Data" sets. A concerted effort between bone biologists and interdisciplinary scientists will undoubtedly be needed to extract physiologically and clinically meaningful data from bone trans-omics in order to advance its implementation in the field.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Amy B P Ribet
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Nathan J Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia.
| |
Collapse
|
3
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
4
|
Chen Y, Huang Y, Deng X. External cervical resorption-a review of pathogenesis and potential predisposing factors. Int J Oral Sci 2021; 13:19. [PMID: 34112752 PMCID: PMC8192751 DOI: 10.1038/s41368-021-00121-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
External cervical resorption (ECR) refers to a pathological state in which resorption tissues penetrate into the dentin at the cervical aspect of the root. Despite being latent in its initial phase, ECR could cause severe damage to mineralized dental tissue and even involve the pulp if not given timely diagnosis and treatment. Nevertheless, the etiology of ECR is still poorly understood, which adds to the difficulty in early diagnosis. ECR has received growing attention in recent years due to the increasing number of clinical cases. Several potential predisposing factors have been recognized in cross-sectional studies as well as case reports. In the meantime, studies on histopathology and pathogenesis have shed light on possible mechanisms of ECR. This review aims to summarize the latest findings in the pathogenesis and potential predisposing factors of ECR, so as to provide pragmatic reference for clinical practice.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
5
|
Johnston RA, Vullioud P, Thorley J, Kirveslahti H, Shen L, Mukherjee S, Karner CM, Clutton-Brock T, Tung J. Morphological and genomic shifts in mole-rat 'queens' increase fecundity but reduce skeletal integrity. eLife 2021; 10:e65760. [PMID: 33843584 PMCID: PMC8104968 DOI: 10.7554/elife.65760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
In some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding 'queen' status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also upregulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.
Collapse
Affiliation(s)
- Rachel A Johnston
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Philippe Vullioud
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Jack Thorley
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Henry Kirveslahti
- Department of Statistical Science, Duke UniversityDurhamUnited States
| | - Leyao Shen
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of MedicineDurhamUnited States
| | - Sayan Mukherjee
- Department of Statistical Science, Duke UniversityDurhamUnited States
- Department of Computer Science, Duke UniversityDurhamUnited States
- Department of Mathematics, Duke UniversityDurhamUnited States
- Department of Bioinformatics & Biostatistics, Duke UniversityDurhamUnited States
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke UniversityDurhamUnited States
| | - Tim Clutton-Brock
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Zoology and Entomology, Mammal Research Institute, University of PretoriaPretoriaSouth Africa
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Duke Population Research Institute, Duke UniversityDurhamUnited States
- Canadian Institute for Advanced ResearchTorontoCanada
| |
Collapse
|
6
|
Chen Y, Huang Y, Deng X. A Review of External Cervical Resorption. J Endod 2021; 47:883-894. [PMID: 33745945 DOI: 10.1016/j.joen.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
External cervical resorption (ECR) is a relatively uncommon yet aggressive form of dental hard tissue destruction. It is initiated at the cervical aspect of the root surface and extends apicocoronally and circumferentially inside the dentin. Despite the large number of case reports and clinical studies that have investigated ECR, its etiology remains unclear. Recent advancements in clinical assessment measures, such as the use of cone-beam computed tomographic imaging, have provided additional insights into the nature of this lesion. This has facilitated the continued development and improvement of treatment methods for this condition. In this article, we provide an overview of the latest research pertaining to the etiology, histopathology, predisposing factors, diagnosis, classification, and treatment of ECR. Furthermore, we provide a summary of the different classification schemes for ECR and highlight the relevant therapeutic principles.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Geriatric Dentistry, National Medical Products Administration Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Huang
- Department of Geriatric Dentistry, National Medical Products Administration Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, National Medical Products Administration Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
7
|
Tong L, Wang Y, Wang J, He F, Zhai J, Bai J, Zhu G. Radiation alters osteoclastogenesis by regulating the cytoskeleton and lytic enzymes in RAW 264.7 cells and mouse bone marrow-derived macrophages. Int J Radiat Biol 2020; 96:1296-1308. [PMID: 32687425 DOI: 10.1080/09553002.2020.1798542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of the present study was to investigate the duality of irradiation effect on osteoclastogenesis, particularly on the cytoskeleton and expression of lytic enzymes in osteoclast precursors. Therefore, the present study may serve as a useful reference for the prevention and treatment of radiation-induced bone loss in the clinic. MATERIALS AND METHODS Two typical osteoclast precursors, murine RAW 264.7 macrophage cells and mouse bone marrow-derived macrophages (BMMs), were exposed to radiation in the order of 0.25-8 Gy, and the effects on cell viability, TRAP activity and bone resorption were subsequently investigated. Furthermore, changes in the cytoskeleton, cell apoptosis, and expression of lytic enzymes in osteoclasts were examined to elucidate the molecular mechanism of the duality of irradiation on osteoclastogenesis. RESULTS Morphological changes and impaired viability were observed in RAW 264.7 cells and BMMs treated with 1-8 Gy irradiation with or without RANKL. However, the cell fusion tendency of osteoclasts was enhanced after 2 Gy irradiation, and an increased number of fused giant osteoclasts and enhanced F-actin ring formation were observed. Consistently, the bone resorption activity and the enzyme expression of TRAP, cathepsin K, matrix metalloproteinase 9, activator protein 1, and Caspase 9 were increased following irradiation with 2 Gy. Furthermore, intracellular ROS production and apoptosis of osteoclast precursors were increased. CONCLUSIONS Irradiation with 2 Gy inhibited the viability of osteoclast precursors, but increased osteoclastogenesis by enhancing cell fusion and increasing the secretion of lytic enzymes, which may be an important mechanism of radiation-induced bone loss.
