1
|
Chatterjee S, Mahmood S, Hilles AR, Thomas S, Roy S, Provaznik V, Romero EL, Ghosal K. Cationic starch: A functionalized polysaccharide based polymer for advancement of drug delivery and health care system - A review. Int J Biol Macromol 2023; 248:125757. [PMID: 37429342 DOI: 10.1016/j.ijbiomac.2023.125757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
Collapse
Affiliation(s)
- Shreya Chatterjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100, Selangor, Malaysia
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Eder Lilia Romero
- Department of Science and Technology, Nanomedicines Research and Development Center, Quilmes National University, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
2
|
Selianitis D, Katifelis H, Gazouli M, Pispas S. Novel Multi-Responsive Hyperbranched Polyelectrolyte Polyplexes as Potential Gene Delivery Vectors. Pharmaceutics 2023; 15:1627. [PMID: 37376075 DOI: 10.3390/pharmaceutics15061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we investigate the complexation behavior of poly(oligo(ethylene glycol)methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate), P(OEGMA-co-DIPAEMA), hyperbranched polyelectrolyte copolymers, synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization, with short-linear DNA molecules. The synthesized hyperbranched copolymers (HBC), having a different chemical composition, are prepared in order to study their ability to bind with a linear nucleic acid at various N/P ratios (amine over phosphate groups). Specifically, the three pH and thermo-responsive P(OEGMA-co-DIPAEMA) hyperbranched copolymers were able to form polyplexes with DNA, with dimensions in the nanoscale. Using several physicochemical methods, such as dynamic and electrophoretic light scattering (DLS, ELS), as well as fluorescence spectroscopy (FS), the complexation process and the properties of formed polyplexes were explored in response to physical and chemical stimuli such as temperature, pH, and ionic strength. The mass and the size of polyplexes are shown to be affected by the hydrophobicity of the copolymer utilized each time, as well as the N/P ratio. Additionally, the stability of polyplexes in the presence of serum proteins is found to be excellent. Finally, the multi-responsive hyperbranched copolymers were evaluated regarding their cytotoxicity via in vitro experiments on HEK 293 non-cancerous cell lines and found to be sufficiently non-toxic. Based on our results, these polyplexes could be useful candidates for gene delivery and related biomedical applications.
Collapse
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
3
|
Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022; 55:6913-6937. [PMID: 36034324 PMCID: PMC9404695 DOI: 10.1021/acs.macromol.2c00854] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/16/2022] [Indexed: 12/14/2022]
Abstract
![]()
Activating innate immunity in a controlled manner is
necessary
for the development of next-generation therapeutics. Adjuvants, or
molecules that modulate the immune response, are critical components
of vaccines and immunotherapies. While small molecules and biologics
dominate the adjuvant market, emerging evidence supports the use of
immunostimulatory polymers in therapeutics. Such polymers can stabilize
and deliver cargo while stimulating the immune system by functioning
as pattern recognition receptor (PRR) agonists. At the same time,
in designing polymers that engage the immune system, it is important
to consider any unintended initiation of an immune response that results
in adverse immune-related events. Here, we highlight biologically
derived and synthetic polymer scaffolds, as well as polymer–adjuvant
systems and stimuli-responsive polymers loaded with adjuvants, that
can invoke an immune response. We present synthetic considerations
for the design of such immunostimulatory polymers, outline methods
to target their delivery, and discuss their application in therapeutics.
Finally, we conclude with our opinions on the design of next-generation
immunostimulatory polymers, new applications of immunostimulatory
polymers, and the development of improved preclinical immunocompatibility
tests for new polymers.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Samir Hossainy
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Koray Gök M, Demir K, Cevher E, Pabuccuoğlu S, Özgümüş S. Efficient Polycation Non-Viral Gene Delivery System with High Buffering Capacity and Low Molecular Weight for Primary Cells: Branched Poly(β-aminoester) Containing Primary, Secondary and Tertiary Amine Groups. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Combination of irreversible electroporation with sustained release of a synthetic membranolytic polymer for enhanced cancer cell killing. Sci Rep 2021; 11:10810. [PMID: 34031433 PMCID: PMC8144369 DOI: 10.1038/s41598-021-89661-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Irreversible electroporation (IRE) is used clinically as a focal therapy to ablate solid tumors. A critical disadvantage of IRE as a monotherapy for cancer is the inability of ablating large tumors, because the electric field strength required is often too high to be safe. Previous reports indicate that cells exposed to certain cationic small molecules and surfactants are more vulnerable to IRE at lower electric field strengths. However, low-molecular-weight IRE sensitizers may suffer from suboptimal bioavailability due to poor stability and a lack of control over spatiotemporal accumulation in the tumor tissue. Here, we show that a synthetic membranolytic polymer, poly(6-aminohexyl methacrylate) (PAHM), synergizes with IRE to achieve enhanced cancer cell killing. The enhanced efficacy of the combination therapy is attributed to PAHM-mediated sensitization of cancer cells to IRE and to the direct cell killing by PAHM through membrane lysis. We further demonstrate sustained release of PAHM from embolic beads over 1 week in physiological medium. Taken together, combining IRE and a synthetic macromolecular sensitizer with intrinsic membranolytic activity and sustained bioavailability may present new therapeutic opportunities for a wide range of solid tumors.
