1
|
Mountaki S, Whitfield R, Liarou E, Truong NP, Anastasaki A. Open-Air Chemical Recycling: Fully Oxygen-Tolerant ATRP Depolymerization. J Am Chem Soc 2024; 146:18848-18854. [PMID: 38958656 PMCID: PMC11258787 DOI: 10.1021/jacs.4c05621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
While oxygen-tolerant strategies have been overwhelmingly developed for controlled radical polymerizations, the low radical concentrations typically required for high monomer recovery render oxygen-tolerant solution depolymerizations particularly challenging. Here, an open-air atom transfer radical polymerization (ATRP) depolymerization is presented, whereby a small amount of a volatile cosolvent is introduced as a means to thoroughly remove oxygen. Ultrafast depolymerization (i.e., 2 min) could efficiently proceed in an open vessel, allowing a very high monomer retrieval to be achieved (i.e., ∼91% depolymerization efficiency), on par with that of the fully deoxygenated analogue. Oxygen probe studies combined with detailed depolymerization kinetics revealed the importance of the low-boiling point cosolvent in removing oxygen prior to the reaction, thus facilitating effective open-air depolymerization. The versatility of the methodology was demonstrated by performing reactions with a range of different ligands and at high polymer loadings (1 M monomer repeat unit concentration) without significantly compromising the yield. This approach provides a fully oxygen-tolerant, facile, and efficient route to chemically recycle ATRP-synthesized polymers, enabling exciting new applications.
Collapse
Affiliation(s)
- Stella
Afroditi Mountaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Evelina Liarou
- Department
of Chemistry, University of Warwick Library Road, Coventry CV4 7SH, U.K.
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
2
|
Seera SD, Pester CW. Surface-Initiated PET-RAFT via the Z-Group Approach. ACS POLYMERS AU 2023; 3:428-436. [PMID: 38107417 PMCID: PMC10722567 DOI: 10.1021/acspolymersau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) is a user-friendly and versatile approach for polymer brush engineering. For SI-RAFT, synthetic strategies follow either surface-anchoring of radical initiators (e.g., azo compounds) or anchoring RAFT chain transfer agents (CTAs) onto a substrate. The latter can be performed via the R-group or Z-group of the CTA, with the previous scientific focus in literature skewed heavily toward work on the R-group approach. This contribution investigates the alternative: a Z-group approach toward light-mediated SI photoinduced electron transfer RAFT (SI-PET-RAFT) polymerization. An appropriate RAFT CTA is synthesized, immobilized onto SiO2, and its ability to control the growth (and chain extension) of polymer brushes in both organic and aqueous environments is investigated with different acrylamide and methacrylate monomers. O2 tolerance allows Z-group SI-PET-RAFT to be performed under ambient conditions, and patterning surfaces through photolithography is illustrated. Polymer brushes are characterized via X-ray photoelectron spectroscopy (XPS), ellipsometry, and water contact angle measurements. An examination of polymer brush grafting density showed variation from 0.01 to 0.16 chains nm-2. Notably, in contrast to the R-group SI-RAFT approach, this chemical approach allows the growth of intermittent layers of polymer brushes underneath the top layer without changing the properties of the outermost surface.
Collapse
Affiliation(s)
- Sai Dileep
Kumar Seera
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Christian W. Pester
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Rong LH, Cheng X, Ge J, Krebs OK, Capadona JR, Caldona EB, Advincula RC. Synthesis of hyperbranched polymer films via electrodeposition and oxygen-tolerant surface-initiated photoinduced polymerization. J Colloid Interface Sci 2023; 637:33-40. [PMID: 36682116 DOI: 10.1016/j.jcis.2023.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS Hyperbranched polymers, not only possess higher functionality, but are also easier to prepare compared to dendrimers and dendric polymers. Combining electrodeposition and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization is hypothesized to be a novel strategy for preparing hyperbranched polymer films on conductive surfaces without degassing. EXPERIMENTS Polymer brush grafted films with four different architectures (i.e. linear, branched, linear-block-branched, and branched-block-linear) were prepared on gold-coated glass substrates using electrodeposition, followed by SI-PET-RAFT polymerization. The resulting film structure and thickness, surface topology, absorption property, and electrochemical behavior were confirmed by spectroscopy, microscopy, microbalance technique, and impedance measurement. FINDINGS These hyperbranched polymer brushes were capable of forming a thicker but more uniformly covered films compared to linear polymer brush films, demonstrating that hyperbranched polymer films can be potentially useful for fabricating protective polymer coatings on various conductive surfaces.
