1
|
Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A, Atkinson L, Hunt V. Advancing Strongyloides omics data: bridging the gap with Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220437. [PMID: 38008117 PMCID: PMC10676819 DOI: 10.1098/rstb.2022.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 11/28/2023] Open
Abstract
Among nematodes, the free-living model organism Caenorhabditis elegans boasts the most advanced portfolio of high-quality omics data. The resources available for parasitic nematodes, including Strongyloides spp., however, are lagging behind. While C. elegans remains the most tractable nematode and has significantly advanced our understanding of many facets of nematode biology, C. elegans is not suitable as a surrogate system for the study of parasitism and it is important that we improve the omics resources available for parasitic nematode species. Here, we review the omics data available for Strongyloides spp. and compare the available resources to those for C. elegans and other parasitic nematodes. The advancements in C. elegans omics offer a blueprint for improving omics-led research in Strongyloides. We suggest areas of priority for future research that will pave the way for expansions in omics resources and technologies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Reem Al-Jawabreh
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Dominika Lastik
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Kieran Reynolds
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Mona Suleiman
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Vicky Hunt
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
2
|
Uzoechi SC, Rosa BA, Singh KS, Choi YJ, Bracken BK, Brindley PJ, Townsend RR, Sprung R, Zhan B, Bottazzi ME, Hawdon JM, Wong Y, Loukas A, Djuranovic S, Mitreva M. Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum. Pathogens 2023; 12:95. [PMID: 36678443 PMCID: PMC9865600 DOI: 10.3390/pathogens12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The dynamic host-parasite mechanisms underlying hookworm infection establishment and maintenance in mammalian hosts remain poorly understood but are primarily mediated by hookworm's excretory/secretory products (ESPs), which have a wide spectrum of biological functions. We used ultra-high performance mass spectrometry to comprehensively profile and compare female and male ESPs from the zoonotic human hookworm Ancylostoma ceylanicum, which is a natural parasite of dogs, cats, and humans. We improved the genome annotation, decreasing the number of protein-coding genes by 49% while improving completeness from 92 to 96%. Compared to the previous genome annotation, we detected 11% and 10% more spectra in female and male ESPs, respectively, using this improved version, identifying a total of 795 ESPs (70% in both sexes, with the remaining sex-specific). Using functional databases (KEGG, GO and Interpro), common and sex-specific enriched functions were identified. Comparisons with the exclusively human-infective hookworm Necator americanus identified species-specific and conserved ESPs. This is the first study identifying ESPs from female and male A. ceylanicum. The findings provide a deeper understanding of hookworm protein functions that assure long-term host survival and facilitate future engineering of transgenic hookworms and analysis of regulatory elements mediating the high-level expression of ESPs. Furthermore, the findings expand the list of potential vaccine and diagnostic targets and identify biologics that can be explored for anti-inflammatory potential.
Collapse
Affiliation(s)
- Samuel C. Uzoechi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kumar Sachin Singh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Zhan
- Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria-Elena Bottazzi
- Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - John M. Hawdon
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Yide Wong
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Proteomic Profiling and In Silico Characterization of the Secretome of Anisakis simplex Sensu Stricto L3 Larvae. Pathogens 2022; 11:pathogens11020246. [PMID: 35215189 PMCID: PMC8879239 DOI: 10.3390/pathogens11020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakis simplex sensu stricto (s.s.) L3 larvae are one of the major etiological factors of human anisakiasis, which is one of the most important foodborne parasitic diseases. Nevertheless, to date, Anisakis secretome proteins, with important functions in nematode pathogenicity and host-parasite interactions, have not been extensively explored. Therefore, the aim of this study was to identify and characterize the excretory-secretory (ES) proteins of A. simplex L3 larvae. ES proteins of A. simplex were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the identified proteins were then analyzed using bioinformatics tools. A total of 158 proteins were detected. Detailed bioinformatic characterization of ES proteins was performed, including Gene Ontology (GO) analysis, identification of enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, protein family classification, secretory pathway prediction, and detection of essential proteins. Furthermore, of all detected ES proteins, 1 was identified as an allergen, which was Ani s 4, and 18 were potential allergens, most of which were homologs of nematode and arthropod allergens. Nine potential pathogenicity-related proteins were predicted, which were predominantly homologs of chaperones. In addition, predicted host-parasite interactions between the Anisakis ES proteins and both human and fish proteins were identified. In conclusion, this study represents the first global analysis of Anisakis ES proteins. The findings provide a better understanding of survival and invasion strategies of A. simplex L3 larvae.