Collapse
|
6
|
Jiang X, Abedi K, Shi J. Polymeric nanoparticles for RNA delivery. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2021. [PMCID: PMC8568333 DOI: 10.1016/b978-0-12-822425-0.00017-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As exemplified by recent clinical approval of RNA drugs including the latest COVID-19 mRNA vaccines, RNA therapy has demonstrated great promise as an emerging medicine. Central to the success of RNA therapy is the delivery of RNA molecules into the right cells at the right location. While the clinical success of nanotechnology in RNA therapy has been limited to lipid-based nanoparticles currently, polymers, due to their tunability and robustness, have also evolved as a class of promising material for the delivery of various therapeutics including RNAs. This article overviews different types of polymers used in RNA delivery and the methods for the formulation of polymeric nanoparticles and highlights recent progress of polymeric nanoparticle-based RNA therapy.
Collapse
|
7
|
Diaz IL, Sierra CA, Jérôme V, Freitag R, Perez LD. Target grafting of poly(2‐(dimethylamino)ethyl methacrylate) to biodegradable block copolymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ivonne L. Diaz
- Department of ChemistryUniversidad Nacional de Colombia Bogotá D.C. Colombia
| | - Cesar A. Sierra
- Department of ChemistryUniversidad Nacional de Colombia Bogotá D.C. Colombia
| | - Valérie Jérôme
- Process BiotechnologyUniversity of Bayreuth Bayreuth Germany
| | - Ruth Freitag
- Process BiotechnologyUniversity of Bayreuth Bayreuth Germany
| | - León D. Perez
- Department of ChemistryUniversidad Nacional de Colombia Bogotá D.C. Colombia
| |
Collapse
|
8
|
Richter F, Martin L, Leer K, Moek E, Hausig F, Brendel JC, Traeger A. Tuning of endosomal escape and gene expression by functional groups, molecular weight and transfection medium: a structure-activity relationship study. J Mater Chem B 2020; 8:5026-5041. [PMID: 32319993 DOI: 10.1039/d0tb00340a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of genetic material by non-viral transfer systems is still in its initial stages, but there are high expectations for the development of targeted therapies. However, nucleic acids cannot enter cells without help, they must be well protected to prevent degradation and overcome a variety of biological barriers, the endosomal barrier being one of the greatest cellular challenges. Herein, the structure-property-relationship was investigated in detail, using well-defined polymers. Polyacrylamides were synthesized via RAFT polymerization resulting in a polymer library of (i) different cationic groups as aminoethyl acrylamide (AEAm), dimethylaminoethyl acrylamide (DMAEAm), dimethylaminopropyl acrylamide (DMAPAm) and guanidinopropyl acrylamide (GPAm); (ii) different degree of polymerization; and investigated (iii) in different cell culture settings. The influence of molar mass and cationic moiety on complex formation with pDNA, cytotoxicity and transfection efficiency of the polymers were investigated. The systematic approach identified a pH-independent guanidinium-containing homopolymer (PGPAm89) as the polymer with the highest transfection efficiency and superior endosomal release under optimal conditions. Since PGPAm89 is not further protonated inside endosomes, common escape theories appear unsuitable. Therefore, the interaction with bis(monoacryloylglycerol)phosphate, a lipid specific for endosomal vesicles, was investigated. Our research suggests that the interactions between amines and lipids may be more relevant than anticipated.
Collapse
Affiliation(s)
- Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Guler Gokce Z, Birol SZ, Mitina N, Harhay K, Finiuk N, Glasunova V, Stoika R, Ercelen S, Zaichenko A. Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zeliha Guler Gokce
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
- Department of Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Semra Zuhal Birol
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
- Department of Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Nataliya Mitina
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Khrystyna Harhay
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Valentina Glasunova
- Department of Physical Materials, Donetsk O. O. Galkin Institute of Physics and Engineering, National Academy of Sciences of Ukraine, Donetsk, Ukraine
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Sebnem Ercelen
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
| | - Alexander Zaichenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| |
Collapse
|
10
|
Okten NS, Canakci CC, Orakdogen N. Hertzian elasticity and triggered swelling kinetics of poly(amino ester)-based gel beads with controlled hydrophilicity and functionality: A mild and convenient synthesis via dropwise freezing into cryogenic liquid. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Cook AB, Peltier R, Zhang J, Gurnani P, Tanaka J, Burns JA, Dallmann R, Hartlieb M, Perrier S. Hyperbranched poly(ethylenimine-co-oxazoline) by thiol–yne chemistry for non-viral gene delivery: investigating the role of polymer architecture. Polym Chem 2019. [DOI: 10.1039/c8py01648h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synthesis of long-chain hyperbranched poly(ethylenimine-co-oxazoline)s by AB2 thiol–yne chemistry is reported, and their application as pDNA transfection agents studied.
