1
|
Charrier M, Leroux I, Pichon J, Schleder C, Larcher T, Hamel A, Magot A, Péréon Y, Lamirault G, Tremblay JP, Skuk D, Rouger K. Human MuStem cells are competent to fuse with nonhuman primate myofibers in a clinically relevant transplantation context: A proof-of-concept study. J Neuropathol Exp Neurol 2024; 83:684-694. [PMID: 38752570 DOI: 10.1093/jnen/nlae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.
Collapse
Affiliation(s)
- Marine Charrier
- Oniris, INRAE, PAnTher, Nantes, France
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- Nantes Université, Nantes, France
| | | | | | | | | | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | | | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | - Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | | |
Collapse
|
2
|
Marquis M, Zykwinska A, Novales B, Leroux I, Schleder C, Pichon J, Cuenot S, Rouger K. Human muscle stem cell responses to mechanical stress into tunable 3D alginate matrices. Int J Biol Macromol 2024; 266:130823. [PMID: 38492703 DOI: 10.1016/j.ijbiomac.2024.130823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Preclinical data acquired for human muscle stem (hMuStem) cells indicate their great repair capacity in the context of muscle injury. However, their clinical potential is limited by their moderate ability to survive after transplantation. To overcome these limitations, their encapsulation within protective environment would be beneficial. In this study, tunable calcium-alginate hydrogels obtained through molding method using external or internal gelation were investigated as a new strategy for hMuStem cell encapsulation. The mechanical properties of these hydrogels were characterized in their fully hydrated state by compression experiments using Atomic Force Microscopy. Measured elastic moduli strongly depended on the gelation mode and calcium/alginate concentrations. Values ranged from 1 to 12.5 kPa and 3.9 to 25 kPa were obtained for hydrogels prepared following internal and external gelation, respectively. Also, differences in mechanical properties of hydrogels resulted from their internal organization, with an isotropic structure for internal gelation, while external mode led to anisotropic one. It was further shown that viability, morphological and myogenic differentiation characteristics of hMuStem cells incorporated within alginate hydrogels were preserved after their release. These results highlight that hMuStem cells encapsulated in calcium-alginate hydrogels maintain their functionality, thus allowing to develop muscle regeneration protocols to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Mélanie Marquis
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France.
| | - Agata Zykwinska
- Ifremer, MASAE, Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Bruno Novales
- INRAE, BIA, Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Isabelle Leroux
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Cindy Schleder
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Julien Pichon
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| | - Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 44322 Nantes cedex 3, France
| | - Karl Rouger
- Oniris, INRAE, PAnTher, Physiopathologie Animale et bioThérapie du muscle et du système nerveux, 44307 Nantes, France
| |
Collapse
|
3
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
4
|
Golding AE, Li W, Blank PS, Cologna SM, Zimmerberg J. Relative quantification of progressive changes in healthy and dysferlin-deficient mouse skeletal muscle proteomes. Muscle Nerve 2023; 68:805-816. [PMID: 37706611 DOI: 10.1002/mus.27975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION/AIMS Individuals with dysferlinopathies, a group of genetic muscle diseases, experience delay in the onset of muscle weakness. The cause of this delay and subsequent muscle wasting are unknown, and there are currently no clinical interventions to limit or prevent muscle weakness. To better understand molecular drivers of dysferlinopathies, age-dependent changes in the proteomic profile of skeletal muscle (SM) in wild-type (WT) and dysferlin-deficient mice were identified. METHODS Quadriceps were isolated from 6-, 18-, 42-, and 77-wk-old C57BL/6 (WT, Dysf+/+ ) and BLAJ (Dysf-/- ) mice (n = 3, 2 male/1 female or 1 male/2 female, 24 total). Whole-muscle proteomes were characterized using liquid chromatography-mass spectrometry with relative quantification using TMT10plex isobaric labeling. Principle component analysis was utilized to detect age-dependent proteomic differences over the lifespan of, and between, WT and dysferlin-deficient SM. The biological relevance of proteins with significant variation was established using Ingenuity Pathway Analysis. RESULTS Over 3200 proteins were identified between 6-, 18-, 42-, and 77-wk-old mice. In total, 46 proteins varied in aging WT SM (p < .01), while 365 varied in dysferlin-deficient SM. However, 569 proteins varied between aged-matched WT and dysferlin-deficient SM. Proteins with significant variation in expression across all comparisons followed distinct temporal trends. DISCUSSION Proteins involved in sarcolemma repair and regeneration underwent significant changes in SM over the lifespan of WT mice, while those associated with immune infiltration and inflammation were overly represented over the lifespan of dysferlin-deficient mice. The proteins identified herein are likely to contribute to our overall understanding of SM aging and dysferlinopathy disease progression.
