1
|
Zhang J, Duan J, Chen D, Ma Y, Yang W. Direct Photolysis RAFT Polymerization of (Metha)acrylate with 2‐Cyano‐2‐propyldodecyl Trithiocarbonate as Mediator. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianxiong Zhang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Junjin Duan
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Dong Chen
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Yuhong Ma
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Wantai Yang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
2
|
Xu X, Xu X, Zeng Y, Zhang F. Oxygen-tolerant photo-induced metal-free atom transfer radical polymerization. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
4
|
Zhou W, Wu X, Miao M, Wang Z, Chen L, Shan S, Cao G, Yu D. Light Runs Across Iron Catalysts in Organic Transformations. Chemistry 2020; 26:15052-15064. [DOI: 10.1002/chem.202000508] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/24/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Xu‐Dong Wu
- Faculty of Material and Chemical Engineering Yibin University Yibin, Sichuan 644007 P. R. China
| | - Meng Miao
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhe‐Hao Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Liang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Si‐Yi Shan
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Guang‐Mei Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of, Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
5
|
Dadashi-Silab S, Matyjaszewski K. Iron Catalysts in Atom Transfer Radical Polymerization. Molecules 2020; 25:E1648. [PMID: 32260141 PMCID: PMC7180715 DOI: 10.3390/molecules25071648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP.
Collapse
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|
6
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Recent Advances on Visible Light Metal-Based Photocatalysts for Polymerization under Low Light Intensity. Catalysts 2019. [DOI: 10.3390/catal9090736] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In recent years, polymerization processes activated by light have attracted a great deal of interest due to the wide range of applications in which this polymerization technique is involved. Parallel to the traditional industrial applications ranging from inks, adhesives, and coatings, the development of high-tech applications such as nanotechnology and 3D-printing have given a revival of interest to this polymerization technique known for decades. To initiate a photochemical polymerization, the key element is the molecule capable to interact with light, i.e., the photoinitiator and more generally the photoinitiating system, as a combination of several components is often required to create the reactive species responsible for the polymerization process. With the aim of reducing the photoinitiator content while optimizing the polymerization yield and/or the polymerization speed, photocatalytic systems have been developed, enabling the photosensitizer to be regenerated during the polymerization process. In this review, an overview of the photocatalytic systems developed for polymerizations carried out under a low light intensity and visible light is provided. Over the years, a wide range of organometallic photocatalysts has been proposed, addressing both the polymerization efficiency and/or the toxicity, as well as environmental issues.
Collapse
|
8
|
Corrigan N, Shanmugam S, Xu J, Boyer C. Photocatalysis in organic and polymer synthesis. Chem Soc Rev 2018; 45:6165-6212. [PMID: 27819094 DOI: 10.1039/c6cs00185h] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review, with over 600 references, summarizes the recent applications of photoredox catalysis for organic transformation and polymer synthesis. Photoredox catalysts are metallo- or organo-compounds capable of absorbing visible light, resulting in an excited state species. This excited state species can donate or accept an electron from other substrates to mediate redox reactions at ambient temperature with high atom efficiency. These catalysts have been successfully implemented for the discovery of novel organic reactions and synthesis of added-value chemicals with an excellent control of selectivity and stereo-regularity. More recently, such catalysts have been implemented by polymer chemists to post-modify polymers in high yields, as well as to effectively catalyze reversible deactivation radical polymerizations and living polymerizations. These catalysts create new approaches for advanced organic transformation and polymer synthesis. The objective of this review is to give an overview of this emerging field to organic and polymer chemists as well as materials scientists.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Pan X, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev 2018; 47:5457-5490. [DOI: 10.1039/c8cs00259b] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ATRP can be externally controlled by electrical current, light, mechanical forces and various chemical reducing agents. The mechanistic aspects and preparation of polymers with complex functional architectures and their applications are critically reviewed.