Collapse
Affiliation(s)
| | - Raoul Peltier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Joji Tanaka
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - James A. Burns
- Syngenta
- Jealott's Hill International Research Centre
- Bracknell
- Berkshire
- UK
| | | | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Warwick Medical School
| |
Collapse
|
12
|
Le Bohec M, Bonchouo Kenzo K, Piogé S, Mura S, Nicolas J, Casse N, Forcher G, Fontaine L, Pascual S. Structure-pDNA complexation and structure–cytotoxicity relationships of PEGylated, cationic aminoethyl-based polyacrylates with tunable topologies. Polym Chem 2019. [DOI: 10.1039/c8py01776j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of PEGylation and topology on cationic aminoethyl-based polyacrylates has been highlighted on cell viability and pDNA complexation.
Collapse
Affiliation(s)
- Maël Le Bohec
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex
- France
| | - Kévin Bonchouo Kenzo
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex
- France
| | - Sandie Piogé
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex
- France
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612 CNRS
- Faculté de Pharmacie
- Université Paris-Sud
- 92296 Châtenay-Malabry Cedex
| | - Julien Nicolas
- Institut Galien Paris-Sud
- UMR 8612 CNRS
- Faculté de Pharmacie
- Université Paris-Sud
- 92296 Châtenay-Malabry Cedex
| | - Nathalie Casse
- Mer
- Molécules et Santé
- EA 2160 – Le Mans Université
- 72085 Le Mans Cedex
- France
| | - Gwénaël Forcher
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex
- France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex
- France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex
- France
| |
Collapse
|
13
|
Ghosh R, Das S, Bhattacharyya K, Chatterjee DP, Biswas A, Nandi AK. Light-Induced Conformational Change of Uracil-Anchored Polythiophene-Regulating Thermo-Responsiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12401-12411. [PMID: 30234308 DOI: 10.1021/acs.langmuir.8b02679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tuning the electronic structure of a π-conjugated polymer from the responsive side chains is generally done to get desired optoelectronic properties, and it would be very fruitful when light is used as an exciting tool that can also affect the backbone chain conformation. For this purpose, polythiophene- g-poly-[ N-(6-methyluracilyl)- N, N-dimethylamino chloride]ethyl methacrylate (PTDU) is synthesized. On exposure to diffuse sunlight, the uracil moieties of the grafted chains cause the absorption maximum of PTDU solution to show gradual blue shift of 87 nm and a gradual blue shift of 46 nm in the emission maximum, quenching its fluorescence with time. These effects occur specifically at the absorption range of polythiophene (PT) chromophore on direct exposure of light of different wavelengths, and the optimum wavelength is found to be 420 nm. Impedance study suggests a decrease in charge transfer resistance upon exposure because of conformational change of PTDU. Theoretical study indicates that on exposure to visible light, uracil moieties move toward the backbone to facilitate photoinduced electron transfer between the PT and the uracil, attributing to the variation in optoelectronic properties. Morphological and light-scattering studies exhibit a decrease in particle size because of coiling of the PT backbone and squeezing of the grafted chain on light exposure. The transparent orange-colored PTDU solution becomes hazy with a hike in emission intensity on addition of sodium halides and becomes reversibly transparent or hazy on heating or cooling. The screening of cationic centers of PTDU by varying halide anion concentration tunes the phase transition temperature. Thus, the light-induced variation in the backbone conformation is responsible for tuning the optoelectronic properties and regulates the thermos-responsiveness of the PTDU solution in the presence of halide ions.
Collapse
Affiliation(s)
- Radhakanta Ghosh
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Sujoy Das
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Kalishankar Bhattacharyya
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Dhruba P Chatterjee
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Atosi Biswas
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Arun K Nandi
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| |
Collapse
|
14
|
Ferreira Soares DC, Oda CMR, Monteiro LOF, de Barros ALB, Tebaldi ML. Responsive polymer conjugates for drug delivery applications: recent advances in bioconjugation methodologies. J Drug Target 2018; 27:355-366. [PMID: 30010436 DOI: 10.1080/1061186x.2018.1499747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Caroline Mari Ramos Oda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Andre Luis Branco de Barros
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
15
|
Modular Synthesis of Bioreducible Gene Vectors through Polyaddition of N, N'-Dimethylcystamine and Diglycidyl Ethers. Polymers (Basel) 2018; 10:polym10060687. [PMID: 30966721 PMCID: PMC6404356 DOI: 10.3390/polym10060687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 02/01/2023] Open
Abstract
Bioreducible, cationic linear poly(amino ether)s (PAEs) were designed as promising gene vectors. These polymers were synthesized by the reaction of a disulfide-functional monomer, N,N'-dimethylcystamine (DMC), and several different diglycidyl ethers. The resulting PAEs displayed a substantial buffer capacity (up to 64%) in the endosomal acidification region of pH 7.4⁻5.1. The PAEs condense plasmid DNA into 80⁻200 nm sized polyplexes, and have surface charges ranging from +20 to +40 mV. The polyplexes readily release DNA upon exposure to reducing conditions (2.5 mM DTT) due to the cleavage of the disulfide groups that is present in the main chain of the polymers, as was demonstrated by agarose gel electrophoresis. Upon exposing COS-7 cells to polyplexes that were prepared at polymer/DNA w/w ratios below 48, cell viabilities between 80⁻100% were observed, even under serum-free conditions. These polyplexes show comparable or higher transfection efficiencies (up to 38%) compared to 25 kDa branched polyethylenimine (PEI) polyplexes (12% under serum-free conditions). Moreover, the PAE-based polyplexes yield transfection efficiencies as high as 32% in serum-containing medium, which makes these polymers interesting for gene delivery applications.