Collapse
Affiliation(s)
- Adriana E Golding
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Dubreil L, Damane N, Fleurisson R, Charrier M, Pichon J, Leroux I, Schleder C, Ledevin M, Larcher T, Jamme F, Puentes J, Rouger K. Specific and label-free endogenous signature of dystrophic muscle by Synchrotron deep ultraviolet radiation. Sci Rep 2023; 13:10808. [PMID: 37402811 PMCID: PMC10319894 DOI: 10.1038/s41598-023-37762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Dystrophic muscle is characterized by necrosis/regeneration cycles, inflammation, and fibro-adipogenic development. Conventional histological stainings provide essential topographical data of this remodeling but may be limited to discriminate closely related pathophysiological contexts. They fail to mention microarchitecture changes linked to the nature and spatial distribution of tissue compartment components. We investigated whether label-free tissue autofluorescence revealed by Synchrotron deep ultraviolet (DUV) radiation could serve as an additional tool for monitoring dystrophic muscle remodeling. Using widefield microscopy with specific emission fluorescence filters and microspectroscopy defined by high spectral resolution, we analyzed samples from healthy dogs and two groups of dystrophic dogs: naïve (severely affected) and MuStem cell-transplanted (clinically stabilized) animals. Multivariate statistical analysis and machine learning approaches demonstrated that autofluorescence emitted at 420-480 nm by the Biceps femoris muscle effectively discriminates between healthy, dystrophic, and transplanted dog samples. Microspectroscopy showed that dystrophic dog muscle displays higher and lower autofluorescence due to collagen cross-linking and NADH respectively than that of healthy and transplanted dogs, defining biomarkers to evaluate the impact of cell transplantation. Our findings demonstrate that DUV radiation is a sensitive, label-free method to assess the histopathological status of dystrophic muscle using small amounts of tissue, with potential applications in regenerative medicine.
Collapse
Affiliation(s)
| | - Noreddine Damane
- Oniris, INRAE, PAnTher, 44300, Nantes, France
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
| | | | | | | | | | | | | | | | - Frédéric Jamme
- Synchrotron SOLEIL, BP48, L'Orme Des Merisiers, 91120, Gif-Sur-Yvette, France
| | - John Puentes
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
| | - Karl Rouger
- Oniris, INRAE, PAnTher, 44300, Nantes, France.
| |
Collapse
|
8
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Organ-Specific Differentiation of Human Adipose-Derived Stem Cells in Various Organs of Xenotransplanted Rats: A Pilot Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081116. [PMID: 35892918 PMCID: PMC9330795 DOI: 10.3390/life12081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Adipose-derived stem cells (ADSCs) are potential therapeutics considering their self-renewal capacity and ability to differentiate into all somatic cell types in vitro. The ideal ADSC-based therapy is a direct injection into the relevant organs. The objective of this study was to investigate the viability and safety of intra-organ human ADSC (h-ADSC) xenotransplants in vivo. Subcutaneous adipose tissue from the abdominal area of 10 patients was sampled. h-ADSCs were isolated from adipose tissue samples and identified using immunofluorescence antibodies. Multi-differentiation potential assays for adipocytes, osteocytes, and chondrocytes were performed. Cultured h-ADSCs at passage 4 were transplanted into multiple organs of 17 rats, including the skin, subcutaneous layer, liver, kidney, pancreas, and spleen. The h-ADSC-injected organs excised after 100 days were examined, and the survival of h-ADSCs was measured by quantitative real-time polymerase chain reaction (qRT-PCR) using specific human and rat target genes. h-ADSCs confirmed by stem cell phenotyping were induced to differentiate into adipogenic, osteogenic, and chondrogenic lineages in vitro. All rats were healthy and exhibited no side effects during the study; the transplanted h-ADSCs did not cause inflammation and were indiscernible from the native organ cells. The presence of transplanted h-ADSCs was confirmed using qRT-PCR. However, the engrafted survival rates varied as follows: subcutaneous fat (70.6%), followed by the liver (52.9%), pancreas (50.0%), kidney (29.4%), skin (29.4%), and spleen (12.5%). h-ADSCs were successfully transplanted into a rat model, with different survival rates depending on the organ.
