1
|
Chen J, Pei Z, Chai B, Jiang P, Ma L, Zhu L, Huang X. Engineering the Dielectric Constants of Polymers: From Molecular to Mesoscopic Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308670. [PMID: 38100840 DOI: 10.1002/adma.202308670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Polymers are essential components of modern-day materials and are widely used in various fields. The dielectric constant, a key physical parameter, plays a fundamental role in the light-, electricity-, and magnetism-related applications of polymers, such as dielectric and electrical insulation, battery and photovoltaic fabrication, sensing and electrical contact, and signal transmission and communication. Over the past few decades, numerous efforts have been devoted to engineering the intrinsic dielectric constant of polymers, particularly by tailoring the induced and orientational polarization modes and ferroelectric domain engineering. Investigations into these methods have guided the rational design and on-demand preparation of polymers with desired dielectric constants. This review article exhaustively summarizes the dielectric constant engineering of polymers from molecular to mesoscopic scales, with emphasis on application-driven design and on-demand polymer synthesis rooted in polymer chemistry principles. Additionally, it explores the key polymer applications that can benefit from dielectric constant regulation and outlines the future prospects of this field.
Collapse
Affiliation(s)
- Jie Chen
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhantao Pei
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Chai
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Ma
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106-7202, USA
| | - Xingyi Huang
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Adzhieva OA, Nikiforov RY, Gringolts ML, Belov NA, Filatova MP, Denisova YI, Kudryavtsev YV. Synthesis and Gas Separation Properties of Metathesis Poly(5-perfluorobutyl-2-norbornene). POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Gong H, Ji Q, Cheng Y, Xiong J, Zhang M, Zhang Z. Controllable synthesis and structural design of novel all-organic polymers toward high energy storage dielectrics. Front Chem 2022; 10:979926. [PMID: 36059883 PMCID: PMC9428677 DOI: 10.3389/fchem.2022.979926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
As the core unit of energy storage equipment, high voltage pulse capacitor plays an indispensable role in the field of electric power system and electromagnetic energy related equipment. The mostly utilized polymer materials are metallized polymer thin films, which are represented by biaxially oriented polypropylene (BOPP) films, possessing the advantages including low cost, high breakdown strength, excellent processing ability, and self-healing performance. However, the low dielectric constant (εr < 3) of traditional BOPP films makes it impossible to meet the demand for increased high energy density. Controlled/living radical polymerization (CRP) and related techniques have become a powerful approach to tailor the chemical and physical properties of materials and have given rise to great advances in tuning the properties of polymer dielectrics. Although organic-inorganic composite dielectrics have received much attention in previous studies, all-organic polymer dielectrics have been proven to be the most promising choice because of its light weight and easy large-scale continuous processing. In this short review, we begin with some basic theory of polymer dielectrics and some theoretical considerations for the rational design of dielectric polymers with high performance. In the guidance of these theoretical considerations, we review recent progress toward all-organic polymer dielectrics based on two major approaches, one is to control the polymer chain structure, containing microscopic main-chain and side-chain structures, by the method of CRP and the other is macroscopic structure design of all-organic polymer dielectric films. And various chemistry and compositions are discussed within each approach.
Collapse
Affiliation(s)
- Honghong Gong
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Jiaotong University Suzhou Academy, Suzhou, Jiangsu, China
| | - Qinglong Ji
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yipin Cheng
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Jiaotong University Suzhou Academy, Suzhou, Jiangsu, China
| | - Jie Xiong
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Meirong Zhang
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhicheng Zhang
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Zhicheng Zhang,
| |
Collapse
|
4
|
Nazarov IV, Bakhtin DS, Gorlov IV, Potapov KV, Borisov IL, Lounev IV, Makarov IS, Volkov AV, Finkelshtein ES, Bermeshev MV. Gas-Transport and the Dielectric Properties of Metathesis Polymer from the Ester of exo-5-Norbornenecarboxylic Acid and 1,1′-Bi-2-naphthol. Polymers (Basel) 2022; 14:polym14132697. [PMID: 35808741 PMCID: PMC9269233 DOI: 10.3390/polym14132697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Polymers from norbornenes are of interest for applications in opto- and microelectronic (low dielectric materials, photoresists, OLEDs). Norbornenes with ester motifs are among the most readily available norbornene derivatives. However, little is known about dielectric properties and the gas-transport of polynorbornenes from such monomers. Herein, we synthesized a new metathesis polymer from exo-5-norbornenecarboxylic acid and 1,1′-bi-2-naphthol. The designed monomer was obtained via a two-step procedure in a good yield. This norbornene derivative with a rigid and a bulky binaphthyl group was successfully polymerized over the 1st generation Grubbs catalyst, affording high-molecular-weight products (Mw ≤ 1.5·106) in yields of 94–98%. The polymer is amorphous and glassy (Tg = 161 °C), and it shows good thermal stability. Unlike most, polyNBi is a classic low-permeable glassy polymer. The selectivity of polyNBi was higher than that of polyNB. Being less permeable than polyNB, polyNBi unexpectedly showed a lower value of dielectric permittivity (2.7 for polyNBi vs. 5.0 for polyNB). Therefore, the molecular design of polynorbornenes has great potential to obtain polymers with desired properties in a wide range of required characteristics. Further tuning of the gas separation efficiency can be achieved by attaching an appropriate substituent to the ester and aryl group.
