1
|
Poellmann MJ, Javius-Jones K, Hopkins C, Lee JW, Hong S. Dendritic-Linear Copolymer and Dendron Lipid Nanoparticles for Drug and Gene Delivery. Bioconjug Chem 2022; 33:2008-2017. [PMID: 35512322 DOI: 10.1021/acs.bioconjchem.2c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymers constitute a diverse class of macromolecules that have demonstrated their unique advantages to be utilized for drug or gene delivery applications. In particular, polymers with a highly ordered, hyperbranched structure─"dendrons"─offer significant benefits to the design of such nanomedicines. The incorporation of dendrons into block copolymer micelles can endow various unique properties that are not typically observed from linear polymer counterparts. Specifically, the dendritic structure induces the conical shape of unimers that form micelles, thereby improving the thermodynamic stability and achieving a low critical micelle concentration (CMC). Furthermore, through a high density of highly ordered functional groups, dendrons can enhance gene complexation, drug loading, and stimuli-responsive behavior. In addition, outward-branching dendrons can support a high density of nonfouling polymers, such as poly(ethylene glycol), for serum stability and variable densities of multifunctional groups for multivalent cellular targeting and interactions. In this paper, we review the design considerations for dendron-lipid nanoparticles and dendron micelles formed from amphiphilic block copolymers intended for gene transfection and cancer drug delivery applications. These technologies are early in preclinical development and, as with other nanomedicines, face many obstacles on the way to clinical adoption. Nevertheless, the utility of dendron micelles for drug delivery remains relatively underexplored, and we believe there are significant and dramatic advancements to be made in tumor targeting with these platforms.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Caroline Hopkins
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jin Woong Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, Wisconsin 53705, United States.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Remdesivir-loaded bis-MPA hyperbranched dendritic nanocarriers for pulmonary delivery. J Drug Deliv Sci Technol 2022; 75:103625. [PMID: 35966803 PMCID: PMC9364662 DOI: 10.1016/j.jddst.2022.103625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Remdesivir is the only clinically available antiviral drug for the treatment of COVID-19. However, its very limited aqueous solubility confines its therapeutic activity and the development of novel inhaled nano-based drug delivery systems of remdesivir for enhanced lung tissue targeting and efficacy is internationally pursued. In this work 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) hyperbranched dendritic nano-scaffolds were employed as nanocarriers of remdesivir. The produced nano-formulations, empty and loaded, consisted of monodisperse nanoparticles with spherical morphology and neutral surface charge and sizes ranging between 80 and 230 nm. The entrapment efficiency and loading capacity of the loaded samples were 82.0% and 14.1%, respectively, whereas the release of the encapsulated drug was complete after 48 h. The toxicity assays in healthy MRC-5 lung diploid fibroblasts and NR8383 alveolar macrophages indicated their suitability as potential remdesivir carriers in the respiratory system. The novel nano-formulations are non-toxic in both tested cell lines, with IC50 values higher than 400 μΜ after 72 h treatment. Moreover, both free and encapsulated remdesivir exhibited very similar IC50 values, at the range of 80-90 μM, while its aqueous solubility was increased, overall presenting a suitable profile for application in inhaled delivery of therapeutics.
Collapse
|
3
|
Zhang Y, Andrén OCJ, Nordström R, Fan Y, Malmsten M, Mongkhontreerat S, Malkoch M. Off-Stoichiometric Thiol-Ene Chemistry to Dendritic Nanogel Therapeutics. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1806693. [PMID: 35865651 PMCID: PMC9286377 DOI: 10.1002/adfm.201806693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/28/2019] [Indexed: 05/03/2023]
Abstract
A novel platform of dendritic nanogels is herein presented, capitalizing on the self-assembly of allyl-functional polyesters based on dendritic-linear-dendritic amphiphiles followed by simple cross-linking with complementary monomeric thiols via UV initiated off-stoichiometric thiol-ene chemistry. The facile approach enabled multigram creation of allyl reactive nanogel precursors, in the size range of 190-295 nm, being readily available for further modifications to display a number of core functionalities while maintaining the size distribution and characteristics of the master batch. The nanogels are evaluated as carriers of a spread of chemotherapeutics by customizing the core to accommodate each individual cargo. The resulting nanogels are biocompatible, displaying diffusion controlled release of cargo, maintained therapeutic efficacy, and decreased cargo toxic side effects. Finally, the nanogels are found to successfully deliver pharmaceuticals into a 3D pancreatic spheroids tumor model.
