1
|
Li Z, Shao Y, Liu X, Wan X, Xiong P, Wang L, Yuan J. Steap3 is a key node in regulating the phagosome escape of Listeria monocytogenes. Mol Immunol 2025; 182:96-106. [PMID: 40252499 DOI: 10.1016/j.molimm.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Listeria monocytogenes, a foodborne pathogen, poses a significant threat to human health due to its high mortality rate and increasing antibiotic resistance. This study investigates the role of Steap3 in regulating the early phagosomal escape of Listeria monocytogenes. We found that Steap3 expression is downregulated in dendritic and intestinal epithelial cells following infection, and its deficiency exacerbates bacterial proliferation both in vitro and in vivo. Mechanistically, Steap3 interacts with Gm2a and Sting to inhibit Listeria monocytogenes infection. Our results highlight Steap3 as a key regulator in dendritic and intestinal epithelial cells' defense against Listeria monocytogenes infection, suggesting the Steap3-STING/Gm2a axis is a potential therapeutic target for listeriosis. This study provides valuable insights into the molecular mechanisms underlying Listeria monocytogenes pathogenesis and host immune response, offering new directions for developing anti-Listeria monocytogenes therapies.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yan Shao
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiao Liu
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xiaoyuan Wan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Pei Xiong
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China.
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China; Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Infectious Diseases, Affiliated Banan Hospital of Chongqing Medical University, Chongqing 400016, China; School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| |
Collapse
|
2
|
Fu Q, Luo L, Hong R, Zhou H, Xu X, Feng Y, Huang K, Wan Y, Li Y, Gong J, Le X, Liu X, Wang N, Yuan J, Li F. Radiogenomic analysis of ultrasound phenotypic features coupled to proteomes predicts metastatic risk in primary prostate cancer. BMC Cancer 2024; 24:290. [PMID: 38438956 PMCID: PMC10913270 DOI: 10.1186/s12885-024-12028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Primary prostate cancer with metastasis has a poor prognosis, so assessing its risk of metastasis is essential. METHODS This study combined comprehensive ultrasound features with tissue proteomic analysis to obtain biomarkers and practical diagnostic image features that signify prostate cancer metastasis. RESULTS In this study, 17 ultrasound image features of benign prostatic hyperplasia (BPH), primary prostate cancer without metastasis (PPCWOM), and primary prostate cancer with metastasis (PPCWM) were comprehensively analyzed and combined with the corresponding tissue proteome data to perform weighted gene co-expression network analysis (WGCNA), which resulted in two modules highly correlated with the ultrasound phenotype. We screened proteins with temporal expression trends based on the progression of the disease from BPH to PPCWOM and ultimately to PPCWM from two modules and obtained a protein that can promote prostate cancer metastasis. Subsequently, four ultrasound image features significantly associated with the metastatic biomarker HNRNPC (Heterogeneous nuclear ribonucleoprotein C) were identified by analyzing the correlation between the protein and ultrasound image features. The biomarker HNRNPC showed a significant difference in the five-year survival rate of prostate cancer patients (p < 0.0053). On the other hand, we validated the diagnostic efficiency of the four ultrasound image features in clinical data from 112 patients with PPCWOM and 150 patients with PPCWM, obtaining a combined diagnostic AUC of 0.904. In summary, using ultrasound imaging features for predicting whether prostate cancer is metastatic has many applications. CONCLUSION The above study reveals noninvasive ultrasound image biomarkers and their underlying biological significance, which provide a basis for early diagnosis, treatment, and prognosis of primary prostate cancer with metastasis.
Collapse
Affiliation(s)
- Qihuan Fu
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Li Luo
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Ruixia Hong
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Hang Zhou
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Xinzhi Xu
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Yujie Feng
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Kaifeng Huang
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Yujie Wan
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Ying Li
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Jiaqi Gong
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Xingyan Le
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Xiu Liu
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Na Wang
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Jiangbei Yuan
- Department of Infection, Zhejiang Provincial People's Hospital, 310014, Hangzhou, China.
| | - Fang Li
- Department of Ultrasound, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC) , Chongqing University Cancer Hospital, 400030, Chongqing, China.
| |
Collapse
|
3
|
Ran H, Sun W, Wang L, Wang X, Yu H, Chen J, Liu F, Chao Z, Pu Q, Liu Y, Zeng Y, Li Z, Wan Y, Yuan J. Proteomics coupled transcriptomics reveals lipopolysaccharide inhibiting peroxisome proliferator-activated receptors signalling pathway to reduce lipid droplets accumulation in mouse liver. Proteomics 2023; 23:e2300043. [PMID: 37269196 DOI: 10.1002/pmic.202300043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Lipid droplets (LDs) are multifunctional organelles consisting of a central compartment of non-polar lipids shielded from the cytoplasm by a phospholipid monolayer. The excessive accumulation of LDs in cells is closely related to the development and progression of many diseases in humans and animals, such as liver-related and cardiovascular diseases. Thus, regulating the LDs size and abundance is necessary to maintain metabolic homeostasis. This study found that lipopolysaccharide (LPS) stimulation reduced the LDs content in the mouse liver. We tried to explain the possible molecular mechanisms at the broad protein and mRNA levels, finding that inhibition of the peroxisome proliferator-activated receptors (PPAR) signalling pathway by LPS may be a critical factor in reducing LDs content.
