1
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
2
|
Altay Benetti A, Tarbox T, Benetti C. Current Insights into the Formulation and Delivery of Therapeutic and Cosmeceutical Agents for Aging Skin. COSMETICS 2023. [DOI: 10.3390/cosmetics10020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
“Successful aging” counters the traditional idea of aging as a disease and is increasingly equated with minimizing age signs on the skin, face, and body. From this stems the interest in preventative aesthetic dermatology that might help with the healthy aging of skin, help treat or prevent certain cutaneous disorders, such as skin cancer, and help delay skin aging by combining local and systemic methods of therapy, instrumental devices, and invasive procedures. This review will discuss the main mechanisms of skin aging and the potential mechanisms of action for commercial products already on the market, highlighting the issues related to the permeation of the skin from different classes of compounds, the site of action, and the techniques employed to overcome aging. The purpose is to give an overall perspective on the main challenges in formulation development, especially nanoparticle formulations, which aims to defeat or slow down skin aging, and to highlight new market segments, such as matrikines and matrikine-like peptides. In conclusion, by applying enabling technologies such as those delivery systems outlined here, existing agents can be repurposed or fine-tuned, and traditional but unproven treatments can be optimized for efficacious dosing and safety.
Collapse
|
3
|
Yao B, Cai Y, Wang W, Deng J, Zhao L, Han Z, Wan L. The Effect of Gut Microbiota on the Progression of Intervertebral Disc Degeneration. Orthop Surg 2023; 15:858-867. [PMID: 36600636 PMCID: PMC9977585 DOI: 10.1111/os.13626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Intervertebral disc degeneration (IDD) is the main cause of back pain, and its treatment is a serious socio-economic burden. The safety and treatment of fecal microbiota transplantation (FMT) has been established. However, the relationship between FMT and IDD still unclear. We aimed to explore whether FMT plays a role in IDD to provide a reference for the treatment of IDD. METHODS An experimental model of IDD was established using 2-month-old male Sprague-Dawley rats. FMT was performed by intragastric gavage of IDD rats with a fecal bacterial solution. Rat serum, feces, and vertebral disc tissue were collected after surgery for 2 months. The levels of TNF-α, IL-1β, IL-6, matrix metalloproteinase (MMP)-3, MMP-13, Collagen II, and aggrecan in the serum or vertebral disc tissue were measured by an enzyme-linked immunosorbent assay, immunohistochemistry, quantitative real-time polymerase chain reaction, or western blotting. We also examined the pathology of the vertebral disc tissue using hematoxylin and eosin (HE) and safranin O-fast green staining. Finally, we examined the gut microbiota in rat feces using 16 S rRNA gene sequencing. RESULTS We found that the expression of TNF-α, IL-1β, IL-6, MMP-3, MMP-13, NLRP3 and Caspase-1 increased in the IDD group rats. In contrast, Collagen II and aggrecan levels were downregulated. Additionally, vertebral disc tissue was severely damaged in the IDD group, with disordered cell arrangement and uneven safranin coloration. FMT reversed the effects of IDD modeling on these factors and alleviated cartilage tissue damage. In addition, FMT increased the gut microbiota diversity and microbial abundance in rats treated with IDD. CONCLUSION Our findings suggest that FMT has a positive effect in maintaining cellular stability in the vertebral disc and alleviating histopathological damage. It affects the diversity and abundance of gut microbiota in rats with IDD. Therefore, FMT may serve as a promising target for amelioration of IDD.
