1
|
Al Shehimy S, Le HD, Amano S, Di Noja S, Monari L, Ragazzon G. Progressive Endergonic Synthesis of Diels-Alder Adducts Driven by Chemical Energy. Angew Chem Int Ed Engl 2024; 63:e202411554. [PMID: 39017608 DOI: 10.1002/anie.202411554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
The overwhelming majority of artificial chemical reaction networks respond to stimuli by relaxing towards an equilibrium state. The opposite response-moving away from equilibrium-can afford the endergonic synthesis of molecules, of which only rare examples have been reported. Here, we report six examples of Diels-Alder adducts formed in an endergonic process and use this strategy to realize their stepwise accumulation. Indeed, systems respond to repeated occurrences of the same stimulus by increasing the amount of adduct formed, with the final network distribution depending on the number of stimuli received. Our findings indicate how endergonic processes can contribute to the transition from responsive to adaptive systems.
Collapse
Affiliation(s)
- Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Hai-Dang Le
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shuntaro Amano
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Simone Di Noja
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Luca Monari
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
2
|
St-Germain JB, Zhao Y. Synthesis of body temperature-triggerable dynamic liquid crystal elastomers using Diels-Alder crosslinkers. Chem Commun (Camb) 2024; 60:11774-11777. [PMID: 39323253 DOI: 10.1039/d4cc03721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Novel liquid crystal elastomers (LCEs) with solely Diels-Alder dynamic covalent bonds (DADCBs) as crosslinks and body temperature sensitivity have been developed. The appealing attributes of the material, such as recyclability, reprogrammability and reconfigurability, have led to soft actuators capable of reversible deformation stimulated by shifting between ambient and body temperature, highlighting the potential for innovative applications in the biomedical field.
Collapse
Affiliation(s)
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Wang T, Gao D, Yin H, Zhao J, Wang X, Niu H. Kinetic Study of the Diels-Alder Reaction between Maleimide and Furan-Containing Polystyrene Using Infrared Spectroscopy. Polymers (Basel) 2024; 16:441. [PMID: 38337328 DOI: 10.3390/polym16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The Diels-Alder (D-A) reaction between furan and maleimide is a thermally reversible reaction that has become a vital chemical technique for designing polymer structures and functions. The kinetics of this reaction, particularly in polymer bulk states, have significant practical implications. In this study, we investigated the feasibility of utilizing infrared spectroscopy to measure the D-A reaction kinetics in bulk-state polymer. Specifically, we synthesized furan-functionalized polystyrene and added a maleimide small-molecule compound to form a D-A adduct. The intensity of the characteristic absorption peak of the D-A adduct was quantitatively measured by infrared spectroscopy, and the dependence of conversion of the D-A reaction on time was obtained at different temperatures. Subsequently, the D-A reaction apparent kinetic coefficient kapp and the Arrhenius activation energy Ea,D-A were calculated. These results were compared with those determined from 1H-NMR in the polymer solution states.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dali Gao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Hua Yin
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jiawei Zhao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingguo Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Hui Niu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Yan J, Jiang W, Kang G, Li Q, Tao L, Wang X, Yin J. Synergistic chemo-photo anticancer therapy by using reversible Diels-Alder dynamic covalent bond mediated polyprodrug amphiphiles and immunoactivation investigation. Biomater Sci 2023; 11:5819-5830. [PMID: 37439438 DOI: 10.1039/d3bm00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Highly efficient endocytosis and multi-approach integrated therapeutic tactics are important factors in oncotherapy. With the aid of thermally reversible furan-maleimide dynamic covalent bonds and the "polyprodrug amphiphiles" concept, thermo- and reduction-responsive PEG(-COOH)Fu/MI(-SS-)CPT copolymers were fabricated by the Diels-Alder (D-A) coupling of hydrophilic Fu(-COOH)-PEG and hydrophobic MI(-SS-)-CPT building blocks. The copolymers could self-assemble to form composite nanoparticles with a photothermal conversion reagent (IR780) and maintain excellent stability. In the in vitro simulated environments, the composite nanoparticles could detach Fu(-COOH)-PEG chains by a retro-D-A reaction upon near-infrared light (NIR) irradiation and reduce the size to facilitate endocytosis. Once in the intracellular environment, glutathione (GSH) could trigger a cascade reaction to release active CPT drugs to achieve chemotherapy, which could be further promoted by NIR light induced photothermal therapy. The in vivo mouse tumor model experiments demonstrated that these nanoparticles had an excellent therapeutic effect on solid tumors and inhibited their recurrence. Not only that, the synergistic chemical and optical therapy induced body immune response was also systematically evaluated; the maturation of dendritic cells, the proliferation of T cells, the increase of high mobility group box protein 1, and the decrease of immunosuppressive regulatory T cells confirmed that such synergistic therapy could effectively provide immune protection to the body. We believe such in situ generation of small-sized therapeutic units brought by a dynamically reversible D-A reaction could expand the pathway to design next generation drug delivery systems possessing superior design philosophy and excellent practice effects compared to currently available ones.
