1
|
Wang T, Guo Y, Ren K, Liang J, Chen X, Luo H, Ma Y, Kong J. Perfluoropolyether-terminated Single-ion Polymer for Enhancing Performance of PEO-based Solid Polymer Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407513. [PMID: 39523744 DOI: 10.1002/smll.202407513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Solid-state electrolytes are receiving increasing attention in lithium metal batteries due to the advantage of high energy density. Poly(ethylene oxide) (PEO) electrolyte possesses good compatibility with lithium salts. However, PEO suffers from a low lithium-ion transference number and poor high-voltage resistance, which significantly hinder its application in lithium metal batteries. Herein, a perfluoropolyether-terminated single-ion polymer (PFPE-polymer) is designed and synthesized in this contribution. By incorporating the PFPE-polymer and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) into PEO via casting, the polymer electrolyte (PFPE-SE) is successfully prepared. Compared to PEO-based electrolytes, PFPE-SE forms a solid electrolyte interface (SEI) layer and inhibits the growth of lithium dendrites on the anode. At 70 °C, the lithium-ion transference number( t L i + ) $( {{{t}_{L{{i}^ + }}}} )$ and the electrochemical window reach 0.72 and 4.7 V, respectively. When tested at a discharge rate of 0.5 C, the Li|PFPE-SE|LFP cell exhibits a specific capacity of 156.0 mAh g-1, with a capacity retention of 74.3% after 230 cycles, superiority the performance of the electrolyte prepared by mixing PEO with LiTFSI. This work presents a promising polymer electrolyte strategy for achieving high-performance lithium metal batteries, leveraging the in situ construction of the SEI layer and the utilization of a single-ion polymer.
Collapse
Affiliation(s)
- Tianyi Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yuxiang Guo
- Center for Nano Energy Materials, State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Kailiang Ren
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jin Liang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South 9th Road, Nanshant, Shenzhen, 518063, P.R. China
| | - Xiaoyi Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hebin Luo
- Fujian Blue Ocean & Black Stone Technology Co. Ltd., Changtai, Fujian, 363900, P.R. China
| | - Yue Ma
- Center for Nano Energy Materials, State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
2
|
Raja M, Lim SH, Jeon D, Bae S, Oh W, Yang I, Kang D, Ha J, Lee HE, Oh IK, Kim S, Kim SS. Thin, Uniform, and Highly Packed Multifunctional Structural Carbon Fiber Composite Battery Lamina Informed by Solid Polymer Electrolyte Cure Kinetics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59128-59142. [PMID: 39255971 PMCID: PMC11533152 DOI: 10.1021/acsami.4c08698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Multifunctional structural batteries promise advancements in structural energy storage technologies by seamlessly integrating load-bearing and energy-storage functions within a single material, reducing weight, and enhancing safety. Yet, commercialization faces challenges in materials processing, assembly, and design optimization. Here, we report a systematic approach to develop a carbon fiber (CF)-based structural battery impregnated with epoxy-based solid polymer electrolyte (SPE) via robust vacuum-assisted compression molding (VACM). Informed by cure kinetics, SPE processing enhances the multifunctional performance with no fillers or additives. The thin flexible CF-based laminae impregnated under high pressure achieved a substantial enhancement of ∼160% in the fiber volume fraction (FVF) as although thin and strip-shaped, the fibers were optimally packed with low void. A CF/SPE-based battery was fabricated, with a hybrid layered ionic liquid (IL)/ carbonate electrolyte (CE) showing enhanced safety and multifunctional performance. Enhanced by thin, uniform, and stiff CF-based composites, this study propels the development of advanced multifunctional structures, thereby expediting sustainable commercialization.
