1
|
Sayed S, Shekh M, Song J, Sun Q, Dai H, Xue VW, Liu S, Du B, Zhou G, Stadler FJ, Zhu G, Lu D. ISX9 loaded thermoresponsive nanoparticles for hair follicle regrowth. Mater Today Bio 2023; 23:100849. [PMID: 38033366 PMCID: PMC10682119 DOI: 10.1016/j.mtbio.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
There is a high demand for an optimal drug delivery system to treat androgenetic alopecia. Topical application of ISX9, which is a neurogenesis inducer, has been found to stimulate hair follicle (HF) regrowth by upregulating the Wnt/β-catenin signaling pathway, an essential pathway involved in initiating HF growth and development. In the present study, a temperature-sensitive, biopolymer-based, biocompatible, and eco-friendly drug-delivery system was synthesized. This system comprised chitosan-grafted poly(glycidyl methacrylate-co-N-isopropyl acrylamide) (Poly(GMA-co-NIPAAm)@CS-PGNCS) as the shell component and PF127 as the core polymer. The hydrophobic nature of the PF127 block copolymer efficiently dissolved the partially water-soluble drug, ISX9, and the thermos-responsive shell polymer effectively released the drug at a definite skin temperature. The optimized spherical nanoparticles demonstrated the lowest critical solution temperature (LCST) at 32 ± 2 °C with a diameter of 100-250 nm, which delivered encapsulated ISX9 with greater precision than topical ISX9. In a series of in vivo experiments, we demonstrated that ISX9-coated TBNPs upregulated the expression of β-catenin, active β-catenin, Wnt target genes, stemness marker genes, proliferating cell nuclear antigen, HF stem cell markers, and HF markers including VEGF, TGF, and IGF-1 more effectively than topical ISX9. These results suggest that TBNPs could be employed as a platform for effective transdermal delivery of various hydrophobic drugs.
Collapse
Affiliation(s)
- Sapna Sayed
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Mehdihasan Shekh
- New Energy Materials Laboratory, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiaxing Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Han Dai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Bing Du
- New Energy Materials Laboratory, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Guangqian Zhou
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Florian J. Stadler
- New Energy Materials Laboratory, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Guangming Zhu
- New Energy Materials Laboratory, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
2
|
Babelyte M, Peciulyte L, Navikaite-Snipaitiene V, Bendoraitiene J, Samaryk V, Rutkaite R. Synthesis and Characterization of Thermoresponsive Chitosan- graft-poly( N-isopropylacrylamide) Copolymers. Polymers (Basel) 2023; 15:3154. [PMID: 37571048 PMCID: PMC10421412 DOI: 10.3390/polym15153154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Thermoresponsive chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) copolymers of different composition were synthesized by free-radical polymerization of chitosan (CS) and N-isopropylacrylamide (NIPAAm) in aqueous solution using potassium persulfate (PPS) as an initiator. By changing the molar ratio of CS:NIPAAm from 1:0.25 to 1:10 graft copolymers with a CS backbone and different amounts of PNIPAM side chains were prepared. The chemical structure of the obtained CS-g-PNIPAAm copolymers was confirmed by FTIR and 1H NMR spectroscopy. 1H NMR spectra were also used to calculate the content of attached PNIPAAm side chains. Moreover, the lower critical solution temperature (LCST) behavior of synthesized copolymers was assessed by cloud point, differential scanning calorimetry and particle size measurements. The aqueous solutions of copolymers containing ≥12 molar percent of PNIPAAm side chains demonstrated LCST behavior with the phase separation at around 29.0-32.7 °C. The intensity of thermoresponsiveness depended on the composition of copolymers and increased with increasing content of poly(N-isopropylacrylamide) moieties. The synthesized thermoresponsive chitosan-graft-poly(N-isopropylacrylamide) copolymers could be potentially applied in drug delivery systems or tissue engineering.