Collapse
Affiliation(s)
- Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Wenlong Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Guijie Kang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University Hefei, Anhui, 230032, P. R. China.
| | - Qingjie Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Longxiang Tao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University Hefei, Anhui, 230022, P. R. China.
| | - Xuefu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University Hefei, Anhui, 230032, P. R. China.
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| |
Collapse
|
5
|
Nguyen LMT, Nguyen NKH, Dang HH, Nguyen ADS, Truong TT, Nguyen HT, Nguyen TQ, Cu ST, Le NN, Doan TCD, Nguyen LTT. Synthesis and thermal-responsive behavior of a polysiloxane-based material by combined click chemistries. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. The Interplay between Kinetics and Thermodynamics in Furan Diels-Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022; 61:e202114720. [PMID: 35014138 PMCID: PMC9304315 DOI: 10.1002/anie.202114720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 01/21/2023]
Abstract
Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
7
|
van den Tempel P, Picchioni F, Bose RK. Designing End-of-life Recyclable Polymers via Diels-Alder Chemistry: A Review on the Kinetics of Reversible Reactions. Macromol Rapid Commun 2022; 43:e2200023. [PMID: 35238107 DOI: 10.1002/marc.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this review is to critically assess the kinetic behaviour of the furan/maleimide Diels-Alder click reaction. The popularity of this reaction is evident and still continues to grow, which is likely attributed to its reversibility at temperatures above 100°C, and due to its bio-based "roots" in terms of raw materials. This chemistry has been used to form thermo-reversible crosslinks in polymer networks, and thus allows the polymer field to design strong, but also end-of-life recyclable thermosets and rubbers. In this context, the rate at which the forward reaction (Diels-Alder for crosslinking) and its reverse (retro Diels-Alder for de-crosslinking) proceed as function of temperature is of crucial importance in assessing the feasibility of the design in real-life products. Differences in kinetics based from various studies are not well understood, but are potentially caused by chemical side groups, mass transfer limitations, and on the analysis methods being employed. In this work we attempt to place all the relevant studies in perspective with respect to each other, and thereby offer a general guide on how to assess their recycling kinetics. This review sheds light on the kinetics on the furan/maleimide Diels-Alder reaction. This popular reaction opens up a path to develop end-of-life recyclable polymer networks with self-healing properties. The factors affecting reaction kinetics are discussed, and the importance of accurate reaction kinetics in the context of polymer reprocessing is highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paul van den Tempel
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ranjita K Bose
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
8
|
Cioc R, Crockatt M, Van der Waal JC, Bruijnincx P. The Interplay between Kinetics and Thermodynamics in Furan Diels‐Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razvan Cioc
- Utrecht University: Universiteit Utrecht Chemistry NETHERLANDS
| | - Marc Crockatt
- TNO Sustainable Process and Energy Systems NETHERLANDS
| | | | - Pieter Bruijnincx
- Utrecht University Chemistry Universiteitsweg99Netherlands 3584 CG Utrecht NETHERLANDS
| |
Collapse
|
9
|
Diels–Alder Cycloadditions of Bio-Derived Furans with Maleimides as a Sustainable «Click» Approach towards Molecular, Macromolecular and Hybrid Systems. Processes (Basel) 2021. [DOI: 10.3390/pr10010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This mini-review highlights the recent research trends in designing organic or organic-inorganic hybrid molecular, biomolecular and macromolecular systems employing intermolecular Diels–Alder cycloadditions of biobased, furan-containing substrates and maleimide dienophiles. The furan/maleimide Diels–Alder reaction is a well-known process that may proceed with high efficiency under non-catalytic and solvent-free conditions. Due to the simplicity, 100% atom economy and biobased nature of many furanic substrates, this type of [4+2]-cycloaddition may be recognized as a sustainable “click” approach with high potential for application in many fields, such as fine organic synthesis, bioorganic chemistry, material sciences and smart polymers development.