Collapse
|
4
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Hookworm infection: Toward development of safe and effective peptide vaccines. J Allergy Clin Immunol 2021; 148:1394-1419.e6. [PMID: 34872650 DOI: 10.1016/j.jaci.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Hookworms are hematophagous nematode parasites that have infected a billion people worldwide. Anthelmintic drugs have limited efficacy and do not prevent reinfection. Therefore, prophylactic vaccines are in high demand. Whole parasite vaccines are allergic and unsafe; thus, research into subunit vaccines has been warranted. A comprehensive overview of protein or peptide subunit vaccines' safety, protective efficacy, and associated immune responses is provided herein. The differences between the immune responses against hookworm infection by patients from epidemic versus nonepidemic areas are discussed in detail. Moreover, the different immunologic mechanisms of protection are discussed, including those that rely on allergic and nonallergic humoral and antibody-dependent cellular responses. The allergic and autoimmune potential of hookworm antigens is also explored, as are the immunoregulatory responses induced by the hookworm secretome. The potential of oral mucosal immunizations has been overlooked. Oral immunity against hookworms is a long-lived and safer immune response that is associated with elimination of infection and protective against reinfections. However, the harsh conditions of the gastrointestinal environment necessitates special oral delivery systems to unlock vaccines' protective potential. The potential for development of safer and more effective peptide- and protein-based anthelmintic vaccines is explored herein.
Collapse
Affiliation(s)
- Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
5
|
IL-33: A central cytokine in helminth infections. Semin Immunol 2021; 53:101532. [PMID: 34823996 DOI: 10.1016/j.smim.2021.101532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
IL-33 is an alarmin cytokine which has been implicated in allergy, fibrosis, inflammation, tumorigenesis, metabolism, and homeostasis. However, amongst its strongest roles are in helminth infections, where IL-33 usually (but not always) is central to induction of an effective anti-parasitic immune response. In this review, we will summarise the literature around this fascinating cytokine, its activity on immune and non-immune cells, the unique (and sometimes counterintuitive) responses it induces, and how it can coordinate the immune response during infections by parasitic helminths. Finally, we will summarise some of the ways that parasites have developed to modulate the IL-33 pathway for their own benefit.
Collapse
|
6
|
Gillis-Germitsch N, Kockmann T, Asmis LM, Tritten L, Schnyder M. The Angiostrongylus vasorum Excretory/Secretory and Surface Proteome Contains Putative Modulators of the Host Coagulation. Front Cell Infect Microbiol 2021; 11:753320. [PMID: 34796127 PMCID: PMC8593241 DOI: 10.3389/fcimb.2021.753320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023] Open
Abstract
Angiostrongylus vasorum is a cardiopulmonary nematode of canids and is, among others, associated with bleeding disorders in dogs. The pathogenesis of such coagulopathies remains unclear. A deep proteomic characterization of sex specific A. vasorum excretory/secretory proteins (ESP) and of cuticular surface proteins was performed, and the effect of ESP on host coagulation and fibrinolysis was evaluated in vitro. Proteins were quantified by liquid chromatography coupled to mass spectrometry and functionally characterized through gene ontology and pathway enrichment analysis. In total, 1069 ESP (944 from female and 959 from male specimens) and 1195 surface proteins (705 and 1135, respectively) were identified. Among these were putative modulators of host coagulation, e.g., von Willebrand factor type D domain protein orthologues as well as several proteases, including serine type proteases, protease inhibitors and proteasome subunits. The effect of ESP on dog coagulation and fibrinolysis was evaluated on canine endothelial cells and by rotational thromboelastometry (ROTEM). After stimulation with ESP, tissue factor and serpin E1 transcript expression increased. ROTEM revealed minimal interaction of ESP with dog blood and ESP did not influence the onset of fibrinolysis, leading to the conclusion that Angiostrongylus vasorum ESP and surface proteins are not solely responsible for bleeding in dogs and that the interaction with the host's vascular hemostasis is limited. It is likely that coagulopathies in A. vasorum infected dogs are the result of a multifactorial response of the host to this parasitic infection.