Collapse
Affiliation(s)
- Ling Tong
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China.,Shanghai Municipal Center for Disease Control & Prevention, Shanghai, PR China
| | - Yuyang Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| | - Jianping Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| | - Feilong He
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China.,Shanghai Municipal Center for Disease Control & Prevention, Shanghai, PR China
| | - Jianglong Zhai
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| | - Jiangtao Bai
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| |
Collapse
|
8
|
Guérit D, Marie P, Morel A, Maurin J, Verollet C, Raynaud-Messina B, Urbach S, Blangy A. Primary myeloid cell proteomics and transcriptomics: importance of β-tubulin isotypes for osteoclast function. J Cell Sci 2020; 133:jcs239772. [PMID: 32265273 DOI: 10.1242/jcs.239772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 08/31/2023] Open
Abstract
Among hematopoietic cells, osteoclasts (OCs) and immature dendritic cells (DCs) are closely related myeloid cells with distinct functions: OCs participate skeleton maintenance while DCs sample the environment for foreign antigens. Such specificities rely on profound modifications of gene and protein expression during OC and DC differentiation. We provide global proteomic and transcriptomic analyses of primary mouse OCs and DCs, based on original stable isotope labeling with amino acids in cell culture (SILAC) and RNAseq data. We established specific signatures for OCs and DCs, including genes and proteins of unknown functions. In particular, we showed that OCs and DCs have the same α- and β-tubulin isotype repertoire but that OCs express much more of the β tubulin isotype Tubb6 (also known as TBB6). In both mouse and human OCs, we demonstrate that elevated expression of Tubb6 in OCs is necessary for correct podosomes organization and thus for the structure of the sealing zone, which sustains the bone resorption apparatus. Hence, lowering Tubb6 expression hinders OC resorption activity. Overall, we highlight here potential new regulators of OC and DC biology, and illustrate the functional importance of the tubulin isotype repertoire in the biology of differentiated cells.