Collapse
|
10
|
Chang S, Kim Y, Park H, Park K. Synthesis and analysis of thermally degradable polybutadiene containing
Diels–Alder
adduct. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanghoon Chang
- School of Chemical Engineering and Material Science Chung‐Ang University Dongjak‐gu, Seoul Republic of Korea
| | - Yongkyun Kim
- School of Chemical Engineering and Material Science Chung‐Ang University Dongjak‐gu, Seoul Republic of Korea
| | - Haneul Park
- The 4th R&D institute, 2nd Directorate Agency for Defence Development Daejeon Republic of Korea
| | - Kwangyong Park
- School of Chemical Engineering and Material Science Chung‐Ang University Dongjak‐gu, Seoul Republic of Korea
| |
Collapse
|
11
|
Reprocessed and shape memory networks involving poly(hydroxyl ether ester) and polydimethylsiloxane through Diels-Alder reaction. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Galkin KI, Ananikov VP. Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. Int J Mol Sci 2021; 22:11856. [PMID: 34769287 PMCID: PMC8584476 DOI: 10.3390/ijms222111856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
A recent strong trend toward green and sustainable chemistry has promoted the intensive use of renewable carbon sources for the production of polymers, biofuels, chemicals, monomers and other valuable products. The Diels-Alder reaction is of great importance in the chemistry of renewable resources and provides an atom-economic pathway for fine chemical synthesis and for the production of materials. The biobased furans furfural and 5-(hydroxymethyl)furfural, which can be easily obtained from the carbohydrate part of plant biomass, were recognized as "platform chemicals" that will help to replace the existing oil-based refining to biorefining. Diels-Alder cycloaddition of furanic dienes with various dienophiles represents the ideal example of a "green" process characterized by a 100% atom economy and a reasonable E-factor. In this review, we first summarize the literature data on the regio- and diastereoselectivity of intermolecular Diels-Alder reactions of furfural derivatives with alkenes with the aim of establishing the current progress in the efficient production of practically important low-molecular-weight products. The information provided here will be useful and relevant to scientists in many fields, including medical and pharmaceutical research, polymer development and materials science.
Collapse
Affiliation(s)
- Konstantin I. Galkin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia;
- Laboratory of Functional Composite Materials, Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia;
| |
Collapse
|
13
|
Samba WK, Tia R, Adei E. A density functional theory study of the reactions of furans with substituted alkynes to form oxanorbornadienes and subsequent [4 + 2] and [2 + 2 + 2] addition reactions. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wisdom Kwaku Samba
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Richard Tia
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Evans Adei
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| |
Collapse
|
14
|
Averochkin GM, Gordeev EG, Skorobogatko MK, Kucherov FA, Ananikov VP. Systematic Study of Aromatic-Ring-Targeted Cycloadditions of 5-Hydroxymethylfurfural Platform Chemicals. CHEMSUSCHEM 2021; 14:3110-3123. [PMID: 34060725 DOI: 10.1002/cssc.202100818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The reaction space of the furanics-to-aromatics (F2A) conversion process for 5-hydroxymethylfurfural (HMF)-based platform chemicals has been explored both experimentally and by quantum chemistry methods. For the first time, a structure-activity relationship was established in furan-yne cycloaddition for a number of different HMF derivatives. Correlations between the activation energy of the cycloaddition stage and the structure of the substrates were established by molecular modeling methods. Analysis of the concerted and stepwise mechanisms of cycloaddition in the singlet and triplet electronic states of the molecular system was carried out. A series of biobased 7-oxanorbornadienes was obtained in the reaction with dimethyl acetylenedicarboxylate. Various methods of aromatization of the obtained [4+2] adducts have been examined. Rearrangement catalyzed by a Lewis acid leads to the formation of a phenol derivative, whereas reduction by diiron nonacarbonyl leads to the formation of functionalized benzene. Systematic study of the cycloaddition process has revealed a simple way to analyze and predict the relative reactivity of furanic substrates.
