1
|
Thimmappa PY, Nair AS, Najar MA, Mohanty V, Shastry S, Prasad TSK, Joshi MB. Quantitative phosphoproteomics reveals diverse stimuli activate distinct signaling pathways during neutrophil activation. Cell Tissue Res 2022; 389:241-257. [PMID: 35622142 PMCID: PMC9287233 DOI: 10.1007/s00441-022-03636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
Abstract
Neutrophils display functional heterogeneity upon responding diversely to physiological and pathological stimulations. During type 2 diabetes (T2D), hyperglycemia constitutively activates neutrophils, leading to reduced response to infections and on the other hand, elevated metabolic intermediates such as homocysteine induce bidirectional activation of platelets and neutrophils leading to thrombosis. Hence, in the context of T2D-associated complications, we examined the influence of high glucose, homocysteine, and LPS representing effector molecules of hyperglycemia, thrombosis, and infection, respectively, on human neutrophil activation to identify distinct signaling pathways by quantitative phosphoproteomics approach. High glucose activated C-Jun-N-Terminal Kinase, NTRK1, SYK, and PRKACA kinases associated with Rho GTPase signaling and phagocytosis, whereas LPS induced AKT1, SRPK2, CSNK2A1, and TTN kinases involved in cytokine signaling and inflammatory response. Homocysteine treatment led to activatation of LRRK2, FGR, MAPK3, and PRKCD kinases which are associated with neutrophil degranulation and cytoskeletal remodeling. Diverse inducers differentially modulated phosphorylation of proteins associated with neutrophil functions such as oxidative burst, degranulation, extracellular traps, and phagocytosis. Further validation of phosphoproteomics data on selected kinases revealed neutrophils pre-cultured under high glucose showed impeded response to LPS to phosphorylate p-ERK1/2Thr202/Tyr204, p-AKTSer473, and C-Jun-N-Terminal KinaseSer63 kinases. Our study provides novel phosphoproteome signatures that may be explored to understand neutrophil biology in T2D-associated complications.
Collapse
Affiliation(s)
- Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aswathy S Nair
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, India
| | - Varshasnatha Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
2
|
Li S, Luo Z, Meng S, Qiu X, Zheng F, Dai W, Zhang X, Sui W, Yan Q, Tang D, Dai Y. Label-free quantitative proteomic and phosphoproteomic analyses of renal biopsy tissues in membranous nephropathy. Proteomics Clin Appl 2021; 16:e2000069. [PMID: 34543527 DOI: 10.1002/prca.202000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. However, the underlying mechanisms of its occurrence and development are not completely clear. Thus, it is essential to explore the mechanisms. EXPERIMENTAL DESIGN Here, we employed label-free quantification and liquid chromatography-tandem mass spectrometry analysis techniques to investigate the proteomic and phosphoproteomic alterations in renal biopsy tissues of MN patients. Samples were collected from 16 MN patients and 10 controls. Immunohistochemistry (IHC) was performed to validate the hub phosphoprotein. RESULTS We focused on the changes in the phosphoproteome in MN group versus control group (CG). Totally, 1704 phosphoproteins containing 3241 phosphosites were identified and quantified. The phosphorylation levels of 216 phosphoproteins containing 297 phosphosites were differentially regulated in stage II MN group versus CG, and 333 phosphoproteins containing 461 phosphosites were differentially phosphorylated in stage III MN group versus CG. In each comparison, several differential phosphoproteins were factors, kinases and receptors involved in cellular processes, biological regulation and other biological processes. The subcellular location of most of the differential phosphoproteins was the nucleus. Protein-protein interaction analysis showed that the connections among the differential phosphoproteins were extremely complex, and several signalling pathways probably associated with MN were identified. The hub phosphoprotein was validated by IHC. CONCLUSIONS AND CLINICAL RELEVANCE This investigation can provide direct insight into the global phosphorylation events in MN group versus CG and may help to shed light on the potential pathogenic mechanisms of MN.
Collapse
Affiliation(s)
- Shanshan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhifeng Luo
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Shuhui Meng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofen Qiu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Fengping Zheng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, Texas, USA
| | - Xinzhou Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
Delaveris C, Wilk AJ, Riley NM, Stark JC, Yang SS, Rogers AJ, Ranganath T, Nadeau KC, Blish CA, Bertozzi CR. Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. ACS CENTRAL SCIENCE 2021; 7:650-657. [PMID: 34056095 PMCID: PMC8009098 DOI: 10.1021/acscentsci.0c01669] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/02/2023]
Abstract
Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-CoV-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate signaling of the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19.