Collapse
Affiliation(s)
- Mohamad
A. Raja
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Su Hyun Lim
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Doyun Jeon
- Department
of Aerospace Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sangyoon Bae
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Woong Oh
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Inyeong Yang
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Dajeong Kang
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jawon Ha
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Ha Eun Lee
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Il-Kwon Oh
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sanha Kim
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Seong Su Kim
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science & Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
3
|
Watcharatpong T, Crespy D, Kadota K, Wang SM, Kongpatpanich K, Horike S. Alloying One-Dimensional Coordination Polymers To Create Ductile Materials. J Am Chem Soc 2024; 146:23412-23416. [PMID: 39134058 PMCID: PMC11345753 DOI: 10.1021/jacs.4c06537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
The preparation of coordination polymer (CP) alloys is demonstrated by the use of two meltable, one-dimensional crystal structures via melt-kneading. The polymer structures of the alloys are studied by synchrotron X-ray absorption and scattering, solid-state NMR spectroscopy, DSC, and viscoelastic measurements. Crystalline and amorphous domains and thermal properties (melting and glass transition) in the alloys depend on the ratio of the two constituent CPs. The glassy alloy composed of an equivalent amount of two CPs shows high plastic deformation properties, and the fracture point reaches 128% without a filler or compatibilizing agent, hence behaving as ductile materials.
Collapse
Affiliation(s)
- Teerat Watcharatpong
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| | - Daniel Crespy
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| | - Kentaro Kadota
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Shao-Min Wang
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Kanokwan Kongpatpanich
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| | - Satoshi Horike
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
- Institute
for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Olmedo-Martínez J, Del Olmo R, Gallastegui A, Villaluenga I, Forsyth M, Müller AJ, Mecerreyes D. All-Polymer Nanocomposite as Salt-Free Solid Electrolyte for Lithium Metal Batteries. ACS POLYMERS AU 2024; 4:77-85. [PMID: 38371727 PMCID: PMC10870747 DOI: 10.1021/acspolymersau.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/20/2024]
Abstract
Solid polymer electrolytes that combine both a high lithium-ion transference number and mechanical properties at high temperatures are searched for improving the performance of batteries. Here, we show a salt-free all-polymer nanocomposite solid electrolyte for lithium metal batteries that improves the mechanical properties and shows a high lithium-ion transference number. For this purpose, lithium sulfonamide-functionalized poly(methyl methacrylate) nanoparticles (LiNPs) of very small size (20-30 nm) were mixed with poly(ethylene oxide) (PEO). The morphology of all-polymer nanocomposites was first investigated by transmission electron microscopy (TEM), showing a good distribution of nanoparticles (NPs) even at high contents (50 LiNP wt %). The crystallinity of PEO was investigated in detail and decreased with the increasing concentration of LiNPs. The highest ionic conductivity value for the PEO 50 wt % LiNP nanocomposite at 80 °C is 1.1 × 10-5 S cm-1, showing a lithium-ion transference number of 0.68. Using dynamic mechanic thermal analysis (DMTA), it was shown that LiNPs strengthen PEO, and a modulus of ≈108 Pa was obtained at 80 °C for the polymer nanocomposite. The nanocomposite solid electrolyte was stable with respect to lithium in a Li||Li symmetrical cell for 1000 h. In addition, in a full solid-state battery using LiFePO4 as the cathode and lithium metal as the anode, a specific capacity of 150 mAhg-1 with a current density of 0.05 mA cm-2 was achieved.
Collapse
Affiliation(s)
- Jorge
L. Olmedo-Martínez
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Rafael Del Olmo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Antonela Gallastegui
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Irune Villaluenga
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Maria Forsyth
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Institute
for Frontier Materials and Industry Training Transformation Centre
for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood 3125, Victoria, Australia
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - David Mecerreyes
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Ma Z, Yin T, Jiang Z, Weng Y, Zhang C. Bio-based epoxidized soybean oil branched cardanol ethers as compatibilizers of polybutylene succinate (PBS)/polyglycolic acid (PGA) blends. Int J Biol Macromol 2024; 259:129319. [PMID: 38211920 DOI: 10.1016/j.ijbiomac.2024.129319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Blending poly(butylene succinate) (PBS) with another biodegradable polymer, polyglycolic acid (PGA), has been demonstrated to improve the barrier performance of PBS. However, blending these two polymers poses a challenge because of their incompatibility and large difference of their melting temperatures. In this study, we synthesized epoxidized soybean oil branched cardanol ether (ESOn-ECD), a bio-based and environmentally friendly compatibilizer, and used it to enhance the compatibility of PBS/PGA blends. It was demonstrated that the terminal carboxyl/hydroxyl groups of PBS and PGA can react with ESOn-ECD in situ, leading to branching and chain extension of PBS and PGA. The addition of ESO3-ECD to the blend considerably diminished the dispersed phase of PGA. Specifically, in comparison to the PBS/PGA blend without a compatibilizer, the diameter of the PGA phase decreased from 2.04 μm to 0.45 μm after the addition of 0.7 phr of ESO3-ECD, and the boundary between the two phases became difficult to distinguish. Additionally, the mechanical properties of the blends were improved after addition of ESO3-ECD. This research expands the potential applications of these materials and promotes the use of bio-based components in blend formulations.