Collapse
Affiliation(s)
- Gleb M Averochkin
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| | - Evgeniy G Gordeev
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| | - Matvei K Skorobogatko
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| | - Fedor A Kucherov
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| |
Collapse
|
15
|
Aricò F. Synthetic approaches to 2,5-bis(hydroxymethyl)furan (BHMF): a stable bio-based diol. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Biorefinery is defined as a sustainable process where biomass is converted in a spectrum of marketable products and fuels. In this view, C6 furan-based compounds, usually referred as furanics, have been extensively investigated as aromatic promising building blocks from renewables. 5-Hydroxymethylfurfural (HMF) and 2,5-furan dicarboxylic acid (FDCA) are well known examples of furanics whose syntheses and applications have been extensively reviewed in the literature. Herein for the first time it is reported a comprehensive overview on the synthetic procedures to another bio-derived furan compounds, i.e. 2,5-bis(hydroxymethyl)furan (BHMF), a stable bio-based diol with numerous applications as monomer for bio-materials and fuels. Advantages and limitations of the different synthetic approaches are addressed, as well as possible future developments to render this compound part of the biorefinery market.
Collapse
Affiliation(s)
- Fabio Aricò
- Department of Environmental Science, Informatics and Statistics , Ca’ Foscari University of Venice , Venice , Veneto , Italy
| |
Collapse
|
16
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Li S, Zhou X, Dong Y, Li J. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels. Macromol Rapid Commun 2020; 41:e2000444. [PMID: 32996221 DOI: 10.1002/marc.202000444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/06/2020] [Indexed: 12/14/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robots, and artificial skin. The introduction of self-healing performance has made a positive contribution to the lifetime and stability of flexible sensors. At present, many self-healing flexible sensors with high sensitivity have been developed to detect the signal of organism activity. The sensitivity, reliability, and stability of self-healing flexible sensors depend on the conductive network and mechanical properties of flexible materials. This review focuses on the latest research progress of self-healing flexible sensors. First, various repair mechanisms of self-healing flexible materials are reviewed because these mechanisms contribute to the development of self-healing flexible materials. Then, self-healing elastomer flexible sensor and self-healing hydrogel flexible sensor are introduced and discussed respectively. The research status and problems to be solved of these two types of flexible sensors are discussed in detail. Finally, this rapidly developing and promising field of self-healing flexible sensors and devices is prospected.
Collapse
Affiliation(s)
- Shaonan Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhou
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanmao Dong
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jihang Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
18
|
Tremblay-Parrado KK, Avérous L. Synthesis and behavior of responsive biobased polyurethane networks cross-linked by click chemistry: Effect of the cross-linkers and backbone structures. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Konuray O, Fernández-Francos X, De la Flor S, Ramis X, Serra À. The Use of Click-Type Reactions in the Preparation of Thermosets. Polymers (Basel) 2020; 12:E1084. [PMID: 32397509 PMCID: PMC7285069 DOI: 10.3390/polym12051084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Click chemistry has emerged as an effective polymerization method to obtain thermosets with enhanced properties for advanced applications. In this article, commonly used click reactions have been reviewed, highlighting their advantages in obtaining homogeneous polymer networks. The basic concepts necessary to understand network formation via click reactions, together with their main characteristics, are explained comprehensively. Some of the advanced applications of thermosets obtained by this methodology are also reviewed.