Collapse
Affiliation(s)
- Li-Han Rong
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Xiang Cheng
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Jin Ge
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Olivia K Krebs
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, United States
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, United States
| | - Eugene B Caldona
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, United States
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
4
|
Fromel M, Pester CW. Polycarbonate Surface Modification via Aqueous SI-PET-RAFT. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Hu Q, Wang W, Ma T, Zhang C, Kuang J, Wang R. Anti-UV and hydrophobic dual-functional coating fabrication for flame retardant polyester fabrics by surface-initiated PET RAFT technique. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Yin X, Wu D, Yang H, Wang J, Zhang X, Li H, Zheng T, Wang L, Zhang T. Galvanic-Replacement-Assisted Surface-Initiated Atom Transfer Radical Polymerization for Functional Polymer Brush Engineering. ACS Macro Lett 2022; 11:296-302. [PMID: 35575363 DOI: 10.1021/acsmacrolett.1c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we present a facile and robust strategy, namely, galvanic-replacement-assisted surface-initiated Cu(0)-mediated atom transfer radical polymerization (gr-SI-Cu0ATRP, or gr-SI-Cu0CRP) for polymer brush engineering under ambient conditions. In gr-SI-Cu0ATRP, highly active and nanostructured Cu(0) surfaces are obtained by a simple galvanic replacement on zinc/aluminum surfaces in dilute Cu2+ solution. Polymer brush growth rate is extremely high (up to ∼904 nm in 30 min polymerization); meanwhile, both nano Cu(0) surfaces and Cu2+ solution can be reused multiple times without losing grafting efficiency. We also demonstrate that the gr-SI-Cu0ATRP is advantageous for polymer brush engineering on arbitrary substrates, including flexible (polyethylene terephthalate), curved (polycarbonate), and porous (anodic aluminum oxide), and endow the substrates with various functionalities, for example, anti-icing, antifogging, and ion selectivity.
Collapse
Affiliation(s)
- Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoxuan Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - He Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
7
|
Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Crosslinked Polypeptide Films via RAFT-Mediated Continuous Assembly of Polymers. Angew Chem Int Ed Engl 2022; 61:e202112842. [PMID: 34861079 PMCID: PMC9305155 DOI: 10.1002/anie.202112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Polypeptide coatings are a cornerstone in the field of surface modification due to their widespread biological potential. As their properties are dictated by their structural features, subsequent control thereof using unique fabrication strategies is important. Herein, we report a facile method of precisely creating densely crosslinked polypeptide films with unusually high random coil content through continuous assembly polymerization via reversible addition-fragmentation chain transfer (CAP-RAFT). CAP-RAFT was fundamentally investigated using methacrylated poly-l-lysine (PLLMA) and methacrylated poly-l-glutamic acid (PLGMA). Careful technique refinement resulted in films up to 36.1±1.1 nm thick which could be increased to 94.9±8.2 nm after using this strategy multiple times. PLLMA and PLGMA films were found to have 30-50 % random coil conformations. Degradation by enzymes present during wound healing reveals potential for applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Nicholas J. Chan
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Sarah Lentz
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Paul A. Gurr
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| | - Shereen Tan
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| |
Collapse
|
8
|
Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Vernetzte Polypeptide durch RAFT‐vermittelte Polymerisation zum kontinuierlichen Aufbau von Polymerfilmen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas J. Chan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Sarah Lentz
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Paul A. Gurr
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| | - Shereen Tan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Greg G. Qiao
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| |
Collapse
|
9
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|
10
|
Lee JH, Seo HJ, Lee SY, Cho WK, Son K. On‐Surface RAFT Polymerization using Oxygen to form Triblock Copolymer Brushes. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ji Hoon Lee
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Hyun Ji Seo
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Seung Yeon Lee
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Kyung‐sun Son
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| |
Collapse
|
11
|
Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Ng G, Judzewitsch P, Li M, Pester CW, Jung K, Boyer C. Synthesis of Polymer Brushes Via SI-PET-RAFT for Photodynamic Inactivation of Bacteria. Macromol Rapid Commun 2021; 42:e2100106. [PMID: 33834575 DOI: 10.1002/marc.202100106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Biofilms are a persistent issue in healthcare and industry. Once formed, the eradication of biofilms is challenging as the extracellular polymeric matrix provides protection against harsh environmental conditions and physically enhances resistance to antimicrobials. The fabrication of polymer brush coatings provides a versatile approach to modify the surface to resist the formation of biofilms. Herein, the authors report a facile synthetic route for the preparation of surface-tethered polymeric brushes with antifouling and visible light activated bactericidal properties using surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT). Bactericidal property via the generation of singlet oxygen, which can be temporally and spatially controlled, is investigated against both Gram-positive and Gram-negative bacteria. In addition, the antibacterial properties of the surface can be recycled. This work paves the way for the preparation of polymer films that can resist and kill bacterial biofilms.