Collapse
Affiliation(s)
- Zhirui Ma
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Tian Yin
- China Shenhua Coal to Liquid and Chemical Co, Ltd, Beijing, China
| | - Zhikui Jiang
- China Shenhua Coal to Liquid and Chemical Co, Ltd, Beijing, China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
6
|
Zhao Y, Wu H, Yin R, Matyjaszewski K, Bockstaller MR. The Importance of Bulk Viscoelastic Properties in "Self-Healing" of Acrylate-Based Copolymer Materials. ACS Macro Lett 2024; 13:1-7. [PMID: 38079594 PMCID: PMC10795469 DOI: 10.1021/acsmacrolett.3c00626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
"Self-healing" has emerged as a concept to increase the functional stability and durability of polymer materials in applications and thus to benefit the sustainability of polymer-based technologies. Recently, van der Waals (vdW)-driven "self-healing" of sequence-controlled acrylate-based copolymers due to "key-and-lock"- or "ring-and-lock"-type interactions has generated considerable interest as a viable route toward engineering polymers with "self-healing" ability. This contribution systematically evaluates the time, temperature, and composition dependence of the mechanical recovery of acrylate-based copolymer and homopolymer systems subject to cut-and-adhere testing. "Self-healing" in n-butyl acrylate/methyl methacrylate (BA/MMA)- or n-butyl acrylate/styrene (BA/Sty)-based copolymers with varying composition and sequence is found to correlate with the bulk viscoelastic properties of materials and to follow a similar trend as other tested acrylate-based homo- and copolymers. This suggests that "self-healing" in this class of materials is more related to the chain dynamics of bulk materials rather than composition- or sequence-dependent specific interactions.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Tessanan W, Phinyocheep P, Amornsakchai T. Sustainable Materials with Improved Biodegradability and Toughness from Blends of Poly(Lactic Acid), Pineapple Stem Starch and Modified Natural Rubber. Polymers (Basel) 2024; 16:232. [PMID: 38257031 PMCID: PMC10821380 DOI: 10.3390/polym16020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Poly(lactic acid) (PLA), derived from renewable resources, plays a significant role in the global biodegradable plastic market. However, its widespread adoption faces challenges, including high brittleness, hydrophobicity, limited biodegradability, and higher costs compared to traditional petroleum-based plastics. This study addresses these challenges by incorporating thermoplastic pineapple stem starch (TPSS) and modified natural rubber (MNR) into PLA blends. TPSS, derived from pineapple stem waste, is employed to enhance hydrophilicity, biodegradability, and reduce costs. While the addition of TPSS (10 to 40 wt.%) marginally lowered mechanical properties due to poor interfacial interaction with PLA, the inclusion of MNR (1 to 10 wt.%) in the PLA/20TPSS blend significantly improved stretchability and impact strength, resulting in suitable modulus (1.3 to 1.7 GPa) and mechanical strength (32 to 52 MPa) for diverse applications. The presence of 7 wt.% MNR increased impact strength by 90% compared to neat PLA. The ternary blend exhibited a heterogeneous morphology with enhanced interfacial adhesion, confirmed by microfibrils and a rough texture on the fracture surface. Additionally, a downward shift in PLA's glass transition temperature (Tg) by 5-6 °C indicated improved compatibility between components. Remarkably, the PLA ternary blends demonstrated superior water resistance and proper biodegradability compared to binary blends. These findings highlight the potential of bio-based plastics, such as PLA blends with TPSS and MNR, to contribute to sustainable economic models and reduce environmental impact for using in plastic packaging applications.