Collapse
Affiliation(s)
- Osman Konuray
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Xavier Fernández-Francos
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Xavier Ramis
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, University Rovira i Virgili, c/ Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
20
|
|
21
|
Tremblay-Parrado KK, Avérous L. Renewable Responsive Systems Based on Original Click and Polyurethane Cross-Linked Architectures with Advanced Properties. CHEMSUSCHEM 2020; 13:238-251. [PMID: 31490633 DOI: 10.1002/cssc.201901991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/05/2019] [Indexed: 06/10/2023]
Abstract
A new chemical architecture from oleic acid, consisting of a diol structure containing pendant furan rings, denoted the furan oligomer (FO) was synthesized and fully characterized. The FO was integrated into a linear rapeseed-based polyurethane (PU) backbone and cross-linked through a Diels-Alder (DA) reaction by using pendant furan rings and a short polypropylene oxide-based bismaleimide. This is the first time that a thermoreversible PU network based on vegetable oil has been reported. The effects of varying proportions of FO in linear and cross-linked systems, by DA, were studied. These materials were analyzed by classic characterization techniques. The stability and recyclability of the cross-linked materials were shown by successive reprocessing cycles and reanalyzing the mechanical properties. Self-healing properties were macroscopically exhibited and investigated by tensile tests on healed materials. The resulting cross-linked materials present a large range of properties, such as tunable mechanical and thermoresponsive behavior, good thermal recyclability, and self-healing abilities.
Collapse
Affiliation(s)
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 2, France
| |
Collapse
|
22
|
Widstrom AL, Lear BJ. Structural and solvent control over activation parameters for a pair of retro Diels-Alder reactions. Sci Rep 2019; 9:18267. [PMID: 31797942 PMCID: PMC6892874 DOI: 10.1038/s41598-019-54156-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022] Open
Abstract
We report the temperature dependent NMR of two Diels-Alder adducts of furan: one formed with maleic anhydride and the other with N-methylmaleimide. These adducts are the products of so-called 'click' reactions, widely valued for providing simple, reliable, and robust reactivity. Under our experimental conditions, these adducts undergo a retro Diels-Alder reaction and we use our temperature dependent NMR to determine the rates of these reactions at multiple temperatures-ultimately providing estimates of the activation parameters for the reversion. We repeat these measurements in three solvents. We find that, in all solvents, the barrier to reversion is larger for the adduct formed with N-methylmaleimide. The barrier to reversion for this adduct is relatively insensitive to changes in solvent while the adduct formed with maleic anhydride responds more strongly to changes in solvent polarity. The differences in reaction barrier and solvent dependence arises because the adduct formed with N-methylmalemide is more stable-leading to a larger barrier to reversion-while the adduct formed with maleic anhydride experiences a larger change in dipole during the reaction-leading to a larger solvent dependence.
Collapse
Affiliation(s)
- Andrea L Widstrom
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
23
|
Zhang L, Michel FC, Co AC. Nonisocyanate route to 2,5‐bis(hydroxymethyl)furan‐based polyurethanes crosslinked by reversible diels–alder reactions. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lu Zhang
- Department of Food, Agricultural and Biological Engineering, Ohio Agricultural Research and Development CenterThe Ohio State University 1680 Madison Avenue, Wooster Ohio 44691
| | - Frederick C. Michel
- Department of Food, Agricultural and Biological Engineering, Ohio Agricultural Research and Development CenterThe Ohio State University 1680 Madison Avenue, Wooster Ohio 44691
| | - Anne C. Co
- Department of Chemistry and BiochemistryThe Ohio State University 100 West 18th Avenue, Columbus Ohio 43210
| |
Collapse
|
24
|
Wang F, Chen S, Wu Q, Zhang R, Sun P. Strain-induced structural and dynamic changes in segmented polyurethane elastomers. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Iglesias N, Galbis E, Romero-Azogil L, Benito E, Díaz-Blanco MJ, García-Martín MG, de-Paz MV. Experimental model design: exploration and optimization of customized polymerization conditions for the preparation of targeted smart materials by the Diels Alder click reaction. Polym Chem 2019. [DOI: 10.1039/c9py01076a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental model design proposed herein has proved to be an indispensable tool to rapidly and easily elucidate the optimal polymerization conditions in the preparation of tailor-made responsive materials for biomedical applications.
Collapse
Affiliation(s)
- Nieves Iglesias
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012-Seville
- Spain
| | - Elsa Galbis
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012-Seville
- Spain
| | - Lucía Romero-Azogil
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012-Seville
- Spain
| | - Elena Benito
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012-Seville
- Spain
| | - M.-Jesús Díaz-Blanco
- PRO2TECS. Departamento de Ingeniería Química
- Facultad de Ciencias Experimentales
- Huelva
- Spain
| | - M.-Gracia García-Martín
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012-Seville
- Spain
| | - M.-Violante de-Paz
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012-Seville
- Spain
| |
Collapse
|