Collapse
Affiliation(s)
- Migle Babelyte
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| | - Laura Peciulyte
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| | - Vesta Navikaite-Snipaitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| | - Joana Bendoraitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| | - Volodymyr Samaryk
- Department of Organic Chemistry, Lviv Polytechnic National University, Stepana Bandery St. 14, 79000 Lviv, Ukraine;
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (M.B.); (L.P.); (V.N.-S.); (J.B.)
| |
Collapse
|
3
|
Ziminska M, Wilson JJ, McErlean E, Dunne N, McCarthy HO. Synthesis and Evaluation of a Thermoresponsive Degradable Chitosan-Grafted PNIPAAm Hydrogel as a "Smart" Gene Delivery System. MATERIALS 2020; 13:ma13112530. [PMID: 32498464 PMCID: PMC7321466 DOI: 10.3390/ma13112530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Thermoresponsive hydrogels demonstrate tremendous potential as sustained drug delivery systems. However, progress has been limited as formulation of a stable biodegradable thermosensitive hydrogel remains a significant challenge. In this study, free radical polymerization was exploited to formulate a biodegradable thermosensitive hydrogel characterized by sustained drug release. Highly deacetylated chitosan and N-isopropylacrylamide with distinctive physical properties were employed to achieve a stable, hydrogel network at body temperature. The percentage of chitosan was altered within the copolymer formulations and the subsequent physical properties were characterized using 1H-NMR, FTIR, and TGA. Viscoelastic, swelling, and degradation properties were also interrogated. The thermoresponsive hydrogels were loaded with RALA/pEGFP-N1 nanoparticles and release was examined. There was sustained release of nanoparticles over three weeks and, more importantly, the nucleic acid cargo remained functional and this was confirmed by successful transfection of the NCTC-929 fibroblast cell line. This tailored thermoresponsive hydrogel offers an option for sustained delivery of macromolecules over a prolonged considerable period.
Collapse
Affiliation(s)
- Monika Ziminska
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
| | - Jordan J. Wilson
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Chemistry and Chemical Engineering, Queen’s University of Belfast, Belfast BT9 5AG, UK
| | - Emma McErlean
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
| | - Nicholas Dunne
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 9, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (N.D.); (H.O.M.); Tel.: +353-(0)1-7005712 (N.D.); +44-(0)28-90972149/1993 (H.O.M.)
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (J.J.W.); (E.M.)
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
- Correspondence: (N.D.); (H.O.M.); Tel.: +353-(0)1-7005712 (N.D.); +44-(0)28-90972149/1993 (H.O.M.)
| |
Collapse
|
4
|
Chatterjee S, Chi-Leung Hui P. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules 2019; 24:E2547. [PMID: 31336916 PMCID: PMC6681499 DOI: 10.3390/molecules24142547] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
This review describes some commercially available stimuli-responsive polymers of natural and synthetic origin, and their applications in drug delivery and textiles. The polymers of natural origin such as chitosan, cellulose, albumin, and gelatin are found to show both thermo-responsive and pH-responsive properties and these features of the biopolymers impart sensitivity to act differently under different temperatures and pH conditions. The stimuli-responsive characters of these natural polymers have been discussed in the review, and their respective applications in drug delivery and textile especially for textile-based transdermal therapy have been emphasized. Some practically important thermo-responsive polymers such as pluronic F127 (PF127) and poly(N-isopropylacrylamide) (pNIPAAm) of synthetic origin have been discussed in the review and they are of great importance commercially because of their in situ gel formation capacity. Some pH-responsive synthetic polymers have been discussed depending on their surface charge, and their drug delivery and textile applications have been discussed in this review. The selected stimuli-responsive polymers of synthetic origin are commercially available. Above all, the applications of bio-based or synthetic stimuli-responsive polymers in textile-based transdermal therapy are given special regard apart from their general drug delivery applications. A special insight has been given for stimuli-responsive hydrogel drug delivery systems for textile-based transdermal therapy, which is critical for the treatment of skin disease atopic dermatitis.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
5
|
Escárcega-Galaz AA, Sánchez-Machado DI, López-Cervantes J, Sanches-Silva A, Madera-Santana TJ, Paseiro-Losada P. Mechanical, structural and physical aspects of chitosan-based films as antimicrobial dressings. Int J Biol Macromol 2018; 116:472-481. [DOI: 10.1016/j.ijbiomac.2018.04.149] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/11/2018] [Accepted: 04/28/2018] [Indexed: 01/15/2023]
|
6
|