Collapse
Affiliation(s)
- Bo Yao
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Youquan Cai
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Weiguo Wang
- Department of Spine Surgery, the Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jia Deng
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Lei Zhao
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Ziwei Han
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Li Wan
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| |
Collapse
|
4
|
Wang Q, Wang K, Tan X, Li Z, Wang H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol 2022; 13:1064033. [PMID: 36591235 PMCID: PMC9800621 DOI: 10.3389/fimmu.2022.1064033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metalloproteinases (MPs) is a large family of proteinases with metal ions in their active centers. According to the different domains metalloproteinases can be divided into a variety of subtypes mainly including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with Thrombospondin Motifs (ADAMTS). They have various functions such as protein hydrolysis, cell adhesion and remodeling of extracellular matrix. Metalloproteinases expressed in multiple types of cancers and participate in many pathological processes involving tumor genesis and development, invasion and metastasis by regulating signal transduction and tumor microenvironment. In this review, based on the current research progress, we summarized the structure of MPs, their expression and especially immunomodulatory role and mechanisms in cancers. Additionally, a relevant and timely update of recent advances and future directions were provided for the diagnosis and immunotherapy targeting MPs in cancers.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| |
Collapse
|
5
|
Fu K, Zheng X, Chen Y, Wu L, Yang Z, Chen X, Song W. Role of matrix metalloproteinases in diabetic foot ulcers: Potential therapeutic targets. Front Pharmacol 2022; 13:1050630. [PMID: 36339630 PMCID: PMC9631429 DOI: 10.3389/fphar.2022.1050630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are pathological states of tissue destruction of the foot or lower extremity in diabetic patients and are one of the serious chronic complications of diabetes mellitus. Matrix metalloproteinases (MMPs) serve crucial roles in both pathogenesis and wound healing. The primary functions of MMPs are degradation, which involves removing the disrupted extracellular matrix (ECM) during the inflammatory phase, facilitating angiogenesis and cell migration during the proliferation phase, and contracting and rebuilding the tissue during the remodeling phase. Overexpression of MMPs is a feature of DFUs. The upregulated MMPs in DFUs can cause excessive tissue degradation and impaired wound healing. Regulation of MMP levels in wounds could promote wound healing in DFUs. In this review, we talk about the roles of MMPs in DFUs and list potential methods to prevent MMPs from behaving in a manner detrimental to wound healing in DFUs.
Collapse
Affiliation(s)
- Kang Fu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Xueyao Zheng
- School of Life Sciences, Hubei University, Wuhan, China
| | - Yuhan Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Liuying Wu
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Zhiming Yang
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Xu Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Wei Song
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
- *Correspondence: Wei Song,
| |
Collapse
|
6
|
Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int 2022; 22:166. [PMID: 35488263 PMCID: PMC9052457 DOI: 10.1186/s12935-022-02599-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME) with diverse functions such as extracellular matrix (ECM) remodeling, modulation of metabolism and angiogenesis, and crosstalk with both cancer cells and infiltrating immune cells by production of growth factors, cytokines, and chemokines. Within the TME milieu, CAFs exhibit morphological and functional transitions with relatively specific markers and hold tremendous potential to facilitate tumorigenesis, development, and resistance towards multiple therapeutic strategies including chemotherapy, radiotherapy, targeted therapy, anti-angiogenesis therapy, immunotherapy, and endocrine therapy. Accordingly, CAFs themselves and the downstream effectors and/or signaling pathways are potential targets for optimizing the sensitivity of anti-cancer therapies. This review aims to provide a detailed landscape of the role that CAFs play in conferring therapeutic resistance in different cancers and the underlying mechanisms. The translational and therapeutic perspectives of CAFs in the individualized treatment of malignant tumors are also discussed.
Collapse
Affiliation(s)
- Bing Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Bo Shen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Feng Jiang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
7
|
Kümper M, Hessenthaler S, Zamek J, Niland S, Pach E, Mauch C, Zigrino P. LOSS OF ENDOTHELIAL CELL MMP14 REDUCES MELANOMA GROWTH AND METASTASIS BY INCREASING TUMOR VESSEL STABILITY. J Invest Dermatol 2021; 142:1923-1933.e5. [DOI: 10.1016/j.jid.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
|
8
|
A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid. Biomolecules 2021; 11:biom11101506. [PMID: 34680139 PMCID: PMC8533820 DOI: 10.3390/biom11101506] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Pemphigus and pemphigoid diseases are potentially life-threatening autoimmune blistering disorders that are characterized by intraepithelial and subepithelial blister formation, respectively. In both disease groups, skin and/or mucosal blistering develop as a result of a disruption of intercellular adhesion (pemphigus) and cell-extracellular matrix (ECM) adhesion (pemphigoid). Given that metalloproteinases can target cell adhesion molecules, the purpose of the present study was to investigate the role of these enzymes in the pathogenesis of these bullous dermatoses. Studies examining MMPs (matrix metalloproteinases) and the ADAM (a disintegrin and metalloproteinase) family of proteases in pemphigus and pemphigoid were selected from articles published in the repository of the National Library of Medicine (MEDLINE/PubMed) and bioRxiv. Multiple phases of screening were conducted, and relevant data were extracted and tabulated, with 29 articles included in the final qualitative analysis. The majority of the literature investigated the role of specific components of the MMP family primarily in bullous pemphigoid (BP) whereas studies that focused on pemphigus were rarer. The most commonly studied metalloproteinase was MMP-9 followed by MMP-2; other MMPs included MMP-1, MMP-3, MMP-8, MMP-12 and MMP-13. Molecules related to MMPs were also included, namely, ADAM5, 8, 10, 15, 17, together with TIMP-1 and TIMP-3. The results demonstrated that ADAM10 and MMP-9 activity is necessary for blister formation in experimental models of pemphigus vulgaris (PV) and BP, respectively. The data linking MMPs to the pathogenesis of experimental BP were relatively strong but the evidence for involvement of metalloproteinases in PV was more tentative. These molecules represent potential candidates for the development of mechanism-based treatments of these blistering diseases.