Collapse
Affiliation(s)
- Nina Gillis-Germitsch
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology Zurich (ETH Zurich), University of Zurich, Zurich, Switzerland
| | - Lars M Asmis
- Center for Perioperative Thrombosis and Hemostasis, Zurich, Switzerland
| | - Lucienne Tritten
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Manuela Schnyder
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Mining nematode protein secretomes to explain lifestyle and host specificity. PLoS Negl Trop Dis 2021; 15:e0009828. [PMID: 34587193 PMCID: PMC8504978 DOI: 10.1371/journal.pntd.0009828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/11/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Parasitic nematodes are highly successful pathogens, inflicting disease on humans, animals and plants. Despite great differences in their life cycles, host preference and transmission modes, these parasites share a common capacity to manipulate their host's immune system. This is at least partly achieved through the release of excretory/secretory proteins, the most well-characterized component of nematode secretomes, that are comprised of functionally diverse molecules. In this work, we analyzed published protein secretomes of parasitic nematodes to identify common patterns as well as species-specific traits. The 20 selected organisms span 4 nematode clades, including plant pathogens, animal parasites, and the free-living species Caenorhabditis elegans. Transthyretin-like proteins were the only component common to all adult secretomes; many other protein classes overlapped across multiple datasets. The glycolytic enzymes aldolase and enolase were present in all parasitic species, but missing from C. elegans. Secretomes from larval stages showed less overlap between species. Although comparison of secretome composition across species and life-cycle stages is challenged by the use of different methods and depths of sequencing among studies, our workflow enabled the identification of conserved protein families and pinpointed elements that may have evolved as to enable parasitism. This strategy, extended to more secretomes, may be exploited to prioritize therapeutic targets in the future.
Collapse
|
8
|
Wang T, Gasser RB. Prospects of Using High-Throughput Proteomics to Underpin the Discovery of Animal Host-Nematode Interactions. Pathogens 2021; 10:825. [PMID: 34209223 PMCID: PMC8308620 DOI: 10.3390/pathogens10070825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023] Open
Abstract
Parasitic nematodes impose a significant public health burden, and cause major economic losses to agriculture worldwide. Due to the widespread of anthelmintic resistance and lack of effective vaccines for most nematode species, there is an urgent need to discover novel therapeutic and vaccine targets, informed through an understanding of host-parasite interactions. Proteomics, underpinned by genomics, enables the global characterisation proteins expressed in a particular cell type, tissue and organism, and provides a key to insights at the host-parasite interface using advanced high-throughput mass spectrometry-based proteomic technologies. Here, we (i) review current mass-spectrometry-based proteomic methods, with an emphasis on a high-throughput 'bottom-up' approach; (ii) summarise recent progress in the proteomics of parasitic nematodes of animals, with a focus on molecules inferred to be involved in host-parasite interactions; and (iii) discuss future research directions that could enhance our knowledge and understanding of the molecular interplay between nematodes and host animals, in order to work toward new, improved methods for the treatment, diagnosis and control of nematodiases.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | | |
Collapse
|
9
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
10
|
Buitrago G, Pickering D, Ruscher R, Cobos Caceres C, Jones L, Cooper M, Van Waardenberg A, Ryan S, Miles K, Field M, Dredge K, Daly NL, Giacomin PR, Loukas A. A netrin domain-containing protein secreted by the human hookworm Necator americanus protects against CD4 T cell transfer colitis. Transl Res 2021; 232:88-102. [PMID: 33676036 DOI: 10.1016/j.trsl.2021.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
The symbiotic relationships shared between humans and their gastrointestinal parasites present opportunities to discover novel therapies for inflammatory diseases. A prime example of this phenomenon is the interaction of humans and roundworms such as the hookworm, Necator americanus. Epidemiological observations, animal studies and clinical trials using experimental human hookworm infection show that hookworms can suppress inflammation in a safe and well-tolerated way, and that the key to their immunomodulatory properties lies within their secreted proteome. Herein we describe the identification of 2 netrin domain-containing proteins from the N. americanus secretome, and explore their potential in treating intestinal inflammation in mouse models of ulcerative colitis. One of these proteins, subsequently named Na-AIP-1, was effective at suppressing disease when administered prophylactically in the acute TNBS-induced model of colitis. This protective effect was validated in the more robust CD4 T cell transfer model of chronic colitis, where