Mochalova AE, Smirnova LA. State of the Art in the Targeted Modification of Chitosan. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Menon JU, Kuriakose A, Iyer R, Hernandez E, Gandee L, Zhang S, Takahashi M, Zhang Z, Saha D, Nguyen KT. Dual-Drug Containing Core-Shell Nanoparticles for Lung Cancer Therapy. Sci Rep 2017; 7:13249. [PMID: 29038584 PMCID: PMC5643549 DOI: 10.1038/s41598-017-13320-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Late-stage diagnosis of lung cancer occurs ~95% of the time due to late manifestation of its symptoms, necessitating rigorous treatment following diagnosis. Existing treatment methods are limited by lack of specificity, systemic toxicity, temporary remission, and radio-resistance in lung cancer cells. In this research, we have developed a folate receptor-targeting multifunctional dual drug-loaded nanoparticle (MDNP) containing a poly(N-isopropylacrylamide)-carboxymethyl chitosan shell and poly lactic-co-glycolic acid (PLGA) core for enhancing localized chemo-radiotherapy to effectively treat lung cancers. The formulation provided controlled releases of the encapsulated therapeutic compounds, NU7441 - a potent radiosensitizer, and gemcitabine - an FDA approved chemotherapeutic drug for lung cancer chemo-radiotherapy. The MDNPs showed biphasic NU7441 release and pH-dependent release of gemcitabine. These nanoparticles also demonstrated good stability, excellent hemocompatibility, outstanding in vitro cytocompatibility with alveolar Type I cells, and dose-dependent caveolae-mediated in vitro uptake by lung cancer cells. In addition, they could be encapsulated with superparamagnetic iron oxide (SPIO) nanoparticles and visualized by MRI in vivo. Preliminary in vivo results demonstrated the low toxicity of these particles and their use in chemo-radiotherapy to effectively reduce lung tumors. These results indicate that MDNPs can potentially be used as nano-vehicles to provide simultaneous chemotherapy and radiation sensitization for lung cancer treatment.
Collapse
Affiliation(s)
- Jyothi U Menon
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, 76019, USA.,Graduate Biomedical Engineering Program at UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Aneetta Kuriakose
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, 76019, USA.,Graduate Biomedical Engineering Program at UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Roshni Iyer
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, 76019, USA.,Graduate Biomedical Engineering Program at UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Elizabeth Hernandez
- Department of Urology at UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Leah Gandee
- Department of Urology at UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center at UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Masaya Takahashi
- Advanced Imaging Research Center at UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhang Zhang
- Department of Radiation Oncology at UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Simmons Comprehensive Cancer Center at UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debabrata Saha
- Department of Radiation Oncology at UT Southwestern Medical Center, Dallas, TX, 75390, USA. .,Simmons Comprehensive Cancer Center at UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Kytai T Nguyen
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, 76019, USA. .,Graduate Biomedical Engineering Program at UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
8
|
Atanase L, Desbrieres J, Riess G. Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Shieh YT, Lin YT, Cheng CC. CO 2 -switchable behavior of chitosan- g -poly[(2-dimethylamino)ethyl methacrylate] as an emulsifier. Carbohydr Polym 2017; 170:281-288. [DOI: 10.1016/j.carbpol.2017.04.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/01/2022]
|
10
|
Role of pH-responsiveness in the design of chitosan-based cancer nanotherapeutics: A review. Biointerphases 2016; 11:04B201. [DOI: 10.1116/1.4944661] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Yu N, Li G, Gao Y, Liu X, Ma S. Stimuli-sensitive hollow spheres from chitosan-graft-β-cyclodextrin for controlled drug release. Int J Biol Macromol 2016; 93:971-977. [PMID: 27663551 DOI: 10.1016/j.ijbiomac.2016.09.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
In this paper, sensitive polymeric hollow spheres self-assembled from chitosan-grafted-β-cyclodextrin (CS-g-CD) and sodium tripolyphosphate (TPP) were prepared for controlled release of doxorubicin (DOX). The assemblies were formed by electrostatic interactions between positively charged amino group in CS-g-CD and negatively charged phosphate in TPP. The hollow spheres with diameters about 100nm were confirmed by transmission electron microscopy (TEM) and laser particle analyzer. The microspheres with hollow cavity were beneficial to improve the drug loading capacity for DOX with entrapment efficiency above 60%. The cumulative release of DOX from CS-g-CD/TPP hollow microspheres increased with the decrease of pH and the increase of temperature or ionic strength. At 37 °C and pH 5.2, the maximum drug release was above 90% with a continuous release rate. In-vitro cytotoxicity tests indicate that drug loaded hollow spheres exhibited evidently inhibition against cancer cells. These sensitive polymeric hollow spheres are expected to be used in biomedical field as potential carrier.