Collapse
|
9
|
Characterization of cathepsin S exosites that govern its elastolytic activity. Biochem J 2020; 477:227-242. [DOI: 10.1042/bcj20190847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
We have previously determined that the elastolytic activities of cathepsins (Cat) K and V require two exosites sharing the same structural localization on both enzymes. The structural features involved in the elastolytic activity of CatS have not yet been identified. We first mutated the analogous CatK and V putative exosites of CatS into the elastolytically inactive CatL counterparts. The modification of the exosite 1 did not affect the elastase activity of CatS whilst mutation of the Y118 of exosite 2 decreased the cleavage of elastin by ∼70% without affecting the degradation of other macromolecular substrates (gelatin, thyroglobulin). T06, an ectosteric inhibitor that disrupt the elastolytic activity of CatK, blocked ∼80% of the elastolytic activity of CatS without blocking the cleavage of gelatin and thyroglobulin. Docking studies showed that T06 preferentially interacts with a binding site located on the Right domain of the enzyme, outside of the active site. The structural examination of this binding site showed that the loop spanning the L174N175G176K177 residues of CatS is considerably different from that of CatL. Mutation of this loop into the CatL-like equivalent decreased elastin degradation by ∼70% and adding the Y118 mutation brought down the loss of elastolysis to ∼80%. In addition, the Y118 mutation selectively reduced the cleavage of the basement membrane component laminin by ∼50%. In summary, our data show that the degradation of elastin by CatS requires two exosites where one of them is distinct from those of CatK and V whilst the cleavage of laminin requires only one exosite.
Collapse
|
10
|
The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019; 8:cells8090984. [PMID: 31461880 PMCID: PMC6769477 DOI: 10.3390/cells8090984] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The pursuit of matrix metalloproteinase (MMP) inhibitors began in earnest over three decades ago. Initial clinical trials were disappointing, resulting in a negative view of MMPs as therapeutic targets. As a better understanding of MMP biology and inhibitor pharmacokinetic properties emerged, it became clear that initial MMP inhibitor clinical trials were held prematurely. Further complicating matters were problematic conclusions drawn from animal model studies. The most recent generation of MMP inhibitors have desirable selectivities and improved pharmacokinetics, resulting in improved toxicity profiles. Application of selective MMP inhibitors led to the conclusion that MMP-2, MMP-9, MMP-13, and MT1-MMP are not involved in musculoskeletal syndrome, a common side effect observed with broad spectrum MMP inhibitors. Specific activities within a single MMP can now be inhibited. Better definition of the roles of MMPs in immunological responses and inflammation will help inform clinic trials, and multiple studies indicate that modulating MMP activity can improve immunotherapy. There is a U.S. Food and Drug Administration (FDA)-approved MMP inhibitor for periodontal disease, and several MMP inhibitors are in clinic trials, targeting a variety of maladies including gastric cancer, diabetic foot ulcers, and multiple sclerosis. It is clearly time to move on from the dogma of viewing MMP inhibition as intractable.