prophylactic Na-AIP-1 reduced T-cell-dependent type-1 cytokine responses in the intestine and the associated intestinal pathology. Mechanistic studies revealed that depletion of CD11c+ cells abrogated the protective anticolitic effect of Na-AIP-1. Next generation sequencing of colon tissue in the T-cell transfer model of colitis revealed that Na-AIP-1 induced a transcriptomic profile associated with the downregulation of metabolic and signaling pathways involved in type-1 inflammation, notably TNF. Finally, co-culture of Na-AIP-1 with a human monocyte-derived M1 macrophage cell line resulted in significantly reduced secretion of TNF. Na-AIP-1 is now a candidate for clinical development as a novel therapeutic for the treatment of human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Geraldine Buitrago
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Darren Pickering
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Claudia Cobos Caceres
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Linda Jones
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Martha Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ashley Van Waardenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Stephanie Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Kim Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Matthew Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Keith Dredge
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Norelle L Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
11
|
Logan J, Pearson MS, Manda SS, Choi YJ, Field M, Eichenberger RM, Mulvenna J, Nagaraj SH, Fujiwara RT, Gazzinelli-Guimaraes P, Bueno L, Mati V, Bethony JM, Mitreva M, Sotillo J, Loukas A. Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLoS Negl Trop Dis 2020; 14:e0008237. [PMID: 32453752 PMCID: PMC7274458 DOI: 10.1371/journal.pntd.0008237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/05/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
The human hookworm Necator americanus infects more than 400 million people worldwide, contributing substantially to the poverty in these regions. Adult stage N. americanus live in the small intestine of the human host where they inject excretory/secretory (ES) products into the mucosa. ES products have been characterized at the proteome level for a number of animal hookworm species, but until now, the difficulty in obtaining sufficient live N. americanus has been an obstacle in characterizing the secretome of this important human pathogen. Herein we describe the ES proteome of N. americanus and utilize this information along with RNA Seq data to conduct the first proteogenomic analysis of a parasitic helminth, significantly improving the available genome and thereby generating a robust description of the parasite secretome. The genome annotation resulted in a revised prediction of 3,425 fewer genes than initially reported, accompanied by a significant increase in the number of exons and introns, total gene length and the percentage of the genome covered by genes. Almost 200 ES proteins were identified by LC-MS/MS with SCP/TAPS proteins, ‘hypothetical’ proteins and proteases among the most abundant families. These proteins were compared to commonly used model species of human parasitic infections, including Ancylostoma caninum, Nippostrongylus brasiliensis and Heligmosomoides polygyrus. SCP/TAPS proteins are immunogenic in nematode infections, so we expressed four of those identified in this study in recombinant form and showed that they are all recognized to varying degrees by serum antibodies from hookworm-infected subjects from a disease-endemic area of Brazil. Our findings provide valuable information on important families of proteins with both known and unknown functions that could be instrumental in host-parasite interactions, including protein families that might be key for parasite survival in the onslaught of robust immune responses, as well as vaccine and diagnostic targets. Hookworms infect hundreds of millions of people in tropical regions of the world. Adult worms reside in the small bowel where they feed on blood, causing iron-deficiency anemia when present in large numbers and contributing substantially to the poverty in these regions. Hookworms inject excretory/secretory (ES) products into the gut tissue when they feed, and while the protein constituents of ES products have been characterized for a number of animal hookworm species, difficulty in obtaining sufficient live human hookworms has thus far precluded characterization of the secreted proteome. Herein we describe the ES proteins of the major human hookworm, Necator americanus, and utilize this information to significantly improve the available genome sequence. Almost 200 ES proteins were identified and compared to the secreted proteomes of other parasitic roundworms to provide a molecular snapshot of the host-parasite interface. We produced recombinant forms of some of the identified proteins and showed that they are all recognized to varying degrees by antibodies from hookworm-infected subjects. Our work sheds light on important families of proteins that might be key for parasite survival in the human host, and presents a dataset that can now be mined in the search for vaccine, drug and diagnostic targets.