Collapse
Affiliation(s)
- Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Danila S. Bakhtin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Ilya V. Gorlov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
- Faculty of Fundamental Physical and Chemical Engineering, The Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Konstantin V. Potapov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia;
| | - Ilya L. Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Ivan V. Lounev
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Street, 420008 Kazan, Russia;
| | - Igor S. Makarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Alexey V. Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Eugene Sh. Finkelshtein
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
- Correspondence:
| |
Collapse
|
5
|
Ma C, Quan Y, Zhang J, Sun R, Zhao Q, He X, Liao X, Xie M. Efficient Synthesis and Cyclic Molecular Topology of Ultralarge-Sized Bicyclic and Tetracyclic Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuihong Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ying Quan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jinhuan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiao He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
ROMP of norbornene and oxanorbornene derivatives with pendant fluorophore carbazole and coumarin groups. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
|
8
|
Karpov GO, Borisov IL, Volkov AV, Finkelshtein ES, Bermeshev MV. Synthesis and Gas Transport Properties of Addition Polynorbornene with Perfluorophenyl Side Groups. Polymers (Basel) 2020; 12:polym12061282. [PMID: 32503334 PMCID: PMC7361953 DOI: 10.3390/polym12061282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/03/2022] Open
Abstract
Polynorbornenes represent a fruitful class of polymers for structure–property study. Recently, vinyl-addition polynorbornenes bearing side groups of different natures were observed to exhibit excellent gas permeation ability, along with attractive C4H10/CH4 and CO2/N2 separation selectivities. However, to date, the gas transport properties of fluorinated addition polynorbornenes have not been reported. Herein, we synthesized addition polynorbornene with fluoroorganic substituents and executed a study on the gas transport properties of the polymer for the first time. A norbornene-type monomer with a C6F5 group, 3-pentafluorophenyl-exo-tricyclononene-7, was successfully involved in addition polymerization, resulting in soluble, high-molecular-weight products obtained in good or high yields. By varying the monomer concentration and monomer/catalyst ratio, it was possible to reach Mw values of (2.93–4.35) × 105. The molecular structure was confirmed by NMR and FTIR analysis. The contact angle with distilled water revealed the hydrophobic nature of the synthesized polymer as expected due to the presence of fluoroorganic side groups. A study of the permeability of various gases (He, H2, O2, N2, CO2, and CH4) through the prepared polymer disclosed a synergetic effect, which was achieved by the presence of both bulky perfluorinated side groups and rigid saturated main chains. Addition poly(3-pentafluorophenyl-exo-tricyclononene-7) was more permeable than its metathesis analogue by a factor of 7–21, or the similar polymer with flexible main chains, poly(pentafluorostyrene), in relation to the gases tested. Therefore, this investigation opens the door to fluorinated addition polynorbornenes as new potential polymeric materials for membrane gas separation.
Collapse
|
9
|
Shi D, Chang WY, Ren XK, Yang S, Chen EQ. Structures and properties of side-chain liquid crystalline polynorbornenes containing an amide group: hydrogen bonding interactions and spacer length effects. Polym Chem 2020. [DOI: 10.1039/d0py00586j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Side-chain liquid crystalline polynorbornenes based on benzanilide mesogens exhibit rich self-organization behaviours and enhanced mechanical properties owing to the lateral hydrogen bond interaction that can be tuned by the spacer length.