Collapse
Affiliation(s)
- Gervase Ng
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Peter Judzewitsch
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mingxiao Li
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christian W Pester
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kenward Jung
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
13
|
Bellotti V, Simonutti R. New Light in Polymer Science: Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization (PET-RAFT) as Innovative Strategy for the Synthesis of Advanced Materials. Polymers (Basel) 2021; 13:1119. [PMID: 33915928 PMCID: PMC8036437 DOI: 10.3390/polym13071119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Photochemistry has attracted great interest in the last decades in the field of polymer and material science for the synthesis of innovative materials. The merging of photochemistry and reversible-deactivation radical polymerizations (RDRP) provides good reaction control and can simplify elaborate reaction protocols. These advantages open the doors to multidisciplinary fields going from composite materials to bio-applications. Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain-Transfer (PET-RAFT) polymerization, proposed for the first time in 2014, presents significant advantages compared to other photochemical techniques in terms of applicability, cost, and sustainability. This review has the aim of providing to the readers the basic knowledge of PET-RAFT polymerization and explores the new possibilities that this innovative technique offers in terms of industrial applications, new materials production, and green conditions.
Collapse
Affiliation(s)
| | - Roberto Simonutti
- Department of Materials Science, Università Degli Studi di Milano-Bicocca, Via R. Cozzi, 55, 20125 Milan, Italy;
| |
Collapse
|
14
|
Dong X, Wang L, He Y, Cui Z, Fu P, Liu M, Qiao X, Shi G, Pang X. Simple and robust nitroxide-mediated polymerization with oxygen tolerance. Polym Chem 2021. [DOI: 10.1039/d1py00922b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Without traditional degassing operation, the resultant NMP with Dispolreg 007 as the alkoxyamine initiator exhibited similar living and control behavior as the one performed under degassing.
Collapse
Affiliation(s)
- Xin Dong
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Linan Wang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, P. R. China, 451191
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Zhang L, Liu R, Huang Z, Xu J. How does the single unit monomer insertion technique promote kinetic analysis of activation and initiation in photo-RAFT processes? Polym Chem 2021. [DOI: 10.1039/d0py01413c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The single unit monomer insertion technique provides a simple platform for the kinetic investigation of early stage of photo-RAFT process that comprises photo-activation of initial RAFT agents and addition of RAFT leaving radicals to the monomers.
Collapse
Affiliation(s)
- Lei Zhang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Ruizhe Liu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Zixuan Huang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| |
Collapse
|
16
|
Wang W, Xie WY, Wang GX, Xu W, Liang E. PET-RAFT copolymerization of vinyl acetate and acrylic acid. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-020-00868-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Pham P, Oliver S, Wong EHH, Boyer C. Effect of hydrophilic groups on the bioactivity of antimicrobial polymers. Polym Chem 2021. [DOI: 10.1039/d1py01075a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial polymers have recently been investigated as potential treatments to combat multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Phuong Pham
- Australian Centre for NanoMedicine and Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Susan Oliver
- Australian Centre for NanoMedicine and Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- Australian Centre for NanoMedicine and Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine and Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Kim CS, Cho S, Lee JH, Cho WK, Son KS. Open-to-Air RAFT Polymerization on a Surface under Ambient Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11538-11545. [PMID: 32921056 DOI: 10.1021/acs.langmuir.0c01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen (O2)-mediated controlled radical polymerization was performed on surfaces under ambient conditions, enabling on-surface polymer brush growth under open-to-air conditions at room temperature in the absence of metal components. Polymerization of zwitterionic monomers using this O2-mediated surface-initiated reversible addition fragmentation chain-transfer (O2-SI-RAFT) method yielded hydrophilic surfaces that exhibited anti-biofouling effects. O2-SI-RAFT polymerization can be performed on large surfaces under open-to-air conditions. Various monomers including (meth)acrylates and acrylamides were employed for O2-SI-RAFT polymerization; the method is thus versatile in terms of the polymers used for coating and functionalization. A wide range of hydrophilic and hydrophobic monomers can be employed. In addition, the end-group functionality of the polymer grown by O2-SI-RAFT polymerization allowed chain extension to form block copolymer brushes on a surface.