Collapse
Affiliation(s)
- Jayden Logan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Srikanth S. Manda
- Cancer Data Science Group, ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
- LifeBytes India Pvt Ltd, Whitefield, Bangalore, India
| | - Young-Jun Choi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jason Mulvenna
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation and Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ricardo T. Fujiwara
- Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Gazzinelli-Guimaraes
- Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Bueno
- Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vitor Mati
- Department of Health Sciences, Universidade Federal de Lavras, Lavras, Brazil
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail: (JS); (AL)
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- * E-mail: (JS); (AL)
| |
Collapse
|
12
|
Lu M, Tian X, Yang Z, Wang W, Tian AL, Li C, Yan R, Xu L, Song X, Li X. Proteomic analysis revealed T cell hyporesponsiveness induced by Haemonchus contortus excretory and secretory proteins. Vet Res 2020; 51:65. [PMID: 32404195 PMCID: PMC7222441 DOI: 10.1186/s13567-020-00790-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Haemonchus contortus has evolved highly integrated and sophisticated mechanisms to promote coexistence with hosts. The excretory-secretory (ES) products generated by this parasite contribute to the regulation of the host immune response to facilitate immune evasion and induce chronicity, but the proteins responsible for this process and the exact cellular mechanisms have yet to be defined. In this study, we identified 114 H. contortus ES proteins (HcESPs) interacting with host T cells and 15 T cell binding receptors via co-immunoprecipitation and shotgun liquid chromatography-tandem mass spectrometry analysis. Based on bioinformatics analysis, we demonstrated that HcESPs could inhibit T cell viability, induce cell apoptosis, suppress T cell proliferation and cause cell cycle arrest. Furthermore, the stimulation of HcESPs exerted critical control effects on T cell cytokine production profiles, predominantly promoting the secretion of interleukin (IL)-10, IL-17A and transforming growth factor-β1 and inhibiting IL-2, IL-4 and interferon-γ production. Collectively, these findings may provide insights into the interaction between ES proteins and key host effector cells, enhancing our understanding of the molecular mechanism underlying parasite immune evasion and providing new clues for novel vaccine development.
Collapse
Affiliation(s)
- Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenjuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
13
|
Abuzeid AMI, Zhou X, Huang Y, Li G. Twenty-five-year research progress in hookworm excretory/secretory products. Parasit Vectors 2020; 13:136. [PMID: 32171305 PMCID: PMC7071665 DOI: 10.1186/s13071-020-04010-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
Hookworm infection is a major public health problem that threatens about 500 million people throughout tropical areas of the world. Adult hookworms survive for many years in the host intestine, where they suck blood, causing iron deficiency anemia and malnutrition. Numerous molecules, named excretory/secretory (ES) products, are secreted by hookworm adults and/or larvae to aid in parasite survival and pathobiology. Although the molecular cloning and characterization of hookworm ES products began 25 years ago, the biological role and molecular nature of many of them are still unclear. Hookworm ES products, with distinct structures and functions, have been linked to many essential events in the disease pathogenesis. These events include host invasion and tissue migration, parasite nourishment and reproduction, and immune modulation. Several of these products represent promising vaccine targets for controlling hookworm disease and therapeutic targets for many inflammatory diseases. This review aims to summarize our present knowledge about hookworm ES products, including their role in parasite biology, host-parasite interactions, and as vaccine and pharmaceutical targets and to identify research gaps and future research directions in this field.![]()
Collapse
Affiliation(s)
- Asmaa M I Abuzeid
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Zhou
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Huang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guoqing Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Huang Y, Abuzeid AMI, Liu Y, He L, Zhao Q, Yan X, Hang J, Ran R, Sun Y, Li X, Liu J, Li G. Identification and localization of hookworm platelet inhibitor in Ancylostoma ceylanicum. INFECTION GENETICS AND EVOLUTION 2019; 77:104102. [PMID: 31689543 DOI: 10.1016/j.meegid.2019.104102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Ancylostoma ceylanicum is a zoonotic hookworm, which mainly causes iron deficiency anemia (IDA) in humans and animals. Hookworm platelet inhibitor (HPI) has been isolated from adult Ancylostoma caninum and linked to the pathogenesis of hookworm associated intestinal hemorrhage and IDA. However, there is no available data about HPI from A. ceylanicum. To study the molecular characteristics of A. ceylanicum HPI (Ace-HPI), its corresponding cDNA was amplified from adult A. ceylanicum mRNA using the primers designed based on the Ac-HPI gene sequence, and its sequence homology and phylogenetic relationship were analyzed. The differential expression of Ace-hpi mRNA in the adult and third larval (L3) stages was compared using the quantitative real-time PCR. Ace-HPI reactivity and tissue localization were studied by Western blot and immunofluorescence, respectively. Platelet aggregation activity was monitored in a 96-well microplate reader. The results showed that the Ace-HPI encoding gene was 603 bp in length. Ace-HPI showed 91% homology to Ac-HPI, was closely related to Ac-ASP3, and belonged to the CAP superfamily. Ace-hpi transcripts were most abundant in the adult stage, followed by serum-stimulated infective larvae (ssL3), and finally in L3 stage, with a significant difference. Escherichia coli-expressed recombinant protein had good reactivity with the positive serum of A. ceylanicum-infected dogs. Immunolocalization indicated that Ace-HPI was located in the esophagus and cephalic glands of the adult. As well as, recombinant Ace-HPI inhibited the platelet aggregation in-vitro. HPI overexpression, anatomical location in adults, antigenicity and its in-vitro activity indicate its possible role in adult worm blood-feeding and as a valuable target for hookworm vaccine and drug development.