Collapse
|
11
|
Florian-Rodriguez M, Chin K, Hamner J, Acevedo J, Keller P, Word RA. Effect of Protease Inhibitors in Healing of the Vaginal Wall. Sci Rep 2019; 9:12354. [PMID: 31451729 PMCID: PMC6710245 DOI: 10.1038/s41598-019-48527-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired elastogenesis and increased degradation of elastic fibers has been implicated in the pathogenesis of pelvic organ prolapse. Loss of the elastogenic organizer, fibulin-5 (FBLN5), leads to pelvic organ prolapse in mice. The objective of this study was to investigate the regulation of FBLN5 after surgical injury of the vaginal wall using the rat as a preclinical animal model. Both endogenous and recombinant FBLN5 were degraded after surgical injury. Estrogen did not alter the dramatic loss of vaginal FBLN5 in the acute phase after injury (12–48 h), but resulted in rescue of the poor recovery of FBLN5 levels in the late phase (7 d) of healing in ovariectomized animals. In contrast with estrogen, the general MMP inhibitor, actinonin, abrogated injury-induced degradation of FBLN5 significantly. Further, actinonin rescued the negative effects of injury on biomechanics, histomorphology, and elastic fibers. Control of excessive matrix degradation by local application of actinonin at the time of surgery may lead to improved elastic fiber regeneration and wound healing, thereby potentially enhancing pelvic floor recovery after reconstructive surgery for prolapse.
Collapse
Affiliation(s)
- Maria Florian-Rodriguez
- Department of Obstetrics and Gynecology Division of Female Pelvic Medicine and Reconstructive Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Kathleen Chin
- Department of Obstetrics and Gynecology Division of Female Pelvic Medicine and Reconstructive Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer Hamner
- Department of Obstetrics and Gynecology Division of Female Pelvic Medicine and Reconstructive Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jesus Acevedo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patrick Keller
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R Ann Word
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Jones JI, Nguyen TT, Peng Z, Chang M. Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals (Basel) 2019; 12:E79. [PMID: 31121851 PMCID: PMC6630664 DOI: 10.3390/ph12020079] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are significant complications of diabetes and an unmet medical need. Matrix metalloproteinases (MMPs) play important roles in the pathology of wounds and in the wound healing process. However, because of the challenge in distinguishing active MMPs from the two catalytically inactive forms of MMPs and the clinical failure of broad-spectrum MMP inhibitors in cancer, MMPs have not been a target for treatment of DFUs until recently. This review covers the discovery of active MMP-9 as the biochemical culprit in the recalcitrance of diabetic wounds to healing and targeting this proteinase as a novel approach for the treatment of DFUs. Active MMP-8 and MMP-9 were observed in mouse and human diabetic wounds using a batimastat affinity resin and proteomics. MMP-9 was shown to play a detrimental role in diabetic wound healing, whereas MMP-8 was beneficial. A new class of selective MMP-9 inhibitors shows clinical promise for the treatment of DFUs.
Collapse
Affiliation(s)
- Jeffrey I Jones
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Trung T Nguyen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
13
|
Wolf M, Clay SM, Oldenburg CE, Rose-Nussbaumer J, Hwang DG, Chan MF. Overexpression of MMPs in Corneas Requiring Penetrating and Deep Anterior Lamellar Keratoplasty. Invest Ophthalmol Vis Sci 2019; 60:1734-1747. [PMID: 31022731 PMCID: PMC6485316 DOI: 10.1167/iovs.18-25961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Matrix metalloproteinases (MMPs) comprise a family of zinc-dependent endopeptidases involved in wound healing processes, including neovascularization and fibrosis. We assessed MMP protein expression levels in diseased corneas of patients requiring penetrating and deep anterior lamellar keratoplasty. The purpose of this study was to test the hypothesis that upregulation of MMPs in diseased corneas is positively associated with clinical levels of corneal neovascularization and fibrosis. Methods Protein expression levels of nine individual MMPs were quantified simultaneously in human corneal lysates by using the Bio-Plex Pro Human MMP 9-Plex Panel and the MAGPIX technology. Measurements of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP12, and MMP13 were performed on diseased specimens from 21 patients undergoing corneal transplantation (17 for penetrating keratoplasty and 4 for deep anterior lamellar keratoplasty) and 6 normal control corneas. Results Luminex-based expression analysis revealed a significant overexpression of four of the nine MMPs tested (MMP2, MMP8, MMP12, and MMP13) in patient samples compared to control. Significant overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 was observed in diseased corneas with neovascularization compared with diseased corneas without neovascularization. Overexpression of MMP1, MMP2, MMP8, MMP12, and MMP13 also corresponded with the levels of corneal fibrosis. Finally, reduced expression of MMP3 was detected in keratoconus patients. Conclusions Multiple MMPs are expressed in the corneas of patients with chronic disease requiring keratoplasty even when the pathologic process appears to be clinically inactive. In particular, the expression of several MMPs (MMP2, MMP8, MMP12, and MMP13) is positively associated with increased levels corneal fibrosis and neovascularization.