Collapse
|
16
|
Trützschler AK, Bus T, Reifarth M, Brendel JC, Hoeppener S, Traeger A, Schubert US. Beyond Gene Transfection with Methacrylate-Based Polyplexes-The Influence of the Amino Substitution Pattern. Bioconjug Chem 2018; 29:2181-2194. [PMID: 29712427 DOI: 10.1021/acs.bioconjchem.8b00074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methacrylate-based polymers represent promising nonviral gene delivery vectors, since they offer a large variety of polymer architectures and functionalities, which are beneficial for specific demands in gene delivery. In combination with controlled radical polymerization techniques, such as the reversible addition-fragmentation chain transfer polymerization, the synthesis of well-defined polymers is possible. In this study we prepared a library of defined linear polymers based on (2-aminoethyl)-methacrylate (AEMA), N-methyl-(2-aminoethyl)-methacrylate (MAEMA), and N,N-dimethyl-(2-aminoethyl)-methacrylate (DMAEMA) monomers, bearing pendant primary, secondary, and tertiary amino groups, and investigated the influence of the substitution pattern on their gene delivery capability. The polymers and the corresponding plasmid DNA complexes were investigated regarding their physicochemical characteristics, cytocompatibility, and transfection performance. The nonviral transfection by methacrylate-based polyplexes differs significantly from poly(ethylene imine)-based polyplexes, as a successful transfection is not affected by the buffer capacity. We observed that polyplexes containing a high content of primary amino groups (AEMA) offered the highest transfection efficiency, whereas polyplexes bearing tertiary amino groups (DMAEMA) exhibited the lowest transfection efficiency. Further insights into the uptake and release mechanisms could be identified by fluorescence and transmission electron microscopy, emphasizing the theory of membrane-pore formation for the time-efficient endosomal release of methacrylate-based vectors.
Collapse
Affiliation(s)
- Anne-Kristin Trützschler
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Tanja Bus
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Martin Reifarth
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology , Albert-Einstein-Strasse 9 , 07745 Jena , Germany
| | - Johannes C Brendel
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Stephanie Hoeppener
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Anja Traeger
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Ulrich S Schubert
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| |
Collapse
|
17
|
Dréan M, Debuigne A, Jérôme C, Goncalves C, Midoux P, Rieger J, Guégan P. Poly(N-methylvinylamine)-Based Copolymers for Improved Gene Transfection. Macromol Biosci 2018; 18:e1700353. [DOI: 10.1002/mabi.201700353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Mathilde Dréan
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Cristine Goncalves
- Centre Biophysique Moléculaire; UPR4301 CNRS; Rue Charles Sadron; 45071 Orléans Cedex 2 France
| | - Patrick Midoux
- Centre Biophysique Moléculaire; UPR4301 CNRS; Rue Charles Sadron; 45071 Orléans Cedex 2 France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
| |
Collapse
|
18
|
Bus T, Traeger A, Schubert US. The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 2018; 6:6904-6918. [DOI: 10.1039/c8tb00967h] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endo-lysosomal escape strategies of cationic polymer-mediated gene delivery at a glance.
Collapse
Affiliation(s)
- Tanja Bus
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anja Traeger
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
19
|
Perevyazko I, Trützschler AK, Gubarev A, Lebedeva E, Traeger A, Tsvetkov N, Schubert US. Absolute characteristics and conformation of cationic polymers by hydrodynamic approaches: Poly(AEMA-co-MAEMA-co-DMAEMA) copolymers. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Ho HT, Bohec ML, Frémaux J, Piogé S, Casse N, Fontaine L, Pascual S. Tuning the Molar Composition of "Charge-Shifting" Cationic Copolymers Based on 2-(N,N-Dimethylamino)Ethyl Acrylate and 2-(tert-Boc-Amino)Ethyl Acrylate. Macromol Rapid Commun 2017; 38. [PMID: 28045212 DOI: 10.1002/marc.201600641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/14/2016] [Indexed: 12/15/2022]
Abstract
Copolymers of 2-(N,N-dimethylamino)ethyl acrylate (DMAEA) and 2-(tert-Boc-amino)ethyl acrylate (tBocAEA) are synthesized by reversible addition-fragmentation chain transfer polymerization in a controlled manner with defined molar masses and narrow molar masses distributions (Ð ≤ 1.17). Molar compositions of the P(DMAEA-co-tBocAEA) copolymers are assessed by means of 1 H NMR. A complete screening in molar composition is studied from 0% of DMAEA to 100% of DMAEA. Reactivity ratios of both comonomers are determined by the extended Kelen-Tüdos method (r DMAEA = 0.81 and rtBocAEA = 0.99).