Collapse
Affiliation(s)
- Yue Huang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Asmaa M I Abuzeid
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Yunqiu Liu
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Long He
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Qi Zhao
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Xinxin Yan
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Jianxiong Hang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Rongkun Ran
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Yongxiang Sun
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Xiu Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Jumei Liu
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Guoqing Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China.
| |
Collapse
|
15
|
Sotillo J, Pearson MS, Becker L, Mekonnen GG, Amoah AS, van Dam G, Corstjens PLAM, Murray J, Mduluza T, Mutapi F, Loukas A. In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination. PLoS Negl Trop Dis 2019; 13:e0007362. [PMID: 31091291 PMCID: PMC6538189 DOI: 10.1371/journal.pntd.0007362] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/28/2019] [Accepted: 04/05/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Schistosomiasis is a neglected disease affecting hundreds of millions worldwide. Of the three main species affecting humans, Schistosoma haematobium is the most common, and is the leading cause of urogenital schistosomiasis. S. haematobium infection can cause different urogenital clinical complications, particularly in the bladder, and furthermore, this parasite has been strongly linked with squamous cell carcinoma. A comprehensive analysis of the molecular composition of its different proteomes will contribute to developing new tools against this devastating disease. METHODS AND FINDINGS By combining a comprehensive protein fractionation approach consisting of OFFGEL electrophoresis with high-throughput mass spectrometry, we have performed the first in-depth characterisation of the different discrete proteomes of S. haematobium that are predicted to interact with human host tissues, including the secreted and tegumental proteomes of adult flukes and secreted and soluble egg proteomes. A total of 662, 239, 210 and 138 proteins were found in the adult tegument, adult secreted, soluble egg and secreted egg proteomes, respectively. In addition, we probed these distinct proteomes with urine to assess urinary antibody responses from naturally infected human subjects with different infection intensities, and identified adult fluke secreted and tegument extracts as being the best predictors of infection. CONCLUSION We provide a comprehensive dataset of proteins from the adult and egg stages of S. haematobium and highlight their utility as diagnostic markers of infection intensity. Protein composition was markedly different between the different extracts, highlighting the distinct subsets of proteins that different development stages present in their different niches. Furthermore, we have identified adult fluke ES and tegument extracts as best predictors of infection using urine antibodies of naturally infected people. This study provides the first steps towards the development of novel tools to control this important neglected tropical disease.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Laboratorio de Referencia en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Gebeyaw G. Mekonnen
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Abena S. Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul L. A. M. Corstjens
- Department of Molecular Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janice Murray
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Zimbabwe
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
16
|
Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathog 2018; 14:e1007300. [PMID: 30335852 PMCID: PMC6193718 DOI: 10.1371/journal.ppat.1007300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite causing considerable damage to host tissue at the onset of parasitism, invasive helminths establish remarkably persistent infections in both animals and plants. Secretions released by these obligate parasites during host invasion are thought to be crucial for their persistence in infection. Helminth secretions are complex mixtures of molecules, most of which have unknown molecular targets and functions in host cells or tissues. Although the habitats of animal- and plant-parasitic helminths are very distinct, their secretions share the presence of a structurally conserved group of proteins called venom allergen-like proteins (VALs). Helminths abundantly secrete VALs during several stages of parasitism while inflicting extensive damage to host tissue. The tight association between the secretion of VALs and the onset of parasitism has triggered a particular interest in this group of proteins, as improved knowledge on their biological functions may assist in designing novel protection strategies against parasites in humans, livestock, and important food crops.