Collapse
Affiliation(s)
- Nana Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yurong Gao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
12
|
Liu N, Li B, Gong C, Liu Y, Wang Y, Wu G. A pH- and thermo-responsive poly(amino acid)-based drug delivery system. Colloids Surf B Biointerfaces 2015; 136:562-9. [DOI: 10.1016/j.colsurfb.2015.09.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/18/2015] [Accepted: 09/27/2015] [Indexed: 01/06/2023]
|
13
|
Wang W, Yu W. Preparation and characterization of CS-g-PNIPAAm microgels and application in a water vapour-permeable fabric. Carbohydr Polym 2015; 127:11-8. [PMID: 25965451 DOI: 10.1016/j.carbpol.2015.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/17/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) was synthesised using sonication with and without the crosslinker, N,N'-methylenebisacrylamide (MBA). FTIR, variable-temperature (1)H NMR spectroscopy, atomic force microscopy, UV-vis spectrophotometry, differential scanning calorimetry, and dynamic light scattering were used to characterize the microgels' chemical constituents, structures, morphologies, lower critical solution temperatures (LCSTs), and thermo- and pH-responsiveness. The chemical structures of the two CS-g-PNIPAAm materials were found to be similar and both exhibited dual responsiveness towards temperature and pH. The microgel containing MBA had a higher LCST, smaller diameter, and more compact structure, but exhibited opposite pH- and similar thermo-responsiveness. Although the structure of the microgel particles prepared without crosslinking was unstable, the stability of the crosslinked microgel particles enabled them to be finished onto fabric. Because the microgel prepared with MBA retains thermosensitivity, it can be used to impart controllable water vapour permeability properties. The incorporation of the MBA-crosslinked CS-g-PNIPAAm microgel particles in cotton fabric was accomplished by a simple pad-dry-cure procedure from an aqueous microparticle dispersion. The water vapour permeation of the finished fabric was measured at 25 and 40°C and 50 and 90% relative humidities. The finished fabric displayed an obviously high water vapour permeability at 40°C.
Collapse
Affiliation(s)
- Weiling Wang
- College of Textiles, Donghua University, Shanghai 201620, China; School of Textiles and Clothes, Yancheng Institute of Technology, Yancheng 224000, China.
| | - Weidong Yu
- College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Lyngsø J, Al-Manasir N, Behrens MA, Zhu K, Kjøniksen AL, Nyström B, Pedersen JS. Small-Angle X-ray Scattering Studies of Thermoresponsive Poly(N-isopropylacrylamide) Star Polymers in Water. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jeppe Lyngsø
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Nodar Al-Manasir
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Manja A. Behrens
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kaizheng Zhu
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Anna-Lena Kjøniksen
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Faculty
of Engineering, Østfold University College, P.O. Box 700, N-1757 Halden, Norway
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Jan Skov Pedersen
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Sosnik A, Menaker Raskin M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 2015; 33:1380-92. [PMID: 25597531 DOI: 10.1016/j.biotechadv.2015.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/19/2022]
Abstract
Polymeric micelles are nanostructures formed by the self-aggregation of copolymeric amphiphiles above the critical micellar concentration. Due to the flexibility to tailor different molecular features, they have been exploited to encapsulate motley poorly-water soluble therapeutic agents. Moreover, the possibility to combine different amphiphiles in one single aggregate and produce mixed micelles that capitalize on the features of the different components substantially expands the therapeutic potential of these nanocarriers. Despite their proven versatility, polymeric micelles remain elusive to the market and only a few products are currently undergoing advanced clinical trials or reached clinical application, all of them for the therapy of different types of cancer and administration by the intravenous route. At the same time, they emerge as a nanotechnology platform with great potential for non-parenteral mucosal administration. However, for this, the interaction of polymeric micelles with mucus needs to be strengthened. The present review describes the different attempts to develop mucoadhesive polymeric micelles and discusses the challenges faced in the near future for a successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Maya Menaker Raskin