Collapse
Affiliation(s)
- Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Marco Fantin
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Fang Yuan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|
10
|
Zhou YN, Luo ZH. Assessment of kinetics of photoinduced Fe-based atom transfer radical polymerization under conditions using modeling approach. AIChE J 2017. [DOI: 10.1002/aic.15850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yin-Ning Zhou
- Dept. of Chemical Engineering; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| | - Zheng-Hong Luo
- Dept. of Chemical Engineering; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| |
Collapse
|
11
|
Bian C, Zhou YN, Guo JK, Luo ZH. Visible-Light-Induced Atom-Transfer-Radical Polymerization with a ppm-Level Iron Catalyst. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chao Bian
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin-Ning Zhou
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun-Kang Guo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
12
|
Lim CH, Ryan MD, McCarthy BG, Theriot JC, Sartor SM, Damrauer NH, Musgrave CB, Miyake GM. Intramolecular Charge Transfer and Ion Pairing in N,N-Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization. J Am Chem Soc 2017; 139:348-355. [PMID: 27973788 PMCID: PMC5488861 DOI: 10.1021/jacs.6b11022] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photoexcited intramolecular charge transfer (CT) states in N,N-diaryl dihydrophenazine photoredox catalysts are accessed through catalyst design and investigated through combined experimental studies and density functional theory (DFT) calculations. These CT states are reminiscent of the metal to ligand charge transfer (MLCT) states of ruthenium and iridium polypyridyl complexes. For cases where the polar CT state is the lowest energy excited state, we observe its population through significant solvatochromic shifts in emission wavelength across the visible spectrum by varying solvent polarity. We propose the importance of accessing CT states for photoredox catalysis of atom transfer radical polymerization lies in their ability to minimize fluorescence while enhancing electron transfer rates between the photoexcited photoredox catalyst and the substrate. Additionally, solvent polarity influences the deactivation pathway, greatly affecting the strength of ion pairing between the oxidized photocatalyst and the bromide anion and thus the ability to realize a controlled radical polymerization. Greater understanding of these photoredox catalysts with respect to CT and ion pairing enables their application toward the polymerization of methyl methacrylate for the synthesis of polymers with precisely tunable molecular weights and dispersities typically lower than 1.10.
Collapse
Affiliation(s)
- Chern-Hooi Lim
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Matthew D Ryan
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Blaine G McCarthy
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Jordan C Theriot
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Steven M Sartor
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Niels H Damrauer
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Charles B Musgrave
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Garret M Miyake
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| |
Collapse
|
13
|
Ma W, Zhang X, Ma Y, Chen D, Wang L, Zhao C, Yang W. Photoinduced controlled radical polymerization of methacrylates with benzaldehyde derivatives as organic catalysts. Polym Chem 2017. [DOI: 10.1039/c7py00408g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Under 23 W CFL irradiation, block copolymers are obtained starting from a Pn-I macroinitiator in the presence of a benzaldehydic molecule-based catalytic system.
Collapse
Affiliation(s)
- Wenchao Ma
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xianhong Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Dong Chen
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Li Wang
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Changwen Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
14
|
Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.06.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Yang Q, Lalevée J, Poly J. Development of a Robust Photocatalyzed ATRP Mechanism Exhibiting Good Tolerance to Oxygen and Inhibitors. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01808] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qizhi Yang
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Jacques Lalevée
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Julien Poly
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| |
Collapse
|
16
|
Zhou YN, Guo JK, Li JJ, Luo ZH. Photoinduced Iron(III)-Mediated Atom Transfer Radical Polymerization with In Situ Generated Initiator: Mechanism and Kinetics Studies. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02846] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yin-Ning Zhou
- Department of
Chemical Engineering, School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun-Kang Guo
- Department of
Chemical Engineering, School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of
Chemical Engineering, School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of
Chemical Engineering, School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
17
|
Zivic N, Bouzrati-Zerelli M, Kermagoret A, Dumur F, Fouassier JP, Gigmes D, Lalevée J. Photocatalysts in Polymerization Reactions. ChemCatChem 2016. [DOI: 10.1002/cctc.201501389] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nicolas Zivic
- Aix-Marseille Université, CNRS; Institut de Chimie Radicalaire ICR, UMR 7273; F-13397 Marseille France
| | - Mariem Bouzrati-Zerelli