Collapse
|
17
|
Helminth-induced regulatory T cells and suppression of allergic responses. Curr Opin Immunol 2018; 54:1-6. [PMID: 29852470 DOI: 10.1016/j.coi.2018.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Infection with helminths has been associated with lower rates of asthma and other allergic diseases. This has been attributed, in part, to the ability of helminths to induce regulatory T cells that suppress inappropriate immune responses to allergens. Recent compelling evidence suggests that helminths may promote regulatory T cell expansion or effector functions through either direct (secretion of excretory/secretory molecules) or indirect mechanisms (regulation of the microbiome). This review will discuss key findings from human immunoepidemiological observations, studies using animal models of disease, and clinical trials with live worm infections, discussing the therapeutic potential for worms and their secreted products for treating allergic inflammation.
Collapse
|
18
|
Shepherd C, Wangchuk P, Loukas A. Of dogs and hookworms: man's best friend and his parasites as a model for translational biomedical research. Parasit Vectors 2018; 11:59. [PMID: 29370855 PMCID: PMC5785905 DOI: 10.1186/s13071-018-2621-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
We present evidence that the dog hookworm (Ancylostoma caninum) is underutilised in the study of host-parasite interactions, particularly as a proxy for the human-hookworm relationship. The inability to passage hookworms through all life stages in vitro means that adult stage hookworms have to be harvested from the gut of their definitive hosts for ex vivo research. This makes study of the human-hookworm interface difficult for technical and ethical reasons. The historical association of humans, dogs and hookworms presents a unique triad of positive evolutionary pressure to drive the A. caninum-canine interaction to reflect that of the human-hookworm relationship. Here we discuss A. caninum as a proxy for human hookworm infection and situate this hookworm model within the current research agenda, including the various 'omics' applications and the search for next generation biologics to treat a plethora of human diseases. Historically, the dog hookworm has been well described on a physiological and biochemical level, with an increasing understanding of its role as a human zoonosis. With its similarity to human hookworm, the recent publications of hookworm genomes and other omics databases, as well as the ready availability of these parasites for ex vivo culture, the dog hookworm presents itself as a valuable tool for discovery and translational research.
Collapse
Affiliation(s)
- Catherine Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
19
|
Eichenberger RM, Talukder MH, Field MA, Wangchuk P, Giacomin P, Loukas A, Sotillo J. Characterization of Trichuris muris secreted proteins and extracellular vesicles provides new insights into host-parasite communication. J Extracell Vesicles 2018; 7:1428004. [PMID: 29410780 PMCID: PMC5795766 DOI: 10.1080/20013078.2018.1428004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/07/2018] [Indexed: 01/18/2023] Open
Abstract
Whipworms are parasitic nematodes that live in the gut of more than 500 million people worldwide. Owing to the difficulty in obtaining parasite material, the mouse whipworm Trichuris muris has been extensively used as a model to study human whipworm infections. These nematodes secrete a multitude of compounds that interact with host tissues where they orchestrate a parasitic existence. Herein we provide the first comprehensive characterization of the excretory/secretory products of T. muris. We identify 148 proteins secreted by T. muris and show for the first time that the mouse whipworm secretes exosome-like extracellular vesicles (EVs) that can interact with host cells. We use an Optiprep® gradient to purify the EVs, highlighting the suitability of this method for purifying EVs secreted by a parasitic nematode. We also characterize the proteomic and genomic content of the EVs, identifying >350 proteins, 56 miRNAs (22 novel) and 475 full-length mRNA transcripts mapping to T. muris gene models. Many of the miRNAs putatively mapped to mouse genes are involved in regulation of inflammation, implying a role in parasite-driven immunomodulation. In addition, for the first time to our knowledge, colonic organoids have been used to demonstrate the internalization of parasite EVs by host cells. Understanding how parasites interact with their host is crucial to develop new control measures. This first characterization of the proteins and EVs secreted by T. muris provides important information on whipworm-host communication and forms the basis for future studies.
Collapse
Affiliation(s)
- Ramon M. Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | | | - Matthew A. Field
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
20
|
Koriem K. Proteomic approach in human health and disease: Preventive and cure studies. Asian Pac J Trop Biomed 2018. [DOI: 10.4103/2221-1691.231285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|