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Yuan H, Li B, Liang K, Lou X, Zhang Y. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers. Biomed Mater 2014; 9:055001. [DOI: 10.1088/1748-6041/9/5/055001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Sundaresan V, Menon JU, Rahimi M, Nguyen KT, Wadajkar AS. Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications. Int J Pharm 2014; 466:1-7. [PMID: 24607216 PMCID: PMC4642438 DOI: 10.1016/j.ijpharm.2014.03.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/19/2022]
Abstract
We reported the synthesis and characterization of dual-responsive poly(N-isopropylacrylamide-acrylamide-chitosan) (PAC)-coated magnetic nanoparticles (MNPs) for controlled and targeted drug delivery and imaging applications. The PAC-MNPs size was about 150nm with 70% iron mass content and excellent superparamagnetic properties. PAC-MNPs loaded with anti-cancer drug doxorubicin showed dual-responsive drug release characteristics with the maximum release of drugs at 40°C (∼78%) than at 37°C (∼33%) and at pH of 6 (∼55%) than at pH of 7.4 (∼28%) after 21 days. Further, the conjugation of prostate cancer-specific R11 peptides increased the uptake of PAC-MNPs by prostate cancer PC3 cells. The dose-dependent cellular uptake of the nanoparticles was also significantly increased with the presence of 1.3T magnetic field. The nanoparticles demonstrated cytocompatibility up to concentrations of 500μg/ml when incubated over a period of 24h with human dermal fibroblasts and normal prostate epithelial cells. Finally, pharmacokinetic studies indicated that doxorubicin-loaded PAC-MNPs caused significant prostate cancer cell death at 40°C than at 37°C, thereby confirming the temperature-dependent drug release kinetics and in vitro therapeutic efficacy. Future evaluation of in vivo therapeutic efficacy of targeted image-guided cancer therapy using R11-PAC-MNPs will reinforce a significant impact of the multifunctional PAC-MNPs on the future drug delivery systems.
Collapse
Affiliation(s)
- Varsha Sundaresan
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States; Joint Biomedical Engineering Program between The University of Texas at Arlington and The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Jyothi U Menon
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States; Joint Biomedical Engineering Program between The University of Texas at Arlington and The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Maham Rahimi
- Department of Vascular Surgery, University of Cincinnati, OH 45267, United States
| | - Kytai T Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States; Joint Biomedical Engineering Program between The University of Texas at Arlington and The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Aniket S Wadajkar
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States; Joint Biomedical Engineering Program between The University of Texas at Arlington and The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
18
|
Novel self-assembly graft copolymers as carriers for anti-inflammatory drug delivery. Int J Pharm 2014; 460:150-7. [DOI: 10.1016/j.ijpharm.2013.10.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022]
|
19
|
Li G, Meng Y, Guo L, Zhang T, Liu J. Formation of thermo-sensitive polyelectrolyte complex micelles from two biocompatible graft copolymers for drug delivery. J Biomed Mater Res A 2013; 102:2163-72. [DOI: 10.1002/jbm.a.34894] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/13/2013] [Accepted: 07/19/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Guiying Li
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Yanfeng Meng
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Lei Guo
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Ting Zhang
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Junshen Liu
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| |
Collapse
|
20
|
Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 2013; 65:1148-71. [PMID: 23639519 DOI: 10.1016/j.addr.2013.04.016] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022]
Abstract
Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
21
|
Lu W, Lu ML, Zhang QP, Tian YQ, Zhang ZX, Xu HH. Octahydrogenated retinoic acid-conjugated glycol chitosan nanoparticles as a novel carrier of azadirachtin: Synthesis, characterization, and in vitro
evaluation. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wei Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University; Guangzhou 510642 China
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University; Guangzhou 510642 China
| | - Meng-Ling Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University; Guangzhou 510642 China
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University; Guangzhou 510642 China
| | - Qing-Peng Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University; Guangzhou 510642 China
- Laboratory of Insect Toxicology, South China Agricultural University; Guangzhou 510642 China
| | - Yong-Qing Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University; Guangzhou 510642 China
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University; Guangzhou 510642 China
| | - Zhi-Xiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University; Guangzhou 510642 China
