1
|
Self crosslinked admicelle-Fe3O4 Janus nanoparticle with high detachment energy to creat low-energy emulsified and ultra-stable Pickering emulsion. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Yang W, Huang C, Shen X. Water-compatible Janus molecularly imprinted particles with mouth-like opening: Rapid removal of pharmaceuticals from hospital effluents. CHEMOSPHERE 2022; 304:135350. [PMID: 35714963 DOI: 10.1016/j.chemosphere.2022.135350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals in hospital effluents, often discharged into the public sewage network without sufficient treatment, have shown negative impacts to the human health and aquatic environment. However, the conventional adsorbents used to remove these micropollutants had several deficiencies, including slow uptake kinetics and poor selectivity. To overcome these challenges, water-compatible Janus MIP particles (J-MIPs) with mouth-like openings were synthesized using seeded interfacial polymerization in this work. Among the series of J-MIPs, the selected J-MIP3 showed fast binding kinetics (∼40 s) towards the target pollutant. The theoretical and instrumental analysis suggested that the electrostatic interaction, hydrogen bond and hydrophobic reaction constituted the dominant mechanism for J-MIP3's recognition of target pharmaceutical. Selectivity and robustness tests indicated that the synthetic method was promising in practical application. Finally, the feasibility of the J-MIP3 fixed-bed column in the rapid removal of propranolol (PRO) from hospital effluents was successfully demonstrated. Compared to the activated carbon fixed-bed column, the J-MIP3 fixed-bed column showed at least 7-fold enhancement in its treatment efficiency. To the best of our knowledge, this is the first time that the accelerated mass transfer and fast removal of the pharmaceutical from wastewater have been achieved by the synthetic receptor with asymmetric structure. We believe the present study will open new avenues for the development of multi-functional molecularly imprinted polymers as well as Janus materials in environmental science.
Collapse
Affiliation(s)
- Weiyingxue Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Stearic acid-TiO2 composite Janus sheets perpendicular to the interface for emulsification and photocatalysis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Fadil Y, Thickett SC, Agarwal V, Zetterlund PB. Synthesis of graphene-based polymeric nanocomposites using emulsion techniques. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Kaewsaneha C, Elaissari A, Tangboriboonrat P, Opaprakasit P. Self-assembly of amphiphilic poly(styrene- b-acrylic acid) on magnetic latex particles and their application as a reusable scale inhibitor. RSC Adv 2020; 10:41187-41196. [PMID: 35519176 PMCID: PMC9057766 DOI: 10.1039/d0ra06334g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
The deposition of scale on membranes or container and pipe surfaces (clogging the system) is a costly issue in water treatment processes or water-cooling systems. To effectively cope with this issue, magnetic polymeric nanoparticles (MPNPs) have been developed and applied as promising scale inhibitors, due to their high surface-area-to-volume ratio, surface modifiability, and magnetic separation ability. Carboxylated MPNPs, having a monodisperse size distribution (236 ± 26 nm) with a high magnetic content of 70 wt% and superparamagnetic properties, were fabricated by using a 2-step process: (i) formation of clusters of hydrophobic magnetic nanoparticles stabilized by oleic acid (OA-MNPs), and (ii) self-assembly of the amphiphilic block copolymer of poly(styrene27-b-acrylic acid120) (PS27-b-PAA120) onto the cluster surfaces. With application of ultrasonication to 12.0 wt% OA-MNPs, a three-dimensional network was formed by particle–particle interactions, suppressing coalescence, and then creating stable magnetic clusters. The cluster surfaces were then adsorbed by amphiphilic PS27-b-PAA120via the attractive force between hydrophobic PS blocks. This moves longer hydrophilic PAA blocks containing carboxylic acid groups into the water phase. The formulated MPNPs acted as a nanosorbent for calcium ion (Ca2+) removal with a removal efficiency of 92%. The MPNPs can be effectively reused for up to 4 cycles. Based on the electrostatic interactions between the negatively-charged polymer and the hydrated Ca2+, the resulting precipitation leads to the prevention of calcium carbonate scale formation. Insights into this mechanism open up a new perspective for magnetic-material applications as effective antiscalants. Carboxylated magnetic polymeric nanoparticles, having a high magnetic content, and superparamagnetic properties were prepared and applied as effective antiscalants.![]()
Collapse
Affiliation(s)
- Chariya Kaewsaneha
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University Pathum Thani 12121 Thailand
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP-UMR 5007 F-69622 Lyon France
| | - Pramuan Tangboriboonrat
- Department of Chemistry, Faculty of Science, Mahidol University Rama 6 Road, Phyathai Bangkok 10400 Thailand
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University Pathum Thani 12121 Thailand
| |
Collapse
|
6
|
Wichaita W, Polpanich D, Kaewsaneha C, Jangpatarapongsa K, Tangboriboonrat P. Fabrication of functional hollow magnetic polymeric nanoparticles with controllable magnetic location. Colloids Surf B Biointerfaces 2019; 184:110557. [DOI: 10.1016/j.colsurfb.2019.110557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 01/30/2023]
|
7
|
Gharieh A, Khoee S, Mahdavian AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv Colloid Interface Sci 2019; 269:152-186. [PMID: 31082544 DOI: 10.1016/j.cis.2019.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
In recent years, polymer nanoparticles (PNPs) have found their ways into numerous applications extending from electronics to photonics, conducting materials to sensors and medicine to biotechnology. Physical properties and surface morphology of PNPs are the most important parameters that significantly affect on their exploitations and can be controlled through the synthesis process. Emulsion and miniemulsion techniques are among the most efficient and wide-spread methods for preparation of PNPs. The objective of this review is to present and highlight the recent developments in the advanced PNPs with specific properties that are produced through emulsion and miniemulsion processes.