Collapse
Affiliation(s)
- Hien The Ho
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| | - Maël Le Bohec
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| | - Julien Frémaux
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| | - Sandie Piogé
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| | - Nathalie Casse
- Mer, Molécules et Santé, EA 2160 - Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Université du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex, France
| |
Collapse
|
21
|
Biodegradable starch derivatives with tunable charge density—synthesis, characterization, and transfection efficiency. Drug Deliv Transl Res 2016; 7:252-258. [DOI: 10.1007/s13346-016-0333-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
N , N , N -trimethylchitosan modified with well defined multifunctional polymer modules used as pDNA delivery vector. Carbohydr Polym 2016; 137:222-230. [DOI: 10.1016/j.carbpol.2015.10.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 01/25/2023]
|
23
|
Ercole F, Whittaker MR, Quinn JF, Davis TP. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015; 16:1886-914. [DOI: 10.1021/acs.biomac.5b00550] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Francesca Ercole
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry, ULCV4 7AL, United Kingdom
| |
Collapse
|
24
|
Rinkenauer AC, Schubert S, Traeger A, Schubert US. The influence of polymer architecture on in vitro pDNA transfection. J Mater Chem B 2015; 3:7477-7493. [DOI: 10.1039/c5tb00782h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the field of polymer-based gene delivery, the tuning potential of polymers by using different architectures like graft- and star-shaped polymers as well as self-assembled block copolymers is immense. In the last years numerous new polymer designs showed enhanced transfections properties in combination with a good biocompatibility.
Collapse
Affiliation(s)
- Alexandra C. Rinkenauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Pharmacy
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
25
|
Hoenders D, Tigges T, Walther A. Combining the incompatible: Block copolymers consecutively displaying activated esters and amines and their use as protein-repellent surface modifiers with multivalent biorecognition. Polym Chem 2015. [DOI: 10.1039/c4py00928b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the facile synthesis and orthogonal functionalization of diblock copolymers consisting of two incompatible segments, i.e. primary amines and activated esters, and demonstrate their use as protein-repellent brush layers with multivalent biorecognition.
Collapse
Affiliation(s)
- Daniel Hoenders
- DWI – Leibniz-Institute for Interactive Materials
- 52074 Aachen
- Germany
| | - Thomas Tigges
- DWI – Leibniz-Institute for Interactive Materials
- 52074 Aachen
- Germany
| | - Andreas Walther
- DWI – Leibniz-Institute for Interactive Materials
- 52074 Aachen
- Germany
| |
Collapse
|
26
|
Jain R, Dandekar P, Loretz B, Koch M, Lehr CM. Dimethylaminoethyl methacrylate copolymer-siRNA nanoparticles for silencing a therapeutically relevant gene in macrophages. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00490f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DMC nanoparticles target Bfl1/A1 gene in lung macrophages and effective silencing of Bfl1/A1 gene by DMC nanoparticles paves the way for research on alternative treatment strategies for tuberculosis.
Collapse
Affiliation(s)
- Ratnesh Jain
- Department of Chemical Engineering
- Institute of Chemical Technology
- NP Marg
- Mumbai 400019
- India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- NP Marg
- Mumbai 400019
- India
| | - Brigitta Loretz
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - Marcus Koch
- Innovative Electron Microscopy
- INM – Leibniz Institute for New Materials
- Service Group Physical Analysis
- Campus D2 2
- Saarland University
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| |
Collapse
|
27
|
Xu M, Qian J, Suo A, Xu W, Liu R, Wang H. Stimuli-responsive terpolymer mPEG-b-PDMAPMA-b-PAH mediated co-delivery of adriamycin and siRNA to enhance anticancer efficacy. RSC Adv 2015. [DOI: 10.1039/c5ra00348b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adriamycin/P-gp siRNA co-loaded mPEG-b-PDMAPMA-b-PAH terpolymer exhibited pH/reduction dual-responsive payload release behavior and showed a synergistic cytotoxicity against MCF-7/ADR cells.
Collapse
Affiliation(s)
- Minghui Xu
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Aili Suo
- Department of Medical Oncology
- First Affiliated Hospital of Medical School
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Rongrong Liu
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
28
|
Hemraz UD, Campbell KA, Burdick JS, Ckless K, Boluk Y, Sunasee R. Cationic Poly(2-aminoethylmethacrylate) and Poly(N-(2-aminoethylmethacrylamide) Modified Cellulose Nanocrystals: Synthesis, Characterization, and Cytotoxicity. Biomacromolecules 2014; 16:319-25. [DOI: 10.1021/bm501516r] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Usha D. Hemraz
- Department of Civil & Environmental Engineering, University of Alberta and National Institute for Nanotechnology, National Research Council, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
- National Research Council, 6100
Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Kendra A. Campbell
- Department
of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - James S. Burdick
- Department
of Chemistry, State University of New York at Plattsburgh, Plattsburgh, New York 12901, United States
| | - Karina Ckless
- Department
of Chemistry, State University of New York at Plattsburgh, Plattsburgh, New York 12901, United States
| | - Yaman Boluk
- Department of Civil & Environmental Engineering, University of Alberta and National Institute for Nanotechnology, National Research Council, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Rajesh Sunasee
- Department
of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
- Department
of Chemistry, State University of New York at Plattsburgh, Plattsburgh, New York 12901, United States
| |
Collapse
|
29
|
Sprouse D, Reineke TM. Investigating the effects of block versus statistical glycopolycations containing primary and tertiary amines for plasmid DNA delivery. Biomacromolecules 2014; 15:2616-28. [PMID: 24901035 PMCID: PMC4215899 DOI: 10.1021/bm5004527] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Polymer
composition and morphology can affect the way polymers
interact with biomolecules, cell membranes, and intracellular components.