Collapse
|
10
|
Kang MH, Park HM. Challenges of stem cell therapies in companion animal practice. J Vet Sci 2020; 21:e42. [PMID: 32476316 PMCID: PMC7263915 DOI: 10.4142/jvs.2020.21.e42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.
Collapse
Affiliation(s)
- Min Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
11
|
Rannou A, Toumaniantz G, Larcher T, Leroux I, Ledevin M, Hivonnait A, Babarit C, Fleurisson R, Dubreil L, Ménoret S, Anegon I, Charpentier F, Rouger K, Guével L. Human MuStem Cell Grafting into Infarcted Rat Heart Attenuates Adverse Tissue Remodeling and Preserves Cardiac Function. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:446-463. [PMID: 32695846 DOI: 10.1016/j.omtm.2020.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/09/2022]
Abstract
Myocardial infarction is one of the leading causes of mortality and morbidity worldwide. Whereas transplantation of several cell types into the infarcted heart has produced promising preclinical results, clinical studies using analogous human cells have shown limited structural and functional benefits. In dogs and humans, we have described a type of muscle-derived stem cells termed MuStem cells that efficiently promoted repair of injured skeletal muscle. Enhanced survival rate, long-term engraftment, and participation in muscle fiber formation were reported, leading to persistent tissue remodeling and clinical benefits. With the consideration of these features that are restricted or absent in cells tested so far for myocardial infarction, we wanted to investigate the capacity of human MuStem cells to repair infarcted hearts. Their local administration in immunodeficient rats 1 week after induced infarction resulted in reduced fibrosis and increased angiogenesis 3 weeks post-transplantation. Importantly, foci of human fibers were detected in the infarct site. Treated rats also showed attenuated left-ventricle dilation and preservation of contractile function. Interestingly, no spontaneous arrhythmias were observed. Our findings support the potential of MuStem cells, which have already been proposed as therapeutic candidates for dystrophic patients, to treat myocardial infarction and position them as an attractive tool for muscle-regenerative medicine.
Collapse
Affiliation(s)
- Alice Rannou
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France.,l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.,Université de Nantes, Nantes, France
| | - Gilles Toumaniantz
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.,Université de Nantes, Nantes, France
| | - Thibaut Larcher
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Isabelle Leroux
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Mireille Ledevin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Agnès Hivonnait
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Candice Babarit
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Romain Fleurisson
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Laurence Dubreil
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Séverine Ménoret
- UMR 1064/Core Facility TRIP/Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, 44000 Nantes, France
| | - Ignacio Anegon
- UMR 1064/Core Facility TRIP/Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, 44000 Nantes, France
| | - Flavien Charpentier
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.,l'Institut du Thorax, CHU Nantes, Nantes, France
| | - Karl Rouger
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Laetitia Guével
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France.,Université de Nantes, Nantes, France
| |
Collapse
|
12
|
Capitanio D, Moriggi M, Torretta E, Barbacini P, De Palma S, Viganò A, Lochmüller H, Muntoni F, Ferlini A, Mora M, Gelfi C. Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:547-563. [PMID: 31991054 PMCID: PMC7113522 DOI: 10.1002/jcsm.12527] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are characterized by muscle wasting leading to loss of ambulation in the first or third decade, respectively. In DMD, the lack of dystrophin hampers connections between intracellular cytoskeleton and cell membrane leading to repeated cycles of necrosis and regeneration associated with inflammation and loss of muscle ordered structure. BMD has a similar muscle phenotype but milder. Here, we address the question whether proteins at variance in BMD compared with DMD contribute to the milder phenotype in BMD, thus identifying a specific signature to be targeted for DMD treatment. METHODS Proteins extracted from skeletal muscle from DMD/BMD patients and young healthy subjects were either reduced and solubilized prior two-dimensional difference in gel electrophoresis/mass spectrometry differential analysis or tryptic digested prior label-free liquid chromatography with tandem mass spectrometry. Statistical analyses of proteins and peptides were performed by DeCyder and Perseus software and protein validation and verification by immunoblotting. RESULTS Proteomic results indicate minor changes in the extracellular matrix (ECM) protein composition in BMD muscles with retention of mechanotransduction signalling, reduced changes in cytoskeletal and contractile proteins. Conversely, in DMD patients, increased levels of several ECM cytoskeletal and contractile proteins were observed whereas some proteins of fast fibres and of