- Laboratory of Insect Toxicology, South China Agricultural University; Guangzhou 510642 China
| | - Han-Hong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University; Guangzhou 510642 China
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University; Guangzhou 510642 China
| |
Collapse
|
22
|
Li G, Guo L, Wen Q, Zhang T. Thermo- and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release. Int J Biol Macromol 2013; 55:69-74. [PMID: 23313823 DOI: 10.1016/j.ijbiomac.2012.12.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/23/2012] [Accepted: 12/31/2012] [Indexed: 11/30/2022]
Abstract
Thermo- and pH-sensitive ionic-crosslinked hollow spheres from self-assembly of chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAM) for controlled release of 5-fluorouracil were studied. CS-g-PNIPAM aggregated into core-shell micelles with collapsed PNIPAM as the core and CS as the shell at the temperature above LCST. Ionic crosslinking reagent sodium tripolyphosphate (TPP) was used to crosslink the shell to form hollow spheres after cooling to room temperature. The size of hollow spheres was manipulated by changing pH or temperature of the environment. The CS-g-PNIPAM hollow spheres with plenty of inner cavities showed high loading capacity for 5-fluorouracil due to the polymer-drug interactions. Release of 5-fluorouracil from nanoparticles was accelerated at the temperature above LCST ascribed to the destruction of polymer-drug interactions and the decrease of particles size. Changing pH or ionic strength deformed the structure hollow spheres, which led to the increase of drug release. These hollow nanoparticles with environmentally sensitive properties are expected to be utilized in the field of intelligent drug delivery.
Collapse
Affiliation(s)
- Guiying Li
- College of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | | | | | | |
Collapse
|
23
|
Hudson D, Margaritis A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit Rev Biotechnol 2013; 34:161-79. [DOI: 10.3109/07388551.2012.743503] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Synthesis of thermo-sensitive CS-g-PNIPAM/CMC complex nanoparticles for controlled release of 5-FU. Int J Biol Macromol 2012; 51:1109-15. [DOI: 10.1016/j.ijbiomac.2012.08.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/08/2012] [Accepted: 08/30/2012] [Indexed: 11/20/2022]
|
25
|
Li G, Guo L, Chang X, Yang M. Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs. Int J Biol Macromol 2012; 50:899-904. [DOI: 10.1016/j.ijbiomac.2012.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Tietze R, Lyer S, Dürr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine (Lond) 2012; 7:447-57. [DOI: 10.2217/nnm.12.10] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The term ‘nanomedicine’ refers to the use of nanotechnology in the treatment, diagnosis and monitoring of diseases. Magnetic drug targeting is a particularly promising application in this field. The goal of the carrier systems involved is to achieve active enrichment of effective substances in diseased tissue. Numerous nanosystems can be used as carriers, but magnetic iron oxide nanoparticles are particularly important. On the one hand, the particles serve as carriers for the active substance, while on the other hand they can also be visualized using conventional imaging techniques and can therefore be used for ‘theranostic’ purposes. They can also be used in hyperthermia, another important pillar of nanomedicine. Both procedures are intended to lead to specific forms of treatment, which is of medical and economic relevance in view of the increasing numbers of cancer patients worldwide. This study offers a brief overview of current developments in medical applications for magnetic nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Rainer Tietze
- Department of Oto-rhino-laryngology, Head & Neck Surgery, Erlangen University Hospital, Section for Experimental Oncology & Nanomedicine (Else Kröner–Fresenius-Stiftungsprofessur), Glückstrasse 10, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Oto-rhino-laryngology, Head & Neck Surgery, Erlangen University Hospital, Section for Experimental Oncology & Nanomedicine (Else Kröner–Fresenius-Stiftungsprofessur), Glückstrasse 10, 91054 Erlangen, Germany
| | - Stephan Dürr
- Department of Oto-rhino-laryngology, Head & Neck Surgery, Erlangen University Hospital, Section for Experimental Oncology & Nanomedicine (Else Kröner–Fresenius-Stiftungsprofessur), Glückstrasse 10, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Oto-rhino-laryngology, Head & Neck Surgery, Erlangen University Hospital, Section for Experimental Oncology & Nanomedicine (Else Kröner–Fresenius-Stiftungsprofessur), Glückstrasse 10, 91054 Erlangen, Germany
| |
Collapse
|
27
|