Collapse
Affiliation(s)
- Wasan Tessanan
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Payathai, Bangkok 10400, Thailand; (W.T.); (P.P.)
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Pranee Phinyocheep
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Payathai, Bangkok 10400, Thailand; (W.T.); (P.P.)
| | - Taweechai Amornsakchai
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Payathai, Bangkok 10400, Thailand; (W.T.); (P.P.)
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- TEAnity Team Co., Ltd., 40/494 Soi Navamintra 111, Khet Bueng Kum, Bangkok 10230, Thailand
| |
Collapse
|
8
|
Artun H, Hazman Ö, Tillayev S, Erol I. Preparation of nanocomposite based on chitosan-PDCOEMA containing biosynthesized ZnO: Biological and thermal characterization. Int J Biol Macromol 2023; 242:124753. [PMID: 37160175 DOI: 10.1016/j.ijbiomac.2023.124753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
In this study, poly(2-(3,5-dichloroanilino)-2-oxoethyl 2-methylprop-2-enoate) (PDCOEMA), a new synthetic polymer based on methacrylate, was synthesized and characterized. The blend of PDCOEMA with chitosan (CS) was prepared by the hydrothermal method and the DSC technique confirmed its formation. It was observed that PDCOEMA increased the thermal stability and glass transition temperature (Tg) of CS. The Tg value of the PDCOEMA-CS blend was increased at about 7 °C with the highest ZnO NPs contribution rate. PDCOEMA-CS/ZnO nanocomposites were prepared by adding ZnO NPs produced by biosynthesis at different weight ratios to the PDCOEMA-CS blend by hydrothermal method. When the thermal stability of nanocomposites determined by TGA was examined, it was observed that it increased significantly compared to CS. While the initial decomposition temperature of CS was 270 °C, this value increased to 293 °C after blending with DCOEMA, and to 317 °C with the addition of 7 % ZnO NPs. Antimicrobial, anticancer, cytotoxic, antioxidant, and wound healing properties of PDCOEMA, CS, PDCOEMA-CS blend, and nanocomposites were determined. According to the obtained results, it was observed that nanocomposites containing 5 % and 7 % ZnO NPs showed good anticancer activity against A549 cells at a dose of 10 μg/mL. The results show that the produced nanocomposites can contribute to developing CS-based materials.
Collapse
Affiliation(s)
- Hasan Artun
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye
| | - Ömer Hazman
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye; Samarkand State University, Faculty of Chemistry, Department of Organic and Bioorganic Chemistry, University bvld-15, Samarkand, Uzbekistan
| | - Sanjar Tillayev
- Samarkand State University, Faculty of Chemistry, Department of Organic and Bioorganic Chemistry, University bvld-15, Samarkand, Uzbekistan
| | - Ibrahim Erol
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye; Samarkand State University, Faculty of Chemistry, Department of Polymer Chemistry and Chemical Technology, University bvld-15, Samarkand, Uzbekistan.
| |
Collapse
|
9
|
Toshikj N, Richard J, Ramonda M, Robin JJ, Blanquer S. Self-assembled biodegradable block copolymer precursors for the generation of nanoporous poly(trimethylene carbonate) thin films. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Tenorio-Alfonso A, Vázquez Ramos E, Martínez I, Ambrosi M, Raudino M. Assessment of the structures contribution (crystalline and mesophases) and mechanical properties of polycaprolactone/pluronic blends. J Mech Behav Biomed Mater 2023; 139:105668. [PMID: 36638636 DOI: 10.1016/j.jmbbm.2023.105668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Films of biodegradable blends of polycaprolactone (PCL) and Pluronics F68 and F127 were manufactured by an industrial thermo-mechanical process to be applied as potential delivery systems. The effects of Pluronics on the structure (mesophase organization), and thermal and mechanical properties of polycaprolactone were investigated using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), polarized optical microscopy (POM) and tensile mechanical tests. The addition of Pluronics affected the crystallization process by changing the relative amounts of crystalline, amorphous, and meso- (condis + plastic) phases. The melting transition and XRD profiles were deconvoluted to assess the individual contribution of the different crystal morphologies. Furthermore, it was found that the mechanical properties of the blends depended on the ratio and type of Pluronic. Thus, Pluronic F127 showed a larger mesophase content than its F68 counterpart with PCL and blends with enhanced ductility.