Herein, diblock, triblock, and statistical polymers that varied in
charge center type (primary and/or tertiary amines) were synthesized
to elucidate the role of polymer composition on plasmid DNA complexation,
delivery, and cellular toxicity of the resultant polyplexes. The polymers
were synthesized via RAFT polymerization and were composed of a carbohydrate
moiety, 2-deoxy-2-methacrylamido glucopyranose (MAG), a primary amine
group, N-(2-aminoethyl) methacrylamide (AEMA), and/or
a tertiary amine moiety, N,N-(2-dimethylamino)ethyl
methacrylamide (DMAEMA). The lengths of both the carbohydrate and
cationic blocks were kept constant while the primary amine to tertiary
amine ratio was varied within the polymers. The polymers were characterized
via nuclear magnetic resonance (NMR) and size exclusion chromatography
(SEC), and the polyplex formulations with pDNA were characterized
in various media using dynamic light scattering (DLS). Polyplexes
formed with the block copolymers were found to be more colloidally
stable than statistical copolymers with similar composition, which
rapidly aggregated to micrometer sized particles. Also, polymers composed
of a higher primary amine content were more colloidally stable than
polymers consisting of the tertiary amine charge centers. Plasmid
DNA internalization, transgene expression, and toxicity were examined
with each polymer. As the amount of tertiary amine in the triblock
copolymers increased, both gene expression and toxicity were found
to increase. Moreover, it was found that increasing the content of
tertiary amines imparted higher membrane disruption/destabilization.
While both block and statistical copolymers had high transfection
efficiencies, some of the statistical systems exhibited both higher
transfection and toxicity than the analogous block polymers, potentially
due to the lack of a hydrophilic block to screen membrane interaction/disruption.
Overall, the triblock terpolymers offer an attractive composition
profile that exhibited interesting properties as pDNA delivery vehicles.
Collapse
Affiliation(s)
- Dustin Sprouse
- University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
30
|
Ho HT, Pascual S, Montembault V, Casse N, Fontaine L. Innovative well-defined primary amine-based polyacrylates for plasmid DNA complexation. Polym Chem 2014. [DOI: 10.1039/c4py00585f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Hu X, Wang H, Yang J, Liu W, Wang W. Introducing primary and tertiary amino groups into a neutral polymer: A simple way to fabricating highly efficient nonviral vectors for gene delivery. J Appl Polym Sci 2014. [DOI: 10.1002/app.40468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiufeng Hu
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| | - Hongbo Wang
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| | - Jianhai Yang
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| | - Wenguang Liu
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| | - Wei Wang
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| |
Collapse
|
32
|
Kurtulus I, Yilmaz G, Ucuncu M, Emrullahoglu M, Becer CR, Bulmus V. A new proton sponge polymer synthesized by RAFT polymerization for intracellular delivery of biotherapeutics. Polym Chem 2014. [DOI: 10.1039/c3py01244a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Cell line dependent uptake and transfection efficiencies of PEI–anionic glycopolymer systems. Biomaterials 2013; 34:4368-76. [DOI: 10.1016/j.biomaterials.2013.02.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/15/2022]
|
34
|
|
35
|
Alkane-modified low-molecular-weight polyethylenimine with enhanced gene silencing for siRNA delivery. Int J Pharm 2013; 450:44-52. [PMID: 23608201 DOI: 10.1016/j.ijpharm.2013.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/23/2013] [Accepted: 04/08/2013] [Indexed: 11/23/2022]
Abstract
Small interfering RNA (siRNA) has tremendous potential as a therapeutic agent for diverse diseases; however, due to its susceptibility to degradation and poor cellular uptake, the low efficiency of administration has been the most important limiting factor for clinical applications of siRNA. Herein, we synthesized alkyl chain modified low-molecular-weight polyethylenimines (LMW PEIs) and found that hydrophobically modified PEIs displayed enhanced efficiency in siRNA-mediated knockdown of target genes. To elucidate the mechanism for increased delivery, we characterized the polymers' physicochemical properties and bioactivity via nuclear magnetic resonance (NMR), gel retardation assay, dynamic laser scattering (DLS) analysis, confocal laser scanning microscopy and flow cytometry. The hydrophobic modification reduced siRNA binding affinity but facilitated the formation of nanoparticles in contrast to the original PEI. The PEIs with eight and thirteen alkyl tails were able to self-assemble into nanoparticles and yielded higher cellular uptake, which leaded to even similar efficiencies of 80-90% knockdown as Lipofectamine™ 2000 control. These results suggested that the status of polymers in aqueous solution, which depended on the degree of hydrophobic modification, played an important role in the uptake of siRNA. Therefore, we provided new information on the role of hydrophobic content in the enhanced gene silencing activity.