Behrens MA, Lopez M, Kjøniksen AL, Zhu K, Nyström B, Pedersen JS. Structure and interactions of charged triblock copolymers studied by small-angle X-ray scattering: dependence on temperature and charge screening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1105-1114. [PMID: 22136627 DOI: 10.1021/la202841q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A series of thermo-responsive cationic triblock copolymers composed of methoxy-poly(ethylene glycol) (MPEG, hydrophilic), poly(N-isopropylacrylamide) (PNIPAAM, temperature sensitive), and poly((3-acrylamidopropyl) trimethyl ammonium chloride) (PN(+), cationic) has been investigated as a function of temperature and ionic strength. In the MPEG-b-PNIPAAM-b-PN(+) copolymers, the MPEG block length is constant, and the lengths of the PNIPAAM and PN(+) blocks are varied. The solubility of the PNIPAAM block decreases with increasing temperature, and the triblock copolymer thus provides the possibilities of studying micelles with both neutral and charged blocks in the micelle corona as well as the interplay between these two blocks as the electrostatic interactions are varied by addition of salt. Investigation of the systems by densitometry and small-angle X-ray scattering (SAXS) in a temperature range from 20 to 70 °C gave detailed information on the behavior both below and above the critical micelle temperature (CMT). A clear effect of the addition of salt is observed in both the apparent partial specific volume, obtained from the densitometry measurements, and the SAXS data. Below the CMT, the single polymers can be described as Gaussian chains, for which the repulsive interchain interactions, originating from the charged PN(+) block, have to be taken into account in salt-free aqueous solution. Increasing the salt concentration of the solution to 30 mM NaCl leads to an increase in the apparent partial specific volume, and the electrostatic repulsive interchain interactions between the single polymers vanish. Raising the temperature results in micelle formation, except for the copolymer with only 20 NIPAAM units. The SAXS data show that the polymer with the medium PNIPAAM block length forms spherical micelles, whereas the polymer with the longest PNIPAAM block forms cylindrical micelles. Increasing the temperature further above the CMT results in an increase in the micellar aggregation number for both of the polymers forming spherical and cylindrical micelles. The addition of salt to the solution also influences the aggregates formed above the CMT. Overall, the micelles formed in the salt solution have a smaller cross-section radius than those in aqueous solution without added salt.
Collapse
Affiliation(s)
- Manja Annette Behrens
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Tao Y, Han J, Dou H. Paclitaxel-loaded tocopheryl succinate-conjugated chitosan oligosaccharide nanoparticles for synergistic chemotherapy. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30290j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Synthesis and self-assembly of a hydrophilic, thermo-responsive poly(ethylene oxide) monomethyl ether-block-poly(acrylic acid)-block-poly(N-isopropylacrylamide) copolymer to form micelles for drug delivery. REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2011.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Ding J, Xiao C, Zhao L, Cheng Y, Ma L, Tang Z, Zhuang X, Chen X. Poly(L
-glutamic acid) grafted with oligo(2-(2-(2-methoxyethoxy)ethoxy)ethyl methacrylate): Thermal phase transition, secondary structure, and self-assembly. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24698] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Kjøniksen AL, Zhu K, Behrens MA, Pedersen JS, Nyström B. Effects of temperature and salt concentration on the structural and dynamical features in aqueous solutions of charged triblock copolymers. J Phys Chem B 2011; 115:2125-39. [PMID: 21338148 DOI: 10.1021/jp1075884] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effects of temperature and salt addition on the association behavior in aqueous solutions of a series of charged thermosensitive methoxypoly(ethylene glycol)-block-poly(N-isopropylacrylamide)-block-poly(4-styrenesulfonic acid sodium) triblock copolymers (MPEG(45)-b-P(NIPAAM)(n)-b-P(SSS)(22)) with different lengths of the PNIPAAM block (n=17, 48, and 66) have been studied with the aid of turbidity, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS). Increasing temperature and salinity as well as longer PNIPAAM blocks are all factors that promote the formation of association structures. The SAXS data show that, for the copolymers with n=48 and n=66, increasing temperature and salt concentration induce interchain associations and higher values of the aggregation number, whereas no aggregation was observed for the copolymer with the shortest PNIPAAM chain. However, DLS measurements reveal the presence of larger association clusters. The cloud point is found to decrease with raising salinity and longer PNIPAAM block. The general picture that emerges is the delicate interplay between repulsive electrostatic forces and hydrophobic interactions and that this balance can be tuned by changing the temperature, salinity, and the length of the PNIPAAM block.