Z-disc decreased. Detyrosinated alpha-tubulin was unchanged in BMD and increased in DMD although neuronal nitric oxide synthase was unchanged in BMD and greatly reduced in DMD. Metabolically, the tissue is characterized by a decrement of anaerobic metabolism both in DMD and BMD compared with controls, with increased levels of the glycogen metabolic pathway in BMD. Oxidative metabolism is severely compromised in DMD with impairment of malate shuttle; conversely, it is active in BMD supporting the tricarboxylic acid cycle and respiratory chain. Adipogenesis characterizes DMD, whereas proteins involved in fatty acids beta-oxidation are increased in BMD. Proteins involved in protein/amino acid metabolism, cell development, calcium handling, endoplasmic reticulum/sarcoplasmic reticulum stress response, and inflammation/immune response were increased in DMD. Both disorders are characterized by the impairment of N-linked protein glycosylation in the endoplasmic reticulum. Authophagy was decreased in DMD whereas it was retained in BMD. CONCLUSIONS The mechanosensing and metabolic disruption are central nodes of DMD/BMD phenotypes. The ECM proteome composition and the metabolic rewiring in BMD lead to preservation of energy levels supporting autophagy and cell renewal, thus promoting the retention of muscle function. Conversely, DMD patients are characterized by extracellular and cytoskeletal protein dysregulation and by metabolic restriction at the level of α-ketoglutarate leading to shortage of glutamate-derived molecules that over time triggers lipogenesis and lipotoxicity.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Sara De Palma
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Agnese Viganò
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London, UK.,Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
13
|
Dowling P, Murphy S, Zweyer M, Raucamp M, Swandulla D, Ohlendieck K. Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Rev Mol Diagn 2019; 19:739-755. [PMID: 31359811 DOI: 10.1080/14737159.2019.1648214] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Progressive skeletal muscle wasting is the manifesting symptom of Duchenne muscular dystrophy, an X-linked inherited disorder triggered by primary abnormalities in the DMD gene. The almost complete loss of dystrophin isoform Dp427 causes a multi-system pathology that features in addition to skeletal muscle weakness also late-onset cardio-respiratory deficiencies, impaired metabolism and abnormalities in the central nervous system. Areas covered: This review focuses on the mass spectrometry-based proteomic characterization of X-linked muscular dystrophy with special emphasis on the identification of novel biomarker candidates in skeletal muscle tissues, as well as non-muscle tissues and various biofluids. Individual sections focus on molecular and cellular aspects of the pathogenic changes in dystrophinopathy, proteomic workflows used in biomarker research, the proteomics of the dystrophin-glycoprotein complex and the potential usefulness of newly identified protein markers involved in fibre degeneration, fibrosis and inflammation. Expert opinion: The systematic application of large-scale proteomic surveys has identified a distinct cohort of both tissue- and biofluid-associated protein species with considerable potential for improving diagnostic, prognostic and therapy-monitoring procedures. Novel proteomic markers include components involved in fibre contraction, cellular signalling, ion homeostasis, cellular stress response, energy metabolism and the immune response, as well as maintenance of the cytoskeletal and extracellular matrix.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University , Newcastle upon Tyne , UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| |
Collapse
|
14
|
Tang X, Daneshmandi L, Awale G, Nair LS, Laurencin CT. Skeletal Muscle Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:233-251. [PMID: 33778155 DOI: 10.1007/s40883-019-00102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscles have the intrinsic ability to regenerate after minor injury, but under certain circumstances such as severe trauma from accidents, chronic diseases or battlefield injuries the regeneration process is limited. Skeletal muscle regenerative engineering has emerged as a promising approach to address this clinical issue. The regenerative engineering approach involves the convergence of advanced materials science, stem cell science, physical forces, insights from developmental biology, and clinical translation. This article reviews recent studies showing the potential of the convergences of technologies involving biomaterials, stem cells and bioactive factors in concert with clinical translation, in promoting skeletal muscle regeneration. Several types of biomaterials such as electrospun nanofibers, hydrogels, patterned scaffolds, decellularized tissues, and conductive matrices are being investigated. Detailed discussions are given on how these biomaterials can interact with cells and modulate their behavior through physical, chemical and mechanical cues. In addition, the application of physical forces such as mechanical and electrical stimulation are reviewed as strategies that can further enhance muscle contractility and functionality. The review also discusses established animal models to evaluate regeneration in two clinically relevant muscle injuries; volumetric muscle loss (VML) and muscle atrophy upon rotator cuff injury. Regenerative engineering approaches using advanced biomaterials, cells, and physical forces, developmental cues along with insights from immunology, genetics and other aspects of clinical translation hold significant potential to develop promising strategies to support skeletal muscle regeneration.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guleid Awale