Collapse
Affiliation(s)
- David Guérit
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Pauline Marie
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Justine Maurin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
- International associated laboratory (LIA) CNRS 'IM-TB/HIV' (1167), 31077 Toulouse Cedex 04, France
- International associated laboratory (LIA) CNRS 'IM-TB/HIV' (1167), Buenos Aires C1425AUM, Argentina
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
- International associated laboratory (LIA) CNRS 'IM-TB/HIV' (1167), 31077 Toulouse Cedex 04, France
- International associated laboratory (LIA) CNRS 'IM-TB/HIV' (1167), Buenos Aires C1425AUM, Argentina
| | - Serge Urbach
- Functional Proteomics Facility, Institute of Functional Genomics, Montpellier Univ., CNRS, 141 rue de la Cardonille, 34000 Montpellier, France
| | - Anne Blangy
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| |
Collapse
|
9
|
Xiao D, Zhou Q, Gao Y, Cao B, Zhang Q, Zeng G, Zong S. PDK1 is important lipid kinase for RANKL-induced osteoclast formation and function via the regulation of the Akt-GSK3β-NFATc1 signaling cascade. J Cell Biochem 2020; 121:4542-4557. [PMID: 32048762 DOI: 10.1002/jcb.29677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
Perturbations in the balanced process of osteoblast-mediated bone formation and osteoclast-mediated bone resorption leading to excessive osteoclast formation and/or activity is the cause of many pathological bone conditions such as osteoporosis. The osteoclast is the only cell in the body capable of resorbing and degrading the mineralized bone matrix. Osteoclast formation from monocytic precursors is governed by the actions of two key cytokines macrophage-colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). Binding of RANKL binding to receptor RANK initiates a series of downstream signaling responses leading to monocytic cell differentiation and fusion, and subsequent mature osteoclast bone resorption and survival. The phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) signaling cascade is one such pathway activated in response to RANKL. The 3-phosphoinositide-dependent protein kinase 1 (PDK1), is considered the master upstream lipid kinase of the PI3K-Akt cascade. PDK1 functions to phosphorylate and partially activate Akt, triggering the activation of downstream effectors. However, the role of PDK1 in osteoclasts has yet to be clearly defined. In this study, we specifically deleted the PDK1 gene in osteoclasts using the cathepsin-K promoter driven Cre-LoxP system. We found that the specific genetic ablation of PDK1 in osteoclasts leads to an osteoclast-poor osteopetrotic phenotype in mice. In vitro cellular assays further confirmed the impairment of osteoclast formation in response to RANKL by PDK1-deficient bone marrow macrophage (BMM) precursor cells. PDK1-deficient BMMs exhibited reduced ability to reorganize actin cytoskeleton to form a podosomal actin belt as a result of diminished capacity to fuse into giant multinucleated osteoclasts. Notably, biochemical analyses showed that PDK1 deficiency attenuated the phosphorylation of Akt and downstream effector GSK3β, and reduced induction of NFATc1. GSK3β is a reported negative regulator of NFATc1. GSK3β activity is inhibited by Akt-dependent phosphorylation. Thus, our data provide clear genetic and mechanistic insights into the important role for PDK1 in osteoclasts.
Collapse
Affiliation(s)
- Dongliang Xiao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Quan Zhou
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunbing Gao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Baichuan Cao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiong Zhang
- College of Public Hygiene of Guangxi Medical University, Guangxi, China
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Guangxi, China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Wu JY, Li X, Wang CL, Ye L, Yang J. [Research progress on the pathogenesis of inflammatory external root resorption]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:656-659. [PMID: 31875446 DOI: 10.7518/hxkq.2019.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inflammatory external root resorption (IERR) refers to the pathological process of dissolving the hard tissue on the outer surface of the tooth root by the body's own immune system under the stimulation of various physical and chemical factors such as infection, stress, trauma and orthodontic treatment. Severe IERR can lead to endodontic and periodontal diseases, and even the loss of teeth. Therefore, understanding the etiology and the pathogenic mechanism of IERR are of importance in its prevention and treatment. This article will review the etiology and the regulation mechanisms of IERR.
Collapse
Affiliation(s)
- Jia-Yi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Cheng-Lin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Machado NEDS, Banci HA, da Silva LD, Santinoni CDS, de Oliveira DL, Ervolino E, Prado RLD, Mori GG. Influence of anti-allergic drugs used systemically on the process of root resorption during delayed tooth replantation: A study in rats. Dent Traumatol 2019; 36:264-271. [PMID: 31845526 DOI: 10.1111/edt.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND/AIM Anti-allergic drugs can inhibit the hard tissue resorption process, and due to similarities between root resorption and bone mechanisms, it can be inferred that these drugs may also control root resorption. The aim of this study was to analyze the effects of anti-allergic drugs used systemically on the process of root resorption following delayed tooth replantation. MATERIALS AND METHODS Thirty-two maxillary right incisors of rats were extracted and subsequently replanted. Rats were divided into four groups according to the anti-allergic drug administered: the rats in groups DEX, Q, and MO were treated systemically with dexamethasone phosphate, quercetin, and montelukast, respectively, and no systemic medication was administered to rats in group C. After 60 days, the animals were euthanized, and the specimens were processed for histomorphometric and immunohistochemical analyses. Statistical significance was set at P < .05. RESULTS There were no significant differences between the groups in terms of inflammatory resorption, replacement resorption, or presence of tartrate-resistant acid phosphatase. In terms of events occurring in the periodontal ligament space, there was a difference between groups Q and MO due to the presence of dental ankylosis and inflammatory connective tissue (P < .05). A difference in inflammatory cells was also observed through CD45 immunolabeling between the DEX and Q groups when compared to the C group (P < .05). CONCLUSION The systemic administration of anti-allergic drugs did not have an effect on the process of root resorption following delayed tooth replantation.