Collapse
Affiliation(s)
- Chung Soo Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soojeong Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Hoon Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Sun Son
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
19
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
20
|
Li M, Fromel M, Ranaweera D, Pester CW. Comparison of Long‐Term Stability of Initiating Monolayers in Surface‐Initiated Controlled Radical Polymerizations. Macromol Rapid Commun 2020; 41:e2000337. [DOI: 10.1002/marc.202000337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Michele Fromel
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Dhanesh Ranaweera
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Christian W. Pester
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Materials Science and Engineering Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
21
|
Fromel M, Li M, Pester CW. Surface Engineering with Polymer Brush Photolithography. Macromol Rapid Commun 2020; 41:e2000177. [DOI: 10.1002/marc.202000177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Mingxiao Li
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Christian W. Pester
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
22
|
Liarou E, Han Y, Sanchez AM, Walker M, Haddleton DM. Rapidly self-deoxygenating controlled radical polymerization in water via in situ disproportionation of Cu(i). Chem Sci 2020; 11:5257-5266. [PMID: 34122982 PMCID: PMC8159280 DOI: 10.1039/d0sc01512a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
Rapidly self-deoxygenating Cu-RDRP in aqueous media is investigated. The disproportionation of Cu(i)/Me6Tren in water towards Cu(ii) and highly reactive Cu(0) leads to O2-free reaction environments within the first seconds of the reaction, even when the reaction takes place in the open-air. By leveraging this significantly fast O2-reducing activity of the disproportionation reaction, a range of well-defined water-soluble polymers with narrow dispersity are attained in a few minutes or less. This methodology provides the ability to prepare block copolymers via sequential monomer addition with little evidence for chain termination over the lifetime of the polymerization and allows for the synthesis of star-shaped polymers with the use of multi-functional initiators. The mechanism of self-deoxygenation is elucidated with the use of various characterization tools, and the species that participate in the rapid oxygen consumption is identified and discussed in detail.
Collapse
Affiliation(s)
- Evelina Liarou
- University of Warwick, Department of Chemistry Library Road Coventry CV4 7AL UK
| | - Yisong Han
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - Ana M Sanchez
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - Marc Walker
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - David M Haddleton
- University of Warwick, Department of Chemistry Library Road Coventry CV4 7AL UK
| |
Collapse
|
23
|
Recent trends in nanopore polymer functionalization. Curr Opin Biotechnol 2020; 63:200-209. [PMID: 32387643 DOI: 10.1016/j.copbio.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Functional nanopores play an essential role in many biotechnological applications such as sensing, or drug delivery. Prominent examples are polymer functionalized ceramic or solid state nanopores. Intensive research efforts led to a discovery of a plethora of polymer functionalized nanopores demonstrating gated molecular transport upon basically all common stimuli. Nevertheless, nature's biological pore transport precision is unreached. This can be, among others, ascribed to limits in design precision especially with respect to functionalization. Recent trends in polymer functionalized nanopores address the role of confinement and polymerization control, strategies toward more sustainable reaction conditions, such as visible light initiation and strategies toward nanoscale local placement of polymer functionalization. The resulting multi-stimuli responsive nanopore performance enables concerted release or transport, side selective separation and selective detection.
Collapse
|
24
|
Liu D, Cai W, Zhang L, Boyer C, Tan J. Efficient Photoinitiated Polymerization-Induced Self-Assembly with Oxygen Tolerance through Dual-Wavelength Type I Photoinitiation and Photoinduced Deoxygenation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02710] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Weibin Cai
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|