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
15
|
Cypser JR, Chick WS, Fahy GM, Schumacher GJ, Johnson TE. Genetic suppression of cryoprotectant toxicity. Cryobiology 2019; 86:95-102. [PMID: 30458175 PMCID: PMC7001869 DOI: 10.1016/j.cryobiol.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
We report here a new, unbiased forward genetic method that uses transposon-mediated mutagenesis to enable the identification of mutations that confer cryoprotectant toxicity resistance (CTR). Our method is to select for resistance to the toxic effects of M22, a much-studied whole-organ vitrification solution. We report finding and characterizing six mutants that are resistant to M22. These mutants fall into six independent biochemical pathways not previously linked to cryoprotectant toxicity (CT). The genes associated with the mutations were Gm14005, Myh9, Nrg2, Pura, Fgd2, Pim1, Opa1, Hes1, Hsbp1, and Ywhag. The mechanisms of action of the mutations remain unknown, but two of the mutants involve MYC signaling, which was previously implicated in CT. Several of the mutants may up-regulate cellular stress defense pathways. Several of the M22-resistant mutants were also resistant to dimethyl sulfoxide (Me2SO), and many of the mutants showed significantly improved survival after freezing and thawing in 10% (v/v) Me2SO. This new approach to overcoming CT has many advantages over alternative methods such as transcriptomic profiling. Our method directly identifies specific genetic loci that unequivocally affect CT. More generally, our results provide the first direct evidence that CT can be reduced in mammalian cells by specific molecular interventions. Thus, this approach introduces remarkable new opportunities for pharmacological blockade of CT.
Collapse
Affiliation(s)
- James R Cypser
- Institute for Behavioral Genetics, University of Colorado Boulder, USA
| | - Wallace S Chick
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO, USA; Charles C. Gates Center for Regenerative Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | | | - Thomas E Johnson
- Institute for Behavioral Genetics, University of Colorado Boulder, USA; Department of Integrative Physiology, University of Colorado Boulder, USA.
| |
Collapse
|
16
|
Saury C, Lardenois A, Schleder C, Leroux I, Lieubeau B, David L, Charrier M, Guével L, Viau S, Delorme B, Rouger K. Human serum and platelet lysate are appropriate xeno-free alternatives for clinical-grade production of human MuStem cell batches. Stem Cell Res Ther 2018; 9:128. [PMID: 29720259 PMCID: PMC5932844 DOI: 10.1186/s13287-018-0852-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/16/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Canine MuStem cells have demonstrated regenerative efficacy in a dog model of muscular dystrophy, and the recent characterization of human counterparts (hMuStem) has highlighted the therapeutic potential of this muscle-derived stem cell population. To date, these cells have only been generated in research-grade conditions. However, evaluation of the clinical efficacy of any such therapy will require the production of hMuStem cells in compliance with good manufacturing practices (GMPs). Because the current use of fetal bovine serum (FBS) to isolate and expand hMuStem cells raises several ethical, safety, and supply concerns, we assessed the use of two alternative xeno-free blood derivatives: human serum (HS) and a human platelet lysate (hPL). METHODS hMuStem cells were isolated and expanded in vitro in either HS-supplemented or hPL-supplemented media and the proliferation rate, clonogenicity, myogenic commitment potential, and oligopotency compared with that observed in FBS-supplemented medium. Flow cytometry and high-throughput 3'-digital gene expression RNA sequencing were used to characterize the phenotype and global gene expression pattern of hMuStem cells cultured with HS or hPL. RESULTS HS-supplemented and hPL-supplemented media both supported the isolation and long-term proliferation of hMuStem cells. Compared with FBS-based medium, both supplements enhanced clonogenicity and allowed for a reduction in growth factor supplementation. Neither supplement altered the cell lineage pattern of hMuStem cells. In vitro differentiation assays revealed a decrease in myogenic commitment and in the fusion ability of hMuStem cells when cultured with hPL. In return, this reduction of myogenic potential in hPL-supplemented cultures was rapidly reversed by substitution of hPL with HS or fibrinogen-depleted hPL. Moreover, culture of hMuStem cells in hPL hydrogel and fibrinogen-depleted hPL demonstrated that myogenic differentiation potential is maintained in heparin-free hPL derivatives. CONCLUSIONS Our findings indicate that HS and hPL are efficient and viable alternatives to FBS for the preparation of hMuStem cell batches in compliance with GMPs.