Collapse
Affiliation(s)
- Ali Gharieh
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran.
| |
Collapse
|
8
|
Yao J, Gao F, Liang X, Li Y, Mi Y, Qi Q, Yao J, Cao Z. Efficient preparation of carboxyl-functionalized magnetic polymer/Fe3O4 nanocomposite particles in one-pot miniemulsion systems. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Thickett SC, Teo GH. Recent advances in colloidal nanocomposite designviaheterogeneous polymerization techniques. Polym Chem 2019. [DOI: 10.1039/c9py00097f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in colloidal nanocomposite design by heterogeneous polymerization are reviewed, with a specific focus on encapsulation and particle-based stabilization for specific materials applications.
Collapse
Affiliation(s)
- Stuart C. Thickett
- School of Natural Sciences (Chemistry)
- University of Tasmania
- Hobart
- Australia
| | - Guo Hui Teo
- School of Natural Sciences (Chemistry)
- University of Tasmania
- Hobart
- Australia
| |
Collapse
|
10
|
Qiao X, Sun T, Tang Q, Zhou S. Synthesis of polystyrene@silica@organosilica hierarchical hybrid particles through seeded emulsion polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Müller N, Heinrich C, Abersfelder K, Kickelbick G. Janus-Partikel. CHEM UNSERER ZEIT 2016. [DOI: 10.1002/ciuz.201600730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Meyer RA, Green JJ. Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:191-207. [PMID: 25981390 PMCID: PMC4644720 DOI: 10.1002/wnan.1348] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 01/05/2015] [Accepted: 03/16/2015] [Indexed: 01/10/2023]
Abstract
Nanofabrication and biomedical applications of polymeric nanoparticles have become important areas of research. Biocompatible polymeric nanoparticles have been investigated for their use as delivery vehicles for therapeutic and diagnostic agents. Although polymeric nanoconstructs have traditionally been fabricated as isotropic spheres, anisotropic, nonspherical nanoparticles have gained interest in the biomaterials community owing to their unique interactions with biological systems. Polymeric nanoparticles with different forms of anisotropy have been manufactured using a variety of novel methods in recent years. In addition, they have enhanced physical, chemical, and biological properties compared with spherical nanoparticles, including increased targeting avidity and decreased nonspecific in vivo clearance. With these desirable properties, anisotropic nanoparticles have been successfully utilized in many biomedical settings and have performed superiorly to analogous spherical nanoparticles. We summarize the current state-of-the-art fabrication methods for anisotropic polymeric nanoparticles including top-down, bottom-up, and microfluidic design approaches. We also summarize the current and potential future applications of these nanoparticles, including drug delivery, biological targeting, immunoengineering, and tissue engineering. Ongoing research into the properties and utility of anisotropic polymeric nanoparticles will prove critical to realizing their potential in nanomedicine.
Collapse
|
13
|
Teo GH, Kuchel RP, Zetterlund PB, Thickett SC. Polymer-inorganic hybrid nanoparticles of various morphologies via polymerization-induced self assembly and sol–gel chemistry. Polym Chem 2016. [DOI: 10.1039/c6py01447j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of polymer-silica hybrid nanoparticles of various morphologies is reported.