Collapse
Affiliation(s)
- A Tenorio-Alfonso
- Pro(2)TecS-Chemical Product and Process Technology Research Centre, University of Huelva, 21071, Huelva, Spain
| | - E Vázquez Ramos
- Pro(2)TecS-Chemical Product and Process Technology Research Centre, University of Huelva, 21071, Huelva, Spain
| | - I Martínez
- Pro(2)TecS-Chemical Product and Process Technology Research Centre, University of Huelva, 21071, Huelva, Spain.
| | - M Ambrosi
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy
| | - M Raudino
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
11
|
Ma N, Horike N, Lombardo L, Kosasang S, Kageyama K, Thanaphatkosol C, Kongpatpanich K, Otake KI, Horike S. Eutectic CsHSO 4-Coordination Polymer Glasses with Superprotonic Conductivity. J Am Chem Soc 2022; 144:18619-18628. [PMID: 36190375 DOI: 10.1021/jacs.2c08624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superprotonic phase transition in CsHSO4 allows fast protonic conduction, but only at temperatures above the transition temperature of 141 °C (Tc). Here, we preserve the superprotonic conductivity of CsHSO4 by forming a binary CsHSO4-coordination polymer glass system, showing eutectic melting. Their anhydrous proton conductivities below Tc are at least 3 orders of magnitude higher than CsHSO4 without compromising conductivity at higher temperatures or the need for humidification, reaching 6.3 mS cm-1 at 180 °C. The glass also introduces processability to the conductor, as its viscosity below 103 Pa·s can be achieved at 65 °C. Solid-state NMR and X-ray pair distribution functions reveal the oxyanion exchanges and the origin of the preserved conductivity. Finally, we demonstrate the preparation of a micrometer-scale thin-film proton conductor showing low resistivity with high transparency (transmittance >85% between 380-800 nm).
Collapse
Affiliation(s)
- Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Nao Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Loris Lombardo
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soracha Kosasang
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kotoha Kageyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Chonwarin Thanaphatkosol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
12
|
Laskoski M, Dyatkin B, Osti NC, Keum JK, Mamontov E, Butler T. Understanding curing dynamics of arylacetylene and phthalonitrile thermoset blends. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthew Laskoski
- Chemistry Division U.S. Naval Research Laboratory Washington DC USA
| | - Boris Dyatkin
- Chemistry Division U.S. Naval Research Laboratory Washington DC USA
- Science & Technology Associates, Inc. Arlington Virginia USA
| | - Naresh C. Osti
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Jong K. Keum
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Eugene Mamontov
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Tristan Butler
- Chemistry Division U.S. Naval Research Laboratory Washington DC USA
- Chemistry Division Former NRC Post‐doctoral Associate, U.S. Naval Research Laboratory Washington DC USA
| |
Collapse
|
13
|
Iglesias-Montes ML, Soccio M, Siracusa V, Gazzano M, Lotti N, Cyras VP, Manfredi LB. Chitin Nanocomposite Based on Plasticized Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials. Polymers (Basel) 2022; 14:polym14153177. [PMID: 35956691 PMCID: PMC9370966 DOI: 10.3390/polym14153177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fully bio-based poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) blends plasticized with tributyrin (TB), and their nanocomposite based on chitin nanoparticles (ChNPs) was developed using melt mixing followed by a compression molding process. The combination of PHB and ChNPs had an impact on the crystallinity of the plasticized PLA matrix, thus improving its oxygen and carbon dioxide barrier properties as well as displaying a UV light-blocking effect. The addition of 2 wt% of ChNP induced an improvement on the initial thermal degradation temperature and the overall migration behavior of blends, which had been compromised by the presence of TB. All processed materials were fully disintegrated under composting conditions, suggesting their potential application as fully biodegradable packaging materials.