Collapse
Affiliation(s)
- Yuning Zhang
- KTH Royal Institute of TechnologyDepartment of Fibre and Polymer TechnologySE‐100 44StockholmSweden
| | - Oliver C. J. Andrén
- KTH Royal Institute of TechnologyDepartment of Fibre and Polymer TechnologySE‐100 44StockholmSweden
| | - Randi Nordström
- Department of PharmacyUppsala UniversitySE‐751 23UppsalaSweden
| | - Yanmiao Fan
- KTH Royal Institute of TechnologyDepartment of Fibre and Polymer TechnologySE‐100 44StockholmSweden
| | - Martin Malmsten
- Department of PharmacyUppsala UniversitySE‐751 23UppsalaSweden
| | | | - Michael Malkoch
- KTH Royal Institute of TechnologyDepartment of Fibre and Polymer TechnologySE‐100 44StockholmSweden
| |
Collapse
|
4
|
Lancelot A, Clavería-Gimeno R, Velázquez-Campoy A, Abian O, Serrano JL, Sierra T. Nanostructures based on ammonium-terminated amphiphilic Janus dendrimers as camptothecin carriers with antiviral activity. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Affiliation(s)
- Tracy Zhang
- Michigan State University − Saint Andrews Campus, 1910 W. St. Andrews Rd., Midland, Michigan 48640, United States
| | - Bob A. Howell
- Center
for Applications in Polymer Science Department of Chemistry, Central Michigan University, Mt. Pleasant, Michigan 48859-0001, United States
| | - Patrick B. Smith
- Michigan State University − Saint Andrews Campus, 1910 W. St. Andrews Rd., Midland, Michigan 48640, United States
| |
Collapse
|
6
|
Durán-Lara EF, Marple JL, Giesen JA, Fang Y, Jordan JH, Godbey WT, Marican A, Santos LS, Grayson SM. Investigation of Lysine-Functionalized Dendrimers as Dichlorvos Detoxification Agents. Biomacromolecules 2015; 16:3434-44. [DOI: 10.1021/acs.biomac.5b00657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Esteban F. Durán-Lara
- Laboratory
of Asymmetric Synthesis, Chemistry Institute of Natural Resources;
Nanobiotechnology Division at University of Talca, Fraunhofer Chile
Research Foundation - Center for Systems Biotechnology, FCR-CSB, Talca University, P.O.
Box 747, Talca, Chile
| | | | | | | | | | | | - Adolfo Marican
- Laboratory
of Asymmetric Synthesis, Chemistry Institute of Natural Resources;
Nanobiotechnology Division at University of Talca, Fraunhofer Chile
Research Foundation - Center for Systems Biotechnology, FCR-CSB, Talca University, P.O.
Box 747, Talca, Chile
| | - Leonardo S. Santos
- Laboratory
of Asymmetric Synthesis, Chemistry Institute of Natural Resources;
Nanobiotechnology Division at University of Talca, Fraunhofer Chile
Research Foundation - Center for Systems Biotechnology, FCR-CSB, Talca University, P.O.
Box 747, Talca, Chile
| | | |
Collapse
|
7
|
Rogers HE, Chambon P, Auty SER, Hern FY, Owen A, Rannard SP. Synthesis, nanoprecipitation and pH sensitivity of amphiphilic linear-dendritic hybrid polymers and hyperbranched-polydendrons containing tertiary amine functional dendrons. SOFT MATTER 2015; 11:7005-7015. [PMID: 26241924 DOI: 10.1039/c5sm00673b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The combination of linear polymers with dendritic chain-ends has led to numerous studies of linear-dendritic polymer hybrid materials. Interchain branching within the linear segment of these materials has recently extended this concept to the formation of soluble hyperbranched-polydendrons. Here, the introduction of amphiphilicity into hyperbranched-polydendrons has been achieved for the first time through the use of tertiary amine functional dendritic chain-ends and branched hydrophobic polymer segments. The synthesis and aqueous nanoprecipitation of these branched materials is compared with their linear-dendritic polymer analogues, showing that chain-end chemistry/generation, precipitation medium pH and polymer architecture are all capable of influencing the ability to generate nanoparticles, the resulting nanoparticle diameter and dispersity, and subsequent response to changes in pH.
Collapse
Affiliation(s)
- Hannah E Rogers
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.
| | | | | | | | | | | |
Collapse
|
8
|
García-Gallego S, Nyström AM, Malkoch M. Chemistry of multifunctional polymers based on bis-MPA and their cutting-edge applications. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhang Y, Lundberg P, Diether M, Porsch C, Janson C, Lynd NA, Ducani C, Malkoch M, Malmström E, Hawker CJ, Nyström AM. Histamine-functionalized copolymer micelles as a drug delivery system in 2D and 3D models of breast cancer. J Mater Chem B 2015; 3:2472-2486. [PMID: 26257912 PMCID: PMC4527560 DOI: 10.1039/c4tb02051k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histamine functionalized block copolymers based on poly(allyl glycidyl ether)-b-poly(ethylene oxide) (PAGE-b-PEO) were prepared with different ratios of histamine and octyl or benzyl groups using UV-initiated thiol-ene click chemistry. At neutral pH, the histamine units are uncharged and hydrophobic, while in acidic environments, such as in the endosome, lysosomes, or extracellular sites of tumours, the histamine groups are positively charged and hydrophilic. pH responsible polymer drug delivery systems is a promising route to site specific delivery of drugs and offers the potential to avoid side effects of systemic treatment. Our detailed in vitro experiments of the efficacy of drug delivery and the intracellular localization characteristics of this library of NPs in 2D and 3D cultures of breast cancer revealed that the 50% histamine-modified polymer loaded with DOX exhibited rapid accumulation in the nucleus of free DOX within 2 h. Confocal studies showed enhanced mitochondrial localization and lysosomal escape when compared to controls. From these combined studies, it was shown that by accurately tuning the structure of the initial block copolymers, the resulting self-assembled NPs can be designed to exploit histamine as an endosomal escape trigger and the octyl/benzyl units give rise to a hydrophobic core resulting in highly efficacious drug delivery systems (DDS) with control over intracellular localization. Optimization and rational control of the intracellular localization of both DDS and the parent drug can give nanomedicines a substantial increase in efficacy and should be explored in future studies.