Collapse
Affiliation(s)
- Guo Hui Teo
- School of Physical Sciences (Chemistry)
- University of Tasmania
- Hobart
- Australia
| | - Rhiannon P. Kuchel
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- University of New South Wales NSW
- Australia
| | - Stuart C. Thickett
- School of Physical Sciences (Chemistry)
- University of Tasmania
- Hobart
- Australia
| |
Collapse
|
14
|
Affiliation(s)
| | - Tae-Hyun Shin
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | | |
Collapse
|
15
|
Wang H, Yang S, Yin SN, Chen L, Chen S. Janus Suprabead Displays Derived from the Modified Photonic Crystals toward Temperature Magnetism and Optics Multiple Responses. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8827-8833. [PMID: 25848709 DOI: 10.1021/acsami.5b01436] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The design and development of Janus suprabeads (JSs) with multiple responses are highly desirable in the fabrication of functional nanomaterials. In this work, we report a triphase microfluidic strategy for the construction of JSs with temperature-magnetism-optics triple responses. Initially, macromonomer poly(methacrylic acid) (PMAA) obtained via catalytic chain transfer polymerization (CCTP) was grafted onto the polystyrene (PS) colloidal photonic crystals (CPCs) surface. Because abundant carboxylic acid groups in PMAA could coordinate cadmium ions for in situ production of fluorescent CdS quantum dots (QDs) after introducing sulfur ions, the as-prepared JSs were endowed with favorable optical properties. Meanwhile, the as-prepared Cd(2+)/PS CPCs were employed as a template to build JSs with temperature-magnetism sensitivity via the introduction of magnetic Fe3O4 and hydrogels. Finally, the fluorescence pattern was easily performed by using chalcogenides as "ink" to write on the pad, in which in situ reaction mechanism was involved in the response. The multiple responsive JSs show promising applications in sensor, display, and anticounterfeit fields.
Collapse
Affiliation(s)
- Huanhuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Shengyang Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Su-Na Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Li Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| |
Collapse
|
16
|
Yu X, Huang S, Chen K, Zhou Z, Guo X, Li L. Preparation of Functional Janus Particles with Response to Magnetic Force. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504299t] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xuanji Yu
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shibin Huang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kaimin Chen
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- College
of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Zhiming Zhou
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuhong Guo
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Li
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
17
|
Cao W, Huang R, Qi W, Su R, He Z. Self-assembly of amphiphilic janus particles into monolayer capsules for enhanced enzyme catalysis in organic media. ACS APPLIED MATERIALS & INTERFACES 2015; 7:465-73. [PMID: 25478712 DOI: 10.1021/am5065156] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Encapsulation of enzymes during the creation of an emulsion is a simple and efficient route for enhancing enzyme catalysis in organic media. Herein, we report a capsule with a shell comprising a monolayer of silica Janus particles (JPs) (referred to as a monolayer capsule) and a Pickering emulsion for the encapsulation of enzyme molecules for catalysis purposes in organic media using amphiphilic silica JPs as building blocks. We demonstrate that the JP capsules had a monolayer shell consisting of closely packed silica JPs (270 nm). The capsules were on average 5-50 μm in diameter. The stability of the JP capsules (Pickering emulsion) was investigated with the use of homogeneous silica nanoparticles as a control. The results show that the emulsion stabilized via amphiphilic silica JPs presented no obvious changes in physical appearance after 15 days, indicating the high stability of the emulsions and JP capsules. Furthermore, the lipase from Candida sp. was chosen as a model enzyme for encapsulation within the JP capsules during their formation. The catalytic performance of lipase was evaluated according to the esterification of 1-hexanol with hexanoic acid. It was found that the specific activity of the encapsulated enzymes (28.7 U mL(-1)) was more than 5.6 times higher than that of free enzymes in a biphasic system (5.1 U mL(-1)). The enzyme activity was further increased by varying the volume ratio of water to oil and the JPs loadings. The enzyme-loaded capsule also exhibited high stability during the reaction process and good recyclability. In particular, the jellification of agarose in the JP capsules further enhanced their operating stability. We believe that the monolayer structure of the JP capsules, together with their high stability, rendered the capsules to be ideal enzyme carriers and microreactors for enzyme catalysis in organic media because they created a large interfacial area and had low mass transfer resistance through the monolayer shell.
Collapse
Affiliation(s)
- Wei Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | | | | | | | | |
Collapse
|
18
|
Zahn N, Kickelbick G. Synthesis and aggregation behavior of hybrid amphiphilic titania Janus nanoparticles via surface-functionalization in Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Chakraborty S, Jähnichen K, Komber H, Basfar AA, Voit B. Synthesis of Magnetic Polystyrene Nanoparticles Using Amphiphilic Ionic Liquid Stabilized RAFT Mediated Miniemulsion Polymerization. Macromolecules 2014. [DOI: 10.1021/ma5008013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sourav Chakraborty
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Organic
Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Klaus Jähnichen
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Ahmed A. Basfar
- King Abdulaziz City
for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Brigitte Voit
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Organic
Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
20
|
Kaewsaneha C, Bitar A, Tangboriboonrat P, Polpanich D, Elaissari A. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization. J Colloid Interface Sci 2014; 424:98-103. [DOI: 10.1016/j.jcis.2014.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
|