Collapse
Affiliation(s)
- Charlotte Saury
- Macopharma, Biotherapy Division, F-59420, Mouvaux, France.,PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), F-44307, Nantes, France
| | - Aurélie Lardenois
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), F-44307, Nantes, France
| | - Cindy Schleder
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), F-44307, Nantes, France
| | - Isabelle Leroux
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), F-44307, Nantes, France
| | | | - Laurent David
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, UBL, F-44093, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, F-44093, Nantes, France.,Inserm UMS016, SFR François Bonamy, iPSC Core Facility, Nantes, France.,CNRS UMS 3556, Nantes, France.,Université de Nantes, Nantes, France.,CHU Nantes, Nantes, France
| | - Marine Charrier
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), F-44307, Nantes, France.,Institut du thorax, INSERM, CNRS, Université de Nantes, Nantes, France.,Université de Nantes, F-44000, Nantes, France
| | - Laëtitia Guével
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), F-44307, Nantes, France.,Université de Nantes, F-44000, Nantes, France
| | - Sabrina Viau
- Macopharma, Biotherapy Division, F-59420, Mouvaux, France
| | - Bruno Delorme
- Macopharma, Biotherapy Division, F-59420, Mouvaux, France
| | - Karl Rouger
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), F-44307, Nantes, France. .,INRA, UMR 703, École Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Route de Gachet, CS. 40706, F-44307, Nantes, France.
| |
Collapse
|
17
|
Lorant J, Saury C, Schleder C, Robriquet F, Lieubeau B, Négroni E, Leroux I, Chabrand L, Viau S, Babarit C, Ledevin M, Dubreil L, Hamel A, Magot A, Thorin C, Guevel L, Delorme B, Péréon Y, Butler-Browne G, Mouly V, Rouger K. Skeletal Muscle Regenerative Potential of Human MuStem Cells following Transplantation into Injured Mice Muscle. Mol Ther 2017; 26:618-633. [PMID: 29221805 DOI: 10.1016/j.ymthe.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023] Open
Abstract
After intra-arterial delivery in the dystrophic dog, allogeneic muscle-derived stem cells, termed MuStem cells, contribute to long-term stabilization of the clinical status and preservation of the muscle regenerative process. However, it remains unknown whether the human counterpart could be identified, considering recent demonstrations of divergent features between species for several somatic stem cells. Here, we report that MuStem cells reside in human skeletal muscle and display a long-term ability to proliferate, allowing generation of a clinically relevant amount of cells. Cultured human MuStem (hMuStem) cells do not express hematopoietic, endothelial, or myo-endothelial cell markers and reproducibly correspond to a population of early myogenic-committed progenitors with a perivascular/mesenchymal phenotypic signature, revealing a blood vessel wall origin. Importantly, they exhibit both myogenesis in vitro and skeletal muscle regeneration after intramuscular delivery into immunodeficient host mice. Together, our findings provide new insights supporting the notion that hMuStem cells could represent an interesting therapeutic candidate for dystrophic patients.