Collapse
Affiliation(s)
- Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Zhiyin Chao
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Qi Pu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Youlong Zeng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Zhangfu Li
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, China
| |
Collapse
|
4
|
Fu Q, Hong R, Zhou H, Li Y, Liu X, Gong J, Wang X, Chen J, Ran H, Wang L, Li F, Yuan J. Proteomics reveals MRPL4 as a high-risk factor and a potential diagnostic biomarker for prostate cancer. Proteomics 2022; 22:e2200081. [PMID: 36059095 DOI: 10.1002/pmic.202200081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022]
Abstract
Through digital rectal examinations (DRE) and routine prostate-specific antigen (PSA) screening, early prostate cancer (PC) treatment has become possible. However, PC is a complex and heterogeneous disease. In vivo, cancer cells can invade adjacent tissues and metastasize to other tissues resulting in hard cures. Therefore, the key to improving PC patients' survival time is preventing cancer cells' metastasis. We used mass spectrometry to profile primary PC in patients with versus without metastatic PC. We named these two groups of PC patients as high-risk primary PC (n = 11) and low-risk primary PC (n = 7), respectively. At the same time, patients with benign prostatic hyperplasia (BPH, n = 6) were used as controls to explore the possible factors driving PC metastasis. Based on comprehensive mass spectrometry analysis and biological validation, we found significant upregulation of MRPL4 expression in high-risk primary PC relative to low-risk primary PC and BPH. Further, through research of the extensive clinical cohort data in the database, we discovered that MRPL4 could be a high-risk factor for PC and serve as a potential diagnostic biomarker. The MRPL4 might be used as an auxiliary indicator for clinical status/stage of primary PC to predict patient survival time.
Collapse
Affiliation(s)
- Qihuan Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ruixia Hong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Hang Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiu Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiaqi Gong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fang Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| |
Collapse
|
5
|
Yuan J, Li Z, Lin Z, Yao S, Han Y, Fu Q, Liu J. Label-free quantitative proteomics reveals the Steap3-Gm2a axis inhibiting the phagosomal escape of Listeria monocytogenes. Microbes Infect 2022; 24:104999. [DOI: 10.1016/j.micinf.2022.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022]
|
6
|
Rawson A, Saxena V, Gao H, Hooks J, Xuei X, McGuire P, Hato T, Hains DS, Anderson RM, Schwaderer AL. A Pilot Single Cell Analysis of the Zebrafish Embryo Cellular Responses to Uropathogenic Escherichia coli Infection. Pathog Immun 2022; 7:1-18. [PMID: 35178490 PMCID: PMC8843076 DOI: 10.20411/pai.v7i1.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Uropathogenic Escherichia coli (UPEC) infections are common and when they disseminate can be of high morbidity.
Methods: We studied the effects of UPEC infection using single cell RNA sequencing (scRNAseq) in zebrafish. Bulk RNA sequencing has historically been used to evaluate gene expression patterns, but scRNAseq allows gene expression to be evaluated at the single cell level and is optimal for evaluating heterogeneity within cell types and rare cell types. Zebrafish cohorts were injected with either saline or UPEC,and scRNAseq and canonical pathway analyses were performed.
Results: Canonical pathway analysis of scRNAseq data provided key information regarding innate immune pathways in the cells determined to be thymus cells, ionocytes, macrophages/monocytes, and pronephros cells. Pathways activated in thymus cells included interleukin 6 (IL-6) signaling and production of reactive oxygen species. Fc receptor-mediated phagocytosis was a leading canonical pathway in the pronephros and macrophages. Genes that were downregulated in UPEC vs saline exposed embryos involved the cellular response to the Gram-negative endotoxin lipopolysaccharide (LPS) and included Forkhead Box O1a (Foxo1a), Tribbles Pseudokinase 3 (Trib3), Arginase 2 (Arg2) and Polo Like Kinase 3 (Plk3).
Conclusions: Because 4-day post fertilization zebrafish embryos only have innate immune systems, the scRNAseq provides insights into pathways and genes that cell types utilize in the bacterial response. Based on our analysis, we have identified genes and pathways that might serve as genetic targets for treatment and further investigation in UPEC infections at the single cell level.
Collapse
Affiliation(s)
- Ashley Rawson
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Vijay Saxena
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Hongyu Gao
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Jenaya Hooks
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Xiaoling Xuei
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Patrick McGuire
- Indiana University School of Medicine, Department of Medical & Molecular Genetics
| | - Takashi Hato
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology
| | - David S. Hains
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
| | - Ryan M. Anderson
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism
- CORRESPONDING AUTHOR Andrew Schwaderer, Indiana University School of Medicine, Riley Hospital for Children, 699 Riley Hospital Dr., RR230, Indianapolis, IN 46202; Phone: 317-274-2527;
| | - Andrew L. Schwaderer
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology
- CORRESPONDING AUTHOR Ryan M Anderson, University of Chicago, Medicine-Endocrinology, Chicago, IL 60637;
| |
Collapse
|