Collapse
Affiliation(s)
- Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Selene M Clay
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Catherine E Oldenburg
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Jennifer Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| |
Collapse
|
14
|
Chen X, Kuang W, Huang H, Li B, Zhu Y, Zhou B, Yan L. Knockdown of RWD domain containing 3 inhibits the malignant phenotypes of glioblastoma cells via inhibition of phosphoinositide 3-kinase/protein kinase B signaling. Exp Ther Med 2018; 16:384-393. [PMID: 29977365 DOI: 10.3892/etm.2018.6135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor. RWD domain containing 3 (RWDD3) has been previously reported to serve a promoting role in pituitary tumors. However, the exact role of RWDD3 in glioblastoma remains unclear. Therefore, the present study aimed to investigate the expression levels of RWDD3 in human glioblastoma tissues and cell lines, as well as to examine the regulatory mechanism of RWDD3 underlying glioblastoma growth and metastasis. The results revealed that RWDD3 was significantly upregulated in glioblastoma tissues compared with normal brain tissues, while high expression of RWDD3 was associated with a shorter survival time of glioblastoma patients. The expression levels of RWDD3 were also higher in the glioblastoma cell lines compared with the normal human astrocyte cell line. Subsequent to knockdown of RWDD3, the proliferation of glioblastoma U87 and U251 cells was significantly decreased, possibly due to the cell cycle arrest at G1 phase, as well as the increased cell apoptosis. Furthermore, downregulation of RWDD3 also suppressed U87 and U251 cell invasion by inhibiting the expression levels of matrix metalloproteinase 2 (MMP2) and MMP9. Molecular mechanism investigation demonstrated that knockdown of RWDD3 significantly downregulated the activity of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Activation of PI3K/AKT signaling prevented the suppressive effects of RWDD3 downregulation on glioblastoma cell proliferation and migration, concurrent with increased protein levels of MMP2 and MMP9. In conclusion, the current study demonstrated for the first time that inhibition of RWDD3 expression inhibited glioblastoma progression, at least partly, via suppressing the PI3K/AKT signaling activity, and thus RWDD3 may be a novel potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Weiping Kuang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Hongxing Huang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bo Li
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Yong Zhu
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bin Zhou
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Lin Yan
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
15
|
Nielsen SH, Mouton AJ, DeLeon-Pennell KY, Genovese F, Karsdal M, Lindsey ML. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol 2017; 75-76:43-57. [PMID: 29247693 DOI: 10.1016/j.matbio.2017.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 01/08/2023]
Abstract
Cardiovascular Disease (CVD) is the most common cause of death in industrialized countries, and myocardial infarction (MI) is a major CVD with significant morbidity and mortality. Following MI, the left ventricle (LV) undergoes a wound healing response to ischemia that results in extracellular matrix (ECM) scar formation to replace necrotic myocytes. While ECM accumulation following MI is termed cardiac fibrosis, this is a generic term that does not differentiate between ECM accumulation that occurs in the infarct region to form a scar that is structurally necessary to preserve left ventricle (LV) wall integrity and ECM accumulation that increases LV wall stiffness to exacerbate dilation and stimulate the progression to heart failure. This review focuses on post-MI LV ECM remodeling, targeting the discussion on ECM biomarkers that could be useful for predicting MI outcomes.
Collapse
Affiliation(s)
- Signe Holm Nielsen
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark; Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristine Y DeLeon-Pennell
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | | | - Morten Karsdal
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|