- Institut de Science des Matériaux de Mulhouse IS2 M; UMR CNRS 7361, UHA; 15, rue Jean Starcky 68057 Mulhouse Cedex France
| | - Anthony Kermagoret
- Aix-Marseille Université, CNRS; Institut de Chimie Radicalaire ICR, UMR 7273; F-13397 Marseille France
| | - Frédéric Dumur
- Aix-Marseille Université, CNRS; Institut de Chimie Radicalaire ICR, UMR 7273; F-13397 Marseille France
| | - Jean-Pierre Fouassier
- Institut de Science des Matériaux de Mulhouse IS2 M; UMR CNRS 7361, UHA; 15, rue Jean Starcky 68057 Mulhouse Cedex France
- ENSCMu-UHA; 3 rue Alfred Werner 68057 Mulhouse France
| | - Didier Gigmes
- Aix-Marseille Université, CNRS; Institut de Chimie Radicalaire ICR, UMR 7273; F-13397 Marseille France
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse IS2 M; UMR CNRS 7361, UHA; 15, rue Jean Starcky 68057 Mulhouse Cedex France
| |
Collapse
|
18
|
Dadashi-Silab S, Doran S, Yagci Y. Photoinduced Electron Transfer Reactions for Macromolecular Syntheses. Chem Rev 2016; 116:10212-75. [PMID: 26745441 DOI: 10.1021/acs.chemrev.5b00586] [Citation(s) in RCA: 558] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photochemical reactions, particularly those involving photoinduced electron transfer processes, establish a substantial contribution to the modern synthetic chemistry, and the polymer community has been increasingly interested in exploiting and developing novel photochemical strategies. These reactions are efficiently utilized in almost every aspect of macromolecular architecture synthesis, involving initiation, control of the reaction kinetics and molecular structures, functionalization, and decoration, etc. Merging with polymerization techniques, photochemistry has opened up new intriguing and powerful avenues for macromolecular synthesis. Construction of various polymers with incredibly complex structures and specific control over the chain topology, as well as providing the opportunity to manipulate the reaction course through spatiotemporal control, are one of the unique abilities of such photochemical reactions. This review paper provides a comprehensive account of the fundamentals and applications of photoinduced electron transfer reactions in polymer synthesis. Besides traditional photopolymerization methods, namely free radical and cationic polymerizations, step-growth polymerizations involving electron transfer processes are included. In addition, controlled radical polymerization and "Click Chemistry" methods have significantly evolved over the last few decades allowing access to narrow molecular weight distributions, efficient regulation of the molecular weight and the monomer sequence and incredibly complex architectures, and polymer modifications and surface patterning are covered. Potential applications including synthesis of block and graft copolymers, polymer-metal nanocomposites, various hybrid materials and bioconjugates, and sequence defined polymers through photoinduced electron transfer reactions are also investigated in detail.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey
| | - Sean Doran
- Department of Chemistry, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey.,Center of Excellence for Advanced Materials Research (CEAMR) and Department of Chemistry, King Abdulaziz University , 21589 Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Ma W, Chen D, Ma Y, Wang L, Zhao C, Yang W. Visible-light induced controlled radical polymerization of methacrylates with Cu(dap)2Cl as a photoredox catalyst. Polym Chem 2016. [DOI: 10.1039/c6py00687f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Under visible light irradiation, block copolymers of PPEGMA-b-PMMA with high molecular weights and narrow molecular weight distributions are obtained starting from a PPEGMA macroinitiator in the presence of the Cu(dap)2Cl/Me6TREN catalytic system.
Collapse
Affiliation(s)
- Wenchao Ma
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Dong Chen
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Li Wang
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Changwen Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
20
|
Saha SK, Roy P, Saini P, Mondal MK, Chowdhury P, Sinha Babu SP. Carbohydrate polymer inspired silver nanoparticles for filaricidal and mosquitocidal activities: A comprehensive view. Carbohydr Polym 2015; 137:390-401. [PMID: 26686143 DOI: 10.1016/j.carbpol.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
The carbohydrate polymer inspired silver nanoparticles (AgNPs) are designed and synthesized through ultrasound assisted green process using unique combination of a biomolecule (tyrosine) and a natural polymer (starch). A comprehensive mechanistic study on the reactive oxygen species (ROS) mediated filaricidal (against Setaria cervi) and mosquitocidal (against second and fourth instar larvae of Culex quinquefasciatus) activities of AgNPs has been made for the first time for controlling filariasis by taking care of both filariid and its vector. The mechanism may help in formulating antifilarial drug based on carbohydrate polymer inspired AgNPs. The role of carbohydrate polymer in inspiring bioactivity of AgNPs has been looked into and its activities have been compared with the commercially available AgNPs. Cytotoxicity of AgNPs on macrophages of Wistar rat has been evaluated to ensure its selectivity towards filariid and larvae.
Collapse
Affiliation(s)
- Swadhin K Saha
- Polymer & Nano Research Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Priya Roy
- Parasitology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Prasanta Saini
- Parasitology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Maloy K Mondal
- Polymer & Nano Research Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Pranesh Chowdhury
- Polymer & Nano Research Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|