Collapse
Affiliation(s)
- Nathália Evelyn da Silva Machado
- Graduate Program in Dentistry, University of Western São Paulo, Presidente Prudente, Brazil.,Department of Endodontics, Araçatuba Dental School, UNESP - University Estadual Paulista, Araçatuba, Brazil
| | - Henrique Augusto Banci
- Department of Endodontics, Araçatuba Dental School, UNESP - University Estadual Paulista, Araçatuba, Brazil.,Dental School of Presidente Prudente, University of Western São Paulo, Presidente Prudente, Brazil
| | - Lucas Deszo da Silva
- Dental School of Presidente Prudente, University of Western São Paulo, Presidente Prudente, Brazil
| | - Carolina Dos Santos Santinoni
- Graduate Program in Dentistry, University of Western São Paulo, Presidente Prudente, Brazil.,Dental School of Presidente Prudente, University of Western São Paulo, Presidente Prudente, Brazil
| | | | - Edilson Ervolino
- Department of Basic Science, Araçatuba Dental School, UNESP - University Estadual Paulista, Araçatuba, Brazil
| | - Rosana Leal do Prado
- Graduate Program in Dentistry, University of Western São Paulo, Presidente Prudente, Brazil.,Dental School of Presidente Prudente, University of Western São Paulo, Presidente Prudente, Brazil
| | - Graziela Garrido Mori
- Graduate Program in Dentistry, University of Western São Paulo, Presidente Prudente, Brazil.,Dental School of Presidente Prudente, University of Western São Paulo, Presidente Prudente, Brazil
| |
Collapse
|
12
|
Ng AYH, Li Z, Jones MM, Yang S, Li C, Fu C, Tu C, Oursler MJ, Qu J, Yang S. Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species. eLife 2019; 8:e42951. [PMID: 31490121 PMCID: PMC6731062 DOI: 10.7554/elife.42951] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
Regulators of G-protein Signaling are a conserved family of proteins required in various biological processes including cell differentiation. We previously demonstrated that Rgs12 is essential for osteoclast differentiation and its deletion in vivo protected mice against pathological bone loss. To characterize its mechanism in osteoclastogenesis, we selectively deleted Rgs12 in C57BL/6J mice targeting osteoclast precursors using LyzM-driven Cre mice or overexpressed Rgs12 in RAW264.7 cells. Rgs12 deletion in vivo led to an osteopetrotic phenotype evidenced by increased trabecular bone, decreased osteoclast number and activity but no change in osteoblast number and bone formation. Rgs12 overexpression increased osteoclast number and size, and bone resorption activity. Proteomics analysis of Rgs12-depleted osteoclasts identified an upregulation of antioxidant enzymes under the transcriptional regulation of Nrf2, the master regulator of oxidative stress. We confirmed an increase of Nrf2 activity and impaired reactive oxygen species production in Rgs12-deficient cells. Conversely, Rgs12 overexpression suppressed Nrf2 through a mechanism dependent on the 26S proteasome, and promoted RANKL-induced phosphorylation of ERK1/2 and NFκB, which was abrogated by antioxidant treatment. Our study therefore identified a novel role of Rgs12 in regulating Nrf2, thereby controlling cellular redox state and osteoclast differentiation.