Collapse
|
36
|
Cao J, Zhang L, Pan X, Cheng Z, Zhu X. RAFT Copolymerization of Glycidyl Methacrylate andN,N-Dimethylaminoethyl Methacrylate. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Chu DSH, Schellinger JG, Shi J, Convertine AJ, Stayton PS, Pun SH. Application of living free radical polymerization for nucleic acid delivery. Acc Chem Res 2012; 45:1089-99. [PMID: 22242774 DOI: 10.1021/ar200242z] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Therapeutic gene delivery can alter protein function either through the replacement of nonfunctional genes to restore cellular health or through RNA interference (RNAi) to mask mutated and harmful genes. Researchers have investigated a range of nucleic acid-based therapeutics as potential treatments for hereditary, acquired, and infectious diseases. Candidate drugs include plasmids that induce gene expression and small, interfering RNAs (siRNAs) that silence target genes. Because of their self-assembly with nucleic acids into virus-sized nanoparticles and high transfection efficiency in vitro, cationic polymers have been extensively studied for nucleic acid delivery applications, but toxicity and particle stability have limited the clinical applications of these systems. The advent of living free radical polymerization has improved the quality, control, and reproducibility of these synthesized materials. This process yields well-defined, narrowly disperse materials with designed architectures and molecular weights. As a result, researchers can study the effects of polymer architecture and molecular weight on transfection efficiency and cytotoxicity, which will improve the design of next-generation vectors. In this Account, we review findings from structure-function studies that have elucidated key design motifs necessary for the development of effective nucleic acid vectors. Researchers have used robust methods such as atom transfer radical polymerization (ATRP), reverse addition-fragmentation chain transfer polymerization (RAFT), and ring-opening metastasis polymerization (ROMP) to engineer materials that enhance extracellular stability and cellular specificity and decrease toxicity. In addition, we discuss polymers that are biodegradable, form supramolecular structures, target specific cells, or facilitate endosomal release. Finally, we describe promising materials with a range of in vivo applications from pulmonary gene delivery to DNA vaccines.
Collapse
Affiliation(s)
- David S. H. Chu
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Joan G. Schellinger
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Julie Shi
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Anthony J. Convertine
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
38
|
Zhu C, Zheng M, Meng F, Mickler FM, Ruthardt N, Zhu X, Zhong Z. Reversibly Shielded DNA Polyplexes Based on Bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA Triblock Copolymers Mediate Markedly Enhanced Nonviral Gene Transfection. Biomacromolecules 2012; 13:769-78. [DOI: 10.1021/bm201693j] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Caihong Zhu
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic
of China
| | - Meng Zheng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic
of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic
of China
| | - Frauke Martina Mickler
- Department
of Chemistry
and Biochemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, München,
Butenandtstr. 5-13, D-81377 München, Germany
| | - Nadia Ruthardt
- Department
of Chemistry
and Biochemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, München,
Butenandtstr. 5-13, D-81377 München, Germany
| | - Xiulin Zhu
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic
of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic
of China
| |
Collapse
|
39
|
Sevimli S, Sagnella S, Kavallaris M, Bulmus V, Davis TP. Synthesis, self-assembly and stimuli responsive properties of cholesterol conjugated polymers. Polym Chem 2012. [DOI: 10.1039/c2py20112g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Manganiello MJ, Cheng C, Convertine AJ, Bryers JD, Stayton PS. Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials 2011; 33:2301-9. [PMID: 22169826 DOI: 10.1016/j.biomaterials.2011.11.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/10/2011] [Indexed: 11/26/2022]
Abstract
A series of diblock copolymers containing an endosomal-releasing segment composed of diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The materials were designed to condense plasmid DNA (pDNA) through electrostatic interactions with a cationic poly(N,N-dimethylaminoethyl methacrylate) (DMAEMA) first block. The pDMAEMA was employed as a macro chain transfer agent (macroCTA) for the synthesis of a series in which the relative feed ratios of DEAEMA and BMA were systematically varied from 20% to 70% BMA. The resultant diblock copolymers exhibited low polydispersity (PDI ≤ 1.06) with similar molecular weights (M(n) = 19.3-23.1 kDa). Dynamic light scattering (DLS) measurements in combination with (1)H NMR D(2)O studies demonstrated that the free copolymers assemble into core-shell micelles at physiological pH. Reduction of the solution pH to values representative of endosomal/lysosomal compartments induced an increase in the net cationic charge of the core through protonation of the DEAEMA residues. This protonation promotes micelle destabilization and exposure of the hydrophobic BMA residues that destabilize biological membranes. The pH value at which this micelle-to-unimer transition occurred was dependent on the hydrophobic content of the copolymer, with higher BMA-containing copolymer compositions exhibiting pH-induced transitions to the membrane-destabilizing state at successively lower pH values. The ability of the diblock copolymers to deliver pDNA was subsequently investigated using a GFP expression vector in two monocyte cell lines. High levels of DNA transfection were observed for the copolymer compositions exhibiting the sharpest pH transitions and membrane destabilizing activities, demonstrating the importance of tuning the endosomal-releasing segment composition.