Collapse
Affiliation(s)
- Judith Lorant
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Charlotte Saury
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France; Macopharma, Biotherapy Division, Mouvaux, 59420, France
| | - Cindy Schleder
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Florence Robriquet
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France; Université de Nantes, UBL, Nantes, France
| | | | - Elisa Négroni
- Institut de Myologie, Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Paris 75013, France
| | - Isabelle Leroux
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | | | - Sabrina Viau
- Macopharma, Biotherapy Division, Mouvaux, 59420, France
| | - Candice Babarit
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Mireille Ledevin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Laurence Dubreil
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU), Nantes 44093, France
| | - Armelle Magot
- Centre de Référence des maladies neuromusculaires Nantes-Angers, Service des Explorations Fonctionnelles, CHU, Nantes 44093, France
| | - Chantal Thorin
- Laboratoire de Physiopathologie Animale et Pharmacologie fonctionnelle, Oniris, Nantes 44307, France
| | - Laëtitia Guevel
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France; Université de Nantes, UBL, Nantes, France
| | - Bruno Delorme
- Macopharma, Biotherapy Division, Mouvaux, 59420, France
| | - Yann Péréon
- Centre de Référence des maladies neuromusculaires Nantes-Angers, Service des Explorations Fonctionnelles, CHU, Nantes 44093, France
| | - Gillian Butler-Browne
- Institut de Myologie, Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Paris 75013, France
| | - Vincent Mouly
- Institut de Myologie, Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Paris 75013, France
| | - Karl Rouger
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France.
| |
Collapse
|
18
|
Murphy S, Brinkmeier H, Krautwald M, Henry M, Meleady P, Ohlendieck K. Proteomic profiling of the dystrophin complex and membrane fraction from dystrophic mdx muscle reveals decreases in the cytolinker desmoglein and increases in the extracellular matrix stabilizers biglycan and fibronectin. J Muscle Res Cell Motil 2017; 38:251-268. [DOI: 10.1007/s10974-017-9478-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/05/2017] [Indexed: 01/14/2023]
|
19
|
Dubreil L, Leroux I, Ledevin M, Schleder C, Lagalice L, Lovo C, Fleurisson R, Passemard S, Kilin V, Gerber-Lemaire S, Colle MA, Bonacina L, Rouger K. Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth. ACS NANO 2017; 11:6672-6681. [PMID: 28644009 DOI: 10.1021/acsnano.7b00773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to assess the therapeutic potential of cell-based strategies, it is of paramount importance to elaborate and validate tools for monitoring the behavior of injected cells in terms of tissue dissemination and engraftment properties. Here, we apply bismuth ferrite harmonic nanoparticles (BFO HNPs) to in vitro expanded human skeletal muscle-derived stem cells (hMuStem cells), an attractive therapeutic avenue for patients suffering from Duchenne muscular dystrophy (DMD). We demonstrate the possibility of stem cell labeling with HNPs. We also show that the simultaneous acquisition of second- and third-harmonic generation (SHG and THG) from BFO HNPs helps separate their response from tissue background, with a net increase in imaging selectivity, which could be particularly important in pathologic context that is defined by a highly remodelling tissue. We demonstrate the possibility of identifying <100 nm HNPs in depth of muscle tissue at more than 1 mm from the surface, taking full advantage of the extended imaging penetration depth allowed by multiphoton microscopy in the second near-infrared window (NIR-II). Based on this successful assessment, we monitor over 14 days any modification on proliferation and morphology features of hMuStem cells upon exposure to PEG-coated BFO HNPs at different concentrations, revealing their high biocompatibility. Successively, we succeed in detecting individual HNP-labeled hMuStem cells in skeletal muscle tissue after their intramuscular injection.
Collapse
Affiliation(s)
- Laurence Dubreil
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| | - Isabelle Leroux
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| | - Mireille Ledevin
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| | - Cindy Schleder
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| | - Lydie Lagalice
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| | - Claire Lovo
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| | - Romain Fleurisson
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| | - Solene Passemard
- Group for Functionalized Biomaterials, École Polytechnique Fédérale de Lausanne , Station 6, 1015 Lausanne, Switzerland
| | - Vasyl Kilin
- GAP-Biophotonics, Université de Genève , 22 chemin de Pinchat, 1211 Genève 4, Switzerland
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, École Polytechnique Fédérale de Lausanne , Station 6, 1015 Lausanne, Switzerland
| | - Marie-Anne Colle
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| | - Luigi Bonacina
- GAP-Biophotonics, Université de Genève , 22 chemin de Pinchat, 1211 Genève 4, Switzerland
| | - Karl Rouger
- PAnTher, INRA, École nationale vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL) , Nantes F-44307, France
| |
Collapse
|