Collapse
Affiliation(s)
- Andrew Ying Hui Ng
- Department of Anatomy and Cell BiologySchool of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Oral BiologySchool of Dental Medicine, University at BuffaloBuffaloUnited States
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Ziqing Li
- Department of Anatomy and Cell BiologySchool of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Megan M Jones
- Department of Oral BiologySchool of Dental Medicine, University at BuffaloBuffaloUnited States
| | - Shuting Yang
- Department of Anatomy and Cell BiologySchool of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Chunyi Li
- Department of Oral BiologySchool of Dental Medicine, University at BuffaloBuffaloUnited States
| | - Chuanyun Fu
- Department of StomatologyShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
| | - Chengjian Tu
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloBuffaloUnited States
| | - Merry Jo Oursler
- Division of Endocrinology, Metabolism, Nutrition & DiabetesMayo ClinicRochesterUnited States
| | - Jun Qu
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloBuffaloUnited States
| | - Shuying Yang
- Department of Anatomy and Cell BiologySchool of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
- The Penn Center for Musculoskeletal DisordersSchool of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
13
|
Nielson CM, Jacobs JM, Orwoll ES. Proteomic studies of bone and skeletal health outcomes. Bone 2019; 126:18-26. [PMID: 30954730 PMCID: PMC7302501 DOI: 10.1016/j.bone.2019.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Proteins are an essential part of essentially all biological processes, and there is enormous variation in protein forms and concentrations that is not reflected in DNA or RNA. Recently there have been rapid advances in the ability to measure protein sequence, modification and concentration, particularly with methods based in mass spectrometry. Global measures of proteins in tissues or in the circulation provide a broad assessment of the proteome that can be extremely useful for discovery, and targeted proteomic measures can yield specific and sensitive assessments of specific peptides and proteins. While most proteomic measures are directed at the detection of consensus peptide sequences, mass spectrometry based proteomic methods also allow a detailed examination of the peptide sequence differences that result from genetic variants and that may have important effects on protein function. In evaluating proteomic data, a number of analytical considerations are important, including an understanding of missing data, the challenge of multiple testing and replication, and the use of rapidly evolving methods in systems biology. While proteomics has not yet had a major impact in skeletal research, interesting recent research has used these approaches in the study of bone cell biology and the discovery of biomarkers of skeletal disorders. Proteomics can be expected to have an increasing influence in the study of bone biology and pathophysiology.
Collapse
Affiliation(s)
| | - Jon M Jacobs
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
14
|
Ng AY, Tu C, Shen S, Xu D, Oursler MJ, Qu J, Yang S. Comparative Characterization of Osteoclasts Derived From Murine Bone Marrow Macrophages and RAW 264.7 Cells Using Quantitative Proteomics. JBMR Plus 2018; 2:328-340. [PMID: 30460336 PMCID: PMC6237207 DOI: 10.1002/jbm4.10058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 12/29/2022] Open
Abstract
Osteoclasts are bone-resorbing cells differentiated from macrophage/monocyte precursors in response to macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). In vitro models are principally based on primary bone marrow macrophages (BMMs), but RAW 264.7 cells are frequently used because they are widely available, easy to culture, and more amenable to genetic manipulation than primary cells. Increasing evidence, however, has shown that the vastly different origins of these two cell types may have important effects on cell behavior. In particular, M-CSF is a prerequisite for the differentiation of BMMs, by promoting survival and proliferation and priming the cells for RANKL induction. RAW 264.7 cells readily form osteoclasts in the presence of RANKL, but M-CSF is not required. Based on these key differences, we sought to understand their functional implications and how it might affect osteoclast differentiation and related signaling pathways. Using a robust and high-throughput proteomics strategy, we quantified the global protein changes in osteoclasts derived from BMMs and RAW 264.7 cells at 1, 3, and 5 days of differentiation. Data are available via ProteomeXchange with the identifier PXD009610. Correlation analysis of the proteomes demonstrated low concordance between the two cell types (R2 ≈ 0.13). Bioinformatics analysis indicate that RANKL-dependent signaling was intact in RAW 264.7 cells, but biological processes known to be dependent on M-CSF were significantly different, including cell cycle control, cytoskeletal organization, and apoptosis. RAW 264.7 cells exhibited constitutive activation of Erk and Akt that was dependent on the activity of Abelson tyrosine kinase, and the timing of Erk and Akt activation was significantly different between BMMs and RAW 264.7 cells. Our findings provide the first evidence for major discrepancies between BMMs and RAW 264.7 cells, indicating that careful consideration is needed when using the RAW 264.7 cell line for studying M-CSF-dependent signaling and functions. © 2018 American Society for Bone and Mineral Research. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andrew Yh Ng
- Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia PA USA.,Department of Oral Biology School of Dental Medicine University at Buffalo Buffalo NY USA.,New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA
| | - Chengjian Tu
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Ding Xu
- Department of Oral Biology School of Dental Medicine University at Buffalo Buffalo NY USA
| | - Merry J Oursler
- Division of Endocrinology Metabolism, Nutrition, and Diabetes Mayo Clinic Rochester MN USA
| | - Jun Qu
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Shuying Yang
- Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
15
|
Merolli A, Fung S, Murthy NS, Pashuck ET, Mao Y, Wu X, Steele JAM, Martin D, Moghe PV, Bromage T, Kohn J. "Ruffled border" formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:38. [PMID: 29564568 PMCID: PMC5862932 DOI: 10.1007/s10856-018-6046-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/05/2018] [Indexed: 05/02/2023]
Abstract
Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.