Collapse
|
41
|
Ji W, Panus D, Palumbo RN, Tang R, Wang C. Poly(2-aminoethyl methacrylate) with well-defined chain length for DNA vaccine delivery to dendritic cells. Biomacromolecules 2011; 12:4373-85. [PMID: 22082257 DOI: 10.1021/bm201360v] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(2-aminoethyl methacrylate) (PAEM) homopolymers with defined chain length and narrow molecular weight distribution were synthesized using atom transfer radical polymerization (ATRP), and a comprehensive study was conducted to evaluate the colloidal properties of PAEM/plasmid DNA polyplexes, the uptake and subcellular trafficking of polyplexes in antigen-presenting dendritic cells (DCs), and the biological performance of PAEM as a potential DNA vaccine carrier. PAEM of different chain length (45, 75, and 150 repeating units) showed varying strength in condensing plasmid DNA into narrowly dispersed nanoparticles with very low cytotoxicity. Longer polymer chain length resulted in higher levels of overall cellular uptake and nuclear uptake of plasmid DNA, but shorter polymer chains favored intracellular and intranuclear release of free plasmid from the polyplexes. Despite its simple chemical structure, PAEM transfected DCs very efficiently in vitro in media with or without serum and led to phenotypic maturation of DCs. When a model antigen-encoding ovalbumin plasmid was used, transfected DCs stimulated the activation of naïve CD8(+) T cells to produce high levels of interferon-γ. The efficiency of transfection, DC maturation, and CD8(+) T cell activation showed varying degrees of polymer chain-length dependence. These structurally defined cationic polymers may have much potential as efficient DNA vaccine carriers and immunostimulatory adjuvants. They may also serve as a model material system for elucidating structural and intracellular mechanisms of polymer-mediated DNA vaccine delivery.
Collapse
Affiliation(s)
- Weihang Ji
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Zhang S, Gu Z, Hao Y, Zhang M, Ni P. Synthesis of double-hydrophilic block copolymers via combination of oxyanion-initiated polymerization and polymer reaction for fabricating magnetic target gene carrier. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Luo S, Cheng R, Meng F, Park TG, Zhong Z. Water soluble poly(histamine acrylamide) with superior buffer capacity mediates efficient and nontoxic in vitro gene transfection. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Obermeier B, Langguth P, Frey H. Partially Quarternized Amino Functional Poly(methacrylate) Terpolymers: Versatile Drug Permeability Modifiers. Biomacromolecules 2010; 12:425-31. [DOI: 10.1021/bm1012037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Boris Obermeier
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Duesbergweg 10-14, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany, and Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Staudingerweg 5, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Peter Langguth
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Duesbergweg 10-14, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany, and Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Staudingerweg 5, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Duesbergweg 10-14, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany, and Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Staudingerweg 5, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
46
|
Boyer C, Stenzel MH, Davis TP. Building nanostructures using RAFT polymerization. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24482] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Convertine AJ, Diab C, Prieve M, Paschal A, Hoffman AS, Johnson PH, Stayton PS. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 2010; 11:2904-11. [PMID: 20886830 DOI: 10.1021/bm100652w] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability of small interfering RNA (siRNA) to efficiently silence the expression of specific genes provides the basis for exciting new therapies based on RNA interference (RNAi). The efficient intracellular delivery of siRNA from cell uptake through the endosomal trafficking pathways into the cytoplasm remains a significant challenge. Previously we described the synthesis of a new family of diblock copolymer siRNA carriers using controlled reversible addition-fragmentation chain transfer (RAFT) polymerization. The carriers were composed of a positively charged block of dimethylaminoethyl methacrylate (DMAEMA) to mediate siRNA binding and a second pH-responsive endosome releasing block composed of DMAEMA and propylacrylic acid (PAA) in roughly equimolar ratios and butyl methacylate (BMA). Here we describe the development of a new generation of siRNA delivery polymers based on this design that exhibit enhanced transfection efficiency and low cytotoxicity. This design incorporates a longer endosomolytic block with increased hydrophobic content to induce micelle formation. These polymers spontaneously form spherical micelles in the size range of 40 nm with CMC (critical micelle concentration) values of approximately 2 μg/mL based on dynamic light scattering (DLS), (1)H NMR, electron microscopy, and selective partitioning of the small molecule pyrene into the hydrophobic micelle core. The siRNA binding to the cationic shell block did not perturb micelle stability or significantly increase particle size. The self-assembly of the diblock copolymers into particles was shown to provide a significant enhancement in mRNA knockdown at siRNA concentrations as low as 12.5 nM. Under these conditions, the micelle-based systems showed an 89% reduction in GAPDH mRNA levels as compared to only 23% (10 nM siRNA) for the nonmicelle system. The reduction in mRNA levels becomes nearly quantitative as the siRNA concentration is increased to 25 nM and higher. Flow cytometry analysis of fluorescent-labeled siRNA showed uptake in 90% of cells and a 3-fold increase in siRNA per cell compared to a standard lipid transfection agent. These results demonstrate the potential utility of this carrier design for siRNA drug delivery.
Collapse
Affiliation(s)
- A J Convertine
- Department of Bioengineering, University of Washington, Seattle Washington 98195, and PhaseRx, Inc., 410 West Harrison Street, Suite 300, Seattle Washington 98119
| | | | | | | | | | | | | |
Collapse
|