1
|
Lin HA, Weng YH, Mulia T, Liu CL, Lin YC, Yu YY, Chen WC. Electrical Double-Layer Transistors Comprising Block Copolymer Electrolytes for Low-Power-Consumption Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25042-25052. [PMID: 38706304 PMCID: PMC11103659 DOI: 10.1021/acsami.4c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Electrical double-layer transistors (EDLTs) have received extensive research attention owing to their exciting advantages of low working voltage, high biocompatibility, and sensitive interfacial properties in ultrasensitive portable sensing applications. Therefore, it is of great interest to reduce photodetectors' operating voltage and power consumption by utilizing photo-EDLT. In this study, a series of block copolymers (BCPs) of poly(4-vinylpyridine)-block-poly(ethylene oxide) (P4VP-b-PEO) with different compositions were applied to formulate polyelectrolyte with indigo carmine salt in EDLT. Accordingly, PEO conduces ion conduction in the BCP electrolyte and enhances the carrier transport capability in the semiconducting channel; P4VP boosts the photocurrent by providing charge-trapping sites during light illumination. In addition, the severe aggregation of PEO is mitigated by forming a BCP structure with P4VP, enhancing the stability and photoresponse of the photo-EDLT. By optimizing the BCP composition, EDLT comprising P4VP16k-b-PEO5k and indigo carmine provides the highest specific detectivity of 2.1 × 107 Jones, along with ultralow power consumptions of 0.59 nW under 450 nm light illumination and 0.32 pW under dark state. The results indicate that photo-EDLT comprising the BCP electrolyte is a practical approach to reducing phototransistors' operating voltage and power consumption.
Collapse
Affiliation(s)
- Hung-An Lin
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
| | - Yi-Hsun Weng
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Tiffany Mulia
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Yang-Yen Yu
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
| | - Wen-Chang Chen
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Ercan E, Lin YC, Yang YF, Lin BH, Shimizu H, Inagaki S, Higashihara T, Chen WC. Tailoring Wavelength-Adaptive Visual Neuroplasticity Transitions of Synaptic Transistors Comprising Rod-Coil Block Copolymers for Dual-Mode Photoswitchable Learning/Forgetting Neural Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46157-46170. [PMID: 37728642 DOI: 10.1021/acsami.3c11441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vision-inspired artificial neural network based on optical synapses has drawn a tremendous amount of attention for emulating biological senses. Although photoexcitation-induced synaptic functionalities have been widely studied, optical habituation via the photoinhibitory pathway is yet to be demonstrated for sophisticated biomimetic visual adaptive systems. Here, the first optical neuromorphic block copolymer (BCP) phototransistor is demonstrated as an all-optical operation responding to various wavelengths, fulfilling photoassisted dynamic learning/forgetting cycles via optical potentiation without gate bias. The polyfluorene BCPs were precisely designed to enable wavelength-adaptive responses, benefiting from interfacial semiconductor/electret morphology and the crystallinity/electron affinity of the BCPs. Notably, this is the first work to simultaneously exhibit fully light-controlled short- and long-term memory based on organic material systems. The device presents a high current contrast above 100-fold and long-term retention over 104 s. As a proof-of-concept for neural networks, a 6 × 6 array of photosynapses performed outstanding visual pattern learning/forgetting with high accuracy. This study exploits the design strategy of a conjugated BCP electret to unleash the full potential of wavelength-adaptive visual neuroplasticity transitions. It provides an effective architecture for designing high-performance and high-storage capacity required applications in next-generation neuromorphic systems.
Collapse
Affiliation(s)
- Ender Ercan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yun-Fang Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hiroya Shimizu
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Yamagata, Japan
| | - Shin Inagaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Yamagata, Japan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Yamagata, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Ho CH, Lin YC, Yang WC, Ercan E, Chiang YC, Lin BH, Kuo CC, Chen WC. Fast Photoresponsive Phototransistor Memory Using Star-Shaped Conjugated Rod-Coil Molecules as a Floating Gate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15468-15477. [PMID: 35318845 DOI: 10.1021/acsami.2c00622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the explosive growth in data generation, photomemory capable of multibit data storage is highly desired to enhance the capacity of storage media. To improve the performance of phototransistor memory, an organic-molecule-based electret with an elaborate nanostructure is of great importance because it can enable multibit data storage in a memory device with high stability. In this study, a series of star-shaped rod-coil molecules consisting of perylenediimide (PDI) and biobased solanesol were synthesized in two-armed (PDI-Sol2), four-armed (PDI-Sol4), and six-armed (PDI-Sol6) architectures. Their molecular architecture-morphology relationships were investigated, and phototransistor memory was fabricated and characterized to evaluate the structure-performance relationship of these rod-coil molecules. Accordingly, the memory devices were enabled by photowriting with panchromatic light (405-650 nm) and electrical erasing using a gate bias. The PDI-Sol4-based memory device showed high memory ratios of 10 000 over 10 000 s and a rapid multilevel photoresponse of 50 ms. This achievement is related to the favorable energy-level alignment, isolated nanostructure, and face-on orientation of PDI-Sol4, which eliminated the charge tunneling barrier. The results of this study provide a new strategy for tailoring nanostructures in organic-molecule-based electrets by using a star-shaped rod-coil architecture for high-performance phototransistor memory.
Collapse
Affiliation(s)
- Cheng-Han Ho
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ender Ercan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Lin Y, Li G, Yu P, Ercan E, Chen W. Organic liquid crystals in optoelectronic device applications:
Field‐effect
transistors, nonvolatile memory, and photovoltaics. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan‐Cheng Lin
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
- Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei Taiwan
| | - Guan‐Syuan Li
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Ping‐Jui Yu
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| | - Ender Ercan
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
- Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei Taiwan
| | - Wen‐Chang Chen
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
- Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei Taiwan
| |
Collapse
|
5
|
Cheng J, Kanehashi S, Ogino K. Introduction of β-diketone unit to polyfluorene side chain for improving color stability and electron transporting property. CHEM LETT 2022. [DOI: 10.1246/cl.220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jin Cheng
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Shinji Kanehashi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Veeramuthu L, Venkatesan M, Benas JS, Cho CJ, Lee CC, Lieu FK, Lin JH, Lee RH, Kuo CC. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers (Basel) 2021; 13:4281. [PMID: 34960831 PMCID: PMC8705576 DOI: 10.3390/polym13244281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
The Conducting of polymers belongs to the class of polymers exhibiting excellence in electrical performances because of their intrinsic delocalized π- electrons and their tunability ranges from semi-conductive to metallic conductive regime. Conducting polymers and their composites serve greater functionality in the application of strain and pressure sensors, especially in yielding a better figure of merits, such as improved sensitivity, sensing range, durability, and mechanical robustness. The electrospinning process allows the formation of micro to nano-dimensional fibers with solution-processing attributes and offers an exciting aspect ratio by forming ultra-long fibrous structures. This review comprehensively covers the fundamentals of conducting polymers, sensor fabrication, working modes, and recent trends in achieving the sensitivity, wide-sensing range, reduced hysteresis, and durability of thin film, porous, and nanofibrous sensors. Furthermore, nanofiber and textile-based sensory device importance and its growth towards futuristic wearable electronics in a technological era was systematically reviewed to overcome the existing challenges.
Collapse
Affiliation(s)
- Loganathan Veeramuthu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Jean-Sebastien Benas
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Jung Cho
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Chin Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Fu-Kong Lieu
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| |
Collapse
|