Collapse
Affiliation(s)
- Yuning Zhang
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Pontus Lundberg
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Maren Diether
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Christian Porsch
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Caroline Janson
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Nathaniel A. Lynd
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Cosimo Ducani
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michael Malkoch
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Eva Malmström
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Andreas M. Nyström
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
10
|
Mongkhontreerat S, Walter MV, Cai Y, Brismar H, Hult A, Malkoch M. Functional porous membranes from amorphous linear dendritic polyester hybrids. Polym Chem 2015. [DOI: 10.1039/c4py01803f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-toxic and functional linear dendritic hybrids were synthesized and exploited to generate reactive porous membranes for straightforward functionalization in aqueous media.
Collapse
Affiliation(s)
- Surinthra Mongkhontreerat
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Dept. of Fibre and Polymer Technology
- Stockholm
- Sweden
| | - Marie V. Walter
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Dept. of Fibre and Polymer Technology
- Stockholm
- Sweden
| | - Yanling Cai
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Dept. of Fibre and Polymer Technology
- Stockholm
- Sweden
| | - Hjalmar Brismar
- KTH Royal Institute of Technology
- Science for Life Laboratory
- School of Engineering Sciences
- Division of Cell Physics
- SE-106 91 Stockholm
| | - Anders Hult
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Dept. of Fibre and Polymer Technology
- Stockholm
- Sweden
| | - Michael Malkoch
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Dept. of Fibre and Polymer Technology
- Stockholm
- Sweden
| |
Collapse
|
11
|
Gheybi H, Adeli M. Supramolecular anticancer drug delivery systems based on linear–dendritic copolymers. Polym Chem 2015. [DOI: 10.1039/c4py01437e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The combination of two generations of polymers as linear–dendritic copolymers leads to hybrid systems with unique properties, which are of great interest for many applications. Herein, recent advances in anticancer drug delivery systems based on linear–dendritic copolymers have been reviewed.
Collapse
Affiliation(s)
- Homa Gheybi
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| | - Mohsen Adeli
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
12
|
Pahovnik D, Čusak A, Reven S, Žagar E. Synthesis of poly(ester-amide) dendrimers based on 2,2-Bis
(hydroxymethyl) propanoic acid and glycine. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- David Pahovnik
- National Institute of Chemistry; Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1000 Ljubljana Slovenia
| | - Anja Čusak
- EN-FIST Center of Excellence; Dunajska cesta 156 SI-1000 Ljubljana Slovenia
| | - Sebastjan Reven
- Lek Pharmaceuticals d.d.; Sandoz Development Center Slovenia; Verovškova 57 SI-1526 Ljubljana
| | - Ema Žagar
- National Institute of Chemistry; Laboratory for Polymer Chemistry and Technology; Hajdrihova 19 SI-1000 Ljubljana Slovenia
| |
Collapse
|
13
|
Kalva N, Aswal VK, Ambade AV. Effect of the Branching Pattern of Hydrophobic Dendrons on the Core Structure of Linear-Dendritic Copolymer Micelles. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nagendra Kalva
- Polymer Science and Engineering Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| | - Vinod K. Aswal
- Solid State Physics Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Ashootosh V. Ambade
- Polymer Science and Engineering Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| |
Collapse
|
14
|
Porsch C, Zhang Y, Ducani C, Vilaplana F, Nordstierna L, Nyström AM, Malmström E. Toward Unimolecular Micelles with Tunable Dimensions Using Hyperbranched Dendritic-Linear Polymers. Biomacromolecules 2014; 15:2235-45. [DOI: 10.1021/bm5003637] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Christian Porsch
- School
of Chemical Science and Engineering, Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Yuning Zhang
- IMM Institute of Environmental Medicine, Nanosafety & Nanomedicine Laboratory, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Cosimo Ducani
- Swedish
Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Francisco Vilaplana
- School
of Biotechnology, Division of Glycoscience, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Wallenberg
Wood Science Centre (WWSC), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Lars Nordstierna
- Department
of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Andreas M. Nyström
- IMM Institute of Environmental Medicine, Nanosafety & Nanomedicine Laboratory, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Eva Malmström
- School
of Chemical Science and Engineering, Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
15
|
Blasco E, Piñol M, Oriol L. Responsive linear-dendritic block copolymers. Macromol Rapid Commun 2014; 35:1090-115. [PMID: 24706548 DOI: 10.1002/marc.201400007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/05/2014] [Indexed: 11/08/2022]
Abstract
The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented.
Collapse
Affiliation(s)
- Eva Blasco
- Dpt. Química Orgánica, Facultad de Ciencias - Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | | | | |
Collapse
|