Collapse
Affiliation(s)
- Corleone
S. Delaveris
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Aaron J. Wilk
- Stanford
Medical Scientist Training Program, Stanford
University, Stanford, California 94305, United States
- Stanford
Immunology Program, Stanford University, Stanford, California 94305, United States
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nicholas M. Riley
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jessica C. Stark
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Samuel S. Yang
- Department
of Emergency Medicine, Stanford University, Stanford, California 94305, United States
| | - Angela J. Rogers
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Thanmayi Ranganath
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Kari C. Nadeau
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
- Sean
N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California 94305, United States
| | | | - Catherine A. Blish
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Carolyn R. Bertozzi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- ChEM-H, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford, California 94305, United States
| |
Collapse
|
4
|
Delaveris CS, Wilk AJ, Riley NM, Stark JC, Yang SS, Rogers AJ, Ranganath T, Nadeau KC, Blish CA, Bertozzi CR. Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:13378148. [PMID: 33469569 PMCID: PMC7814829 DOI: 10.26434/chemrxiv.13378148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 12/17/2020] [Indexed: 12/23/2022]
Abstract
Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-Cov-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19. .
Collapse
Affiliation(s)
- Corleone S Delaveris
- Department of Chemistry, Stanford University, Stanford CA, 94305
- ChEM-H, Stanford University, Stanford, CA 94305
| | - Aaron J Wilk
- Stanford Medical Scientist Training Program, Stanford, CA 94305
- Stanford Immunology Program, Stanford University, Stanford, CA 94305
- Department of Medicine, Stanford University, Stanford, CA 94305
| | - Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford CA, 94305
| | - Jessica C Stark
- Department of Chemistry, Stanford University, Stanford CA, 94305
| | - Samuel S Yang
- Department of Emergency Medicine, Stanford University, Stanford, CA 94305
| | - Angela J Rogers
- Department of Medicine, Stanford University, Stanford, CA 94305
| | | | - Kari C Nadeau
- Department of Medicine, Stanford University, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA, 94305
| | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford CA, 94305
- ChEM-H, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
5
|
Hao J, Qi T, Zhu X, Chen J. Comparative Proteomic Analyses of the Liver in D-Galactosamine-Sensitized Mice Treated with Different Toll-Like Receptor Agonists. Proteomics 2020; 20:e1900393. [PMID: 32131144 DOI: 10.1002/pmic.201900393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Indexed: 01/03/2023]
Abstract
Acute liver failure (ALF) is a severe consequence of abrupt hepatocyte injury and has lethal outcomes. Three toll-like receptor agonists, including polyinosinic-polycytidylic acid (poly(I:C)), lipopolysaccharide (LPS), and cytosine-phosphate-guanine (CpG) DNA, cause acute and severe hepatitis, respectively, in D-galactosamine (D-GalN)-sensitized mice. However, the molecular differences among three ALF models (LPS/D-GalN, poly(I:C)/D-GalN, and CpG DNA/D-GalN), are unclear. Here, tandem mass tag based quantitative proteomic analyses of three ALF mouse models are performed. 52 common differentially expressed proteins (DEPs) are identified, in three ALF groups, compared to the control. Gene ontology analyses show that among the common DEPs, ten proteins are involved in immune system process, and 39 proteins in metabolic process. Among 80,195, and 23 specifically-expressed proteins in poly(I:C)/D-GalN, LPS/D-GalN, and CpG DNA/D-GalN groups, LPS/D-GalN-specific proteins are mostly distributed in the endoplasmic reticulum and more enriched in metabolic pathways, whereas poly (I:C)/D-GalN-specific proteins are mainly in the membrane and CpG DNA/D-GalN-specific proteins are related to the ribosome structural composition. In conclusion, the common and specific DEPs in three ALF mouse models at molecular level are identified; and determined a close-to-complete reference map of mouse liver proteins which will be useful for clinical diagnosis and treatment of liver failure in humans.
Collapse
Affiliation(s)
- Jun Hao
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Tingting Qi
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiaoying Zhu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jinjun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|