Collapse
Affiliation(s)
- Dong Shi
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry
- Peking University
| | - Wen-Ying Chang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry
- Peking University
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry
- Peking University
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry
- Peking University
| |
Collapse
|
10
|
Chen J, Sun R, Liao X, Han H, Li Y, Xie M. Tandem Metathesis Polymerization-Induced Self-Assembly to Nanostructured Block Copolymer and the Controlled Triazolinedione Modification for Enhancing Dielectric Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01645] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Chen J, Li H, Zhang H, Liao X, Han H, Zhang L, Sun R, Xie M. Blocking-cyclization technique for precise synthesis of cyclic polymers with regulated topology. Nat Commun 2018; 9:5310. [PMID: 30552323 PMCID: PMC6294010 DOI: 10.1038/s41467-018-07754-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Ring-closure and ring-expansion techniques are the two routes for extensive synthesis of cyclic polymers. Here, we report an alternative blocking-cyclization technique referred to as the third route to prepare cyclic polymers with regulated ring size and ring number by ring-opening metathesis polymerization of di- and monofunctional monomers in a one-pot process, where the polymer intermediates bearing two single-stranded blocks are efficiently cyclized by the cyclizing unit of propagated ladderphane to generate corresponding mono-, bis-, and tricyclic polymers, and the well-defined ladderphane structure plays a crucial role in forming the cyclic topology. Monocyclic polymer is further modified via Alder-ene reaction and the cyclic molecular topology is clearly demonstrated. The diversity features of cyclic polymers are comprehensively revealed. This strategy has broken through the limitations of previous two cyclizing routes, and indeed opens a facile and popular way to various cyclic polymers by commercial Grubbs catalyst and conventional metathesis polymerization.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hengchen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Huijing Han
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
12
|
Double-stranded block copolymer with dual-polarized linker for improving dielectric and electrical energy storage performance. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Wang B, Shang YR, Ma Z, Pan L, Li YS. Non-porous ultra low dielectric constant materials based on novel silicon-containing cycloolefin copolymers with tunable performance. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
He X, Wang Z, Zhou W, Jiang X, Han Z, Chen D. Imidazolium-functionalized norbornene ionic liquid block copolymer and silica composite electrolyte membranes for lithium-ion batteries. J Appl Polym Sci 2017. [DOI: 10.1002/app.44884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaohui He
- School of Materials Science and Engineering; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of New Energy Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Zijie Wang
- School of Materials Science and Engineering; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Weihua Zhou
- School of Materials Science and Engineering; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Xiong Jiang
- School of Materials Science and Engineering; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Zhilong Han
- School of Materials Science and Engineering; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Defu Chen
- School of Civil Engineering and Architecture; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| |
Collapse
|
15
|
He X, Han Z, Yang Y, Wang S, Tu G, Huang S, Zhang F, Chen D. The preparation and application of a ROMP-type epoxy-functionalized norbornene copolymer and its hybrid alkaline anion exchange membranes. RSC Adv 2017. [DOI: 10.1039/c7ra10162g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A ROMP-type epoxy-functionalized norbornene copolymer and its hybrid alkaline anion exchange membranes were prepared and studied for DMFC application.
Collapse
Affiliation(s)
- Xiaohui He
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Zhilong Han
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Yingping Yang
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Suli Wang
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Guangshui Tu
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Shengmei Huang
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
- School of Materials Science and Engineering
| | - Feng Zhang
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Defu Chen
- School of Civil Engineering and Architecture
- Nanchang University
- Nanchang 330031
- China
| |
Collapse
|
16
|
Hou PP, Zhang ZY, Wang Q, Zhang MY, Shen Z, Fan XH. Hierarchical Structures in a Main-Chain/Side-Chain Combined Liquid Crystalline Polymer with a Polynorbornene Backbone and Multi-Benzene Side-Chain Mesogens. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ping-Ping Hou
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, Center for Soft Matter Science and Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen-Yu Zhang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, Center for Soft Matter Science and Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Wang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, Center for Soft Matter Science and Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng-Yao Zhang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, Center for Soft Matter Science and Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Shen
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, Center for Soft Matter Science and Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xing-He Fan
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, Center for Soft Matter Science and Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Han HJ, Zhang S, Sun RY, Wu JH, Xie MR, Liao XJ. Photocrosslinkable polynorbornene-based block copolymers with enhanced dielectric and thermal properties. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1753-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Chen J, Zhou D, Wang C, Liao X, Xie M, Sun R. High-performance dielectric ionic ladderphane-derived triblock copolymer with a unique self-assembled nanostructure. RSC Adv 2016. [DOI: 10.1039/c6ra18029a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionic poly(bisnorbornene)-based ladderphane can self-assemble into a tree ring-like nanostructure, and exhibits a high dielectric constant, low dielectric loss, narrow hysteresis loop, and good energy density.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Dandan Zhou
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Cuifang Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
19
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|