Collapse
Affiliation(s)
- Anna-Lena Kjøniksen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | | | | | | | | |
Collapse
|
32
|
Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 2011; 7:1191-207. [PMID: 20836623 DOI: 10.1517/17425247.2010.514604] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD This review aims to provide an overview of state-of-the-art chitosan-based nanosized carriers for the delivery of therapeutic agents. Chitosan nanocarriers are smart delivery systems owing to the possibility of their property alterations with various approaches, which would confer them with the possibility of spatiotemporal delivery features. AREAS COVERED IN THIS REVIEW The focus of this review is principally on those aspects that have not often been addressed in other reviews. These include the influence of physicochemical properties of chitosan on delivery mechanisms and chitosan modification with a variety of ligand moieties specific for cell surface receptors to increase recognition and uptake of nanocarriers into cells through receptor-mediated endocytosis. Multiple examples that demonstrate the advantages of chitosan-based nanocarriers over other delivery systems of therapeutic agents are highlighted. Particular emphasis is given to the alteration of material properties by functionalization or combination with other polymers for their specific applications. Finally, structural and experimental parameters influencing transfection efficiency of chitosan-based nanocarriers are presented for both in vitro and in vivo gene delivery. WHAT THE READER WILL GAIN The readers will acquire knowledge of parameters influencing the properties of the chitosan-based nanocarriers for delivery of therapeutic agents (genetic material or drugs) in vitro and in vivo. They will get a better idea of the strategies to be adapted to tune the characteristics of chitosan and chitosan derivatives for specific delivery applications. TAKE HOME MESSAGE Chitosan is prone to chemical and physical modifications, and is very responsive to environmental stimuli such as temperature and pH. These features make chitosan a smart material with great potential for developing multifunctional nanocarrier systems to deliver large varieties of therapeutic agents administrated in multiple ways with reduced side effects.
Collapse
Affiliation(s)
- Nicolas Duceppe
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Duff Medical Science Building, 3775 University Street, Montréal, Québec, Canada
| | | |
Collapse
|
33
|
[Nanomedicine : Magnetic nanoparticles for drug delivery and hyperthermia - new chances for cancer therapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2011; 53:839-45. [PMID: 20700784 DOI: 10.1007/s00103-010-1097-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The application of nanotechnology for the treatment, diagnosis, and monitoring of illnesses is summarized under the term nanomedicine. A particularly promising application is attributed to nanoparticular drug delivery systems. The goal of these new carrier systems is the selective enrichment of active substances in diseased tissue structures, an increase in bioavailability, the decrease of the active substance degradation and, above all, the reduction and/or avoidance of unwanted side effects. Apart from numerous nanosystems acting as carriers, the use of iron oxide nanoparticles has to be particularly emphasized. On the one hand, those particles are the carriers of the active substance and, on the other hand, can also be visualized with conventional imaging techniques (x-ray tomography, magnetic resonance imaging), called theranostic. In addition, they can be used for hyperthermia, another important supporting pillar of nanomedicine. Both procedures should lead to a personalized and goal-oriented therapy, which is of special medical and socioeconomic importance in view of the increasing number of cancer patients worldwide.
Collapse
|
34
|
Preparation and characterization of the molecular weight controllable poly(lactide-co-glycolide). Polym Bull (Berl) 2010. [DOI: 10.1007/s00289-010-0420-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Feng G, Jia Y, Liu L, Chang W, Li J. Novel organotin-containing shell-cross-linked knedel and core-cross-linked knedel: Synthesis and application in catalysis. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Don TM, Chou SC, Cheng LP, Tai HY. Cellular compatibility of copolymer hydrogels based on site-selectively-modified chitosan with poly(N-isopropyl acrylamide). J Appl Polym Sci 2010. [DOI: 10.1002/app.32806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Bao H, Li L, Leong WC, Gan LH. Thermo-Responsive Association of Chitosan-graft-Poly(N-isopropylacrylamide) in Aqueous Solutions. J Phys Chem B 2010; 114:10666-73. [DOI: 10.1021/jp105041z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongqian Bao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, and Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| | - Lin Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, and Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| | - Wai Chong Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, and Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| | - Leong Huat Gan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, and Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| |
Collapse
|
38
|
|