Collapse
Affiliation(s)
- Antonio Merolli
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Universita Cattolica del Sacro Cuore, Clinica Ortopedica, Rome, Italy
| | - Stephanie Fung
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - E Thomas Pashuck
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Yong Mao
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Xiaohuan Wu
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Joseph A M Steele
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Daniel Martin
- High Resolution Microscopy, Biomedical Engineering, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Prabhas V Moghe
- High Resolution Microscopy, Biomedical Engineering, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timothy Bromage
- Hard Tissue Research Unit. Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, 10010, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
16
|
Tiedemann K, Le Nihouannen D, Fong JE, Hussein O, Barralet JE, Komarova SV. Regulation of Osteoclast Growth and Fusion by mTOR/raptor and mTOR/rictor/Akt. Front Cell Dev Biol 2017; 5:54. [PMID: 28573133 PMCID: PMC5435769 DOI: 10.3389/fcell.2017.00054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are giant bone cells formed by fusion from monocytes and uniquely capable of a complete destruction of mineralized tissues. Previously, we have demonstrated that in energy-rich environment not only osteoclast fusion index (the number of nuclei each osteoclast contains), but also cytoplasm volume per single nucleus was increased. The goal of this study was to investigate the regulation of metabolic sensor mTOR during osteoclast differentiation in energy-rich environment simulated by addition of pyruvate. We have found that in the presence of pyruvate, the proportion of mTOR associated with raptor increased, while mTOR-rictor-mediated Akt phosphorylation decreased. Inhibition of mTOR with rapamycin (10 nM) significantly interfered with all aspects of osteoclastogenesis. However, rapamycin at 1 nM, which preferentially targets mTOR-raptor complex, was only effective in control cultures, while in the presence of pyruvate osteoclast fusion index was successfully increased. Inhibition of Akt drastically reduced osteoclast fusion, however in energy-rich environment, osteoclasts of comparable size were formed through increased cytoplasm growth. These data suggest that mTOR-rictor mediated Akt signaling regulates osteoclast fusion, while mTOR-raptor regulation of protein translation contributes to fusion-independent cytoplasm growth. We demonstrate that depending on the bioenergetics microenvironment osteoclastogenesis can adjust to occur through preferential multinucleation or through cell growth, implying that attaining large cell size is part of the osteoclast differentiation program.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada.,Shriners Hospital for Children-CanadaMontreal, QC, Canada
| | | | - Jenna E Fong
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada
| | - Osama Hussein
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada
| | - Jake E Barralet
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada.,Department of Surgery, Faculty of Medicine, McGill UniversityMontreal, QC, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada.,Shriners Hospital for Children-CanadaMontreal, QC, Canada
| |
Collapse
|
17
|
Iglesias-Linares A, Hartsfield JK. Cellular and Molecular Pathways Leading to External Root Resorption. J Dent Res 2016; 96:145-152. [PMID: 27811065 DOI: 10.1177/0022034516677539] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
External apical root resorption during orthodontic treatment implicates specific molecular pathways that orchestrate nonphysiologic cellular activation. To date, a substantial number of in vitro and in vivo molecular, genomic, and proteomic studies have supplied data that provide new insights into root resorption. Recent mechanisms and developments reviewed here include the role of the cellular component-specifically, the balance of CD68+, iNOS+ M1- and CD68+, CD163+ M2-like macrophages associated with root resorption and root surface repair processes linked to the expression of the M1-associated proinflammatory cytokine tumor necrosis factor, inducible nitric oxide synthase, the M1 activator interferon γ, the M2 activator interleukin 4, and M2-associated anti-inflammatory interleukin 10 and arginase I. Insights into the role of mesenchymal dental pulp cells in attenuating dentin resorption in homeostasis are also reviewed. Data on recently deciphered molecular pathways are reviewed at the level of (1) clastic cell adhesion in the external apical root resorption process and the specific role of α/β integrins, osteopontin, and related extracellular matrix proteins; (2) clastic cell fusion and activation by the RANKL/RANK/OPG and ATP-P2RX7-IL1 pathways; and (3) regulatory mechanisms of root resorption repair by cementum at the proteomic and transcriptomic levels.
Collapse
Affiliation(s)
- A Iglesias-Linares
- 1 Department of Orthodontics, School of Dentistry, Complutense University of Madrid, Madrid, Spain
| | - J K Hartsfield
- 2 Oral Health Science, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|