Collapse
Affiliation(s)
- Magdalena L. Iglesias-Montes
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity, National Research Council, 40129 Bologna, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40126 Bologna, Italy
| | - Viviana P. Cyras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Liliana B. Manfredi
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| |
Collapse
|
14
|
Atomistic Simulations of the Permeability and Dynamic Transportation Characteristics of Diamond Nanochannels. NANOMATERIALS 2022; 12:nano12111785. [PMID: 35683641 PMCID: PMC9181998 DOI: 10.3390/nano12111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 01/10/2023]
Abstract
Through atomistic simulations, this work investigated the permeability of hexagonal diamond nanochannels for NaCl solution. Compared with the multilayer graphene nanochannel (with a nominal channel height of 6.8 Å), the diamond nanochannel exhibited better permeability. The whole transportation process can be divided into three stages: the diffusion stage, the transition stage and the flow stage. Increasing the channel height reduced the transition nominal pressure that distinguishes the diffusion and flow stages, and improved water permeability (with increased water flux but reduced ion retention rate). In comparison, channel length and solution concentration exerted ignorable influence on water permeability of the channel. Further simulations revealed that temperature between 300 and 350 K remarkably increased water permeability, accompanied by continuously decreasing transition nominal pressure. Additional investigations showed that the permeability of the nanochannel could be effectively tailored by surface functionalization. This work provides a comprehensive atomic insight into the transportation process of NaCl solution in a diamond nanochannel, and the established understanding could be beneficial for the design of advanced nanofluidic devices.
Collapse
|
15
|
Thanaphatkosol C, Ma N, Kageyama K, Watcharatpong T, Tiyawarakul T, Kongpatpanich K, Horike S. Modulation of proton conductivity in coordination polymer mixed glasses. Chem Commun (Camb) 2022; 58:6064-6067. [PMID: 35438115 DOI: 10.1039/d2cc01266a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible solid-to-liquid phase transition in coordination polymer glasses allowed the formation of homogeneous mixed-glasses from two distinct parent compounds. The resulting mixed glasses show composition-dependent glass transition temperatures and unique viscoelastic behaviour. A non-linear mixed glass former effect and controllable anhydrous H+ conductivities are also demonstrated.
Collapse
Affiliation(s)
- Chonwarin Thanaphatkosol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kotoha Kageyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Teerat Watcharatpong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Thanakorn Tiyawarakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Satoshi Horike
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. .,Institute for Integrated Cell-Material Sciences-VISTEC Research Center, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Drug-Biopolymer Dispersions: Morphology- and Temperature- Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari-Goldstein Relaxations. Int J Mol Sci 2022; 23:ijms23052456. [PMID: 35269593 PMCID: PMC8910109 DOI: 10.3390/ijms23052456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari-Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari-Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.
Collapse
|
17
|
Dearman M, Ogbonna ND, Amofa CA, Peters AJ, Lawrence J. Versatile strategies to tailor the glass transition temperatures of bottlebrush polymers. Polym Chem 2022. [DOI: 10.1039/d2py00819j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glass transition temperature (Tg) of bottlebrush polymers can be controlled via side-chain length, blend composition and brush topology. Elucidating interactions between these parameters and their design rules enables accurate targeting of Tg at arbitrary molecular weights.
Collapse
Affiliation(s)
- Michael Dearman
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| | - Nduka D. Ogbonna
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| | - Chamberlain A. Amofa
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| | - Andrew J. Peters
- Department of Chemical Engineering, Louisiana Tech University, Ruston, Louisiana, 71272, USA
| | - Jimmy Lawrence
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| |
Collapse
|
18
|
Ginzburg VV. Modeling the Glass Transition and Glassy Dynamics of Random Copolymers Using the TS2 Mean-Field Approach. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valeriy V. Ginzburg
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824-1226, United States
| |
Collapse
|
19
|
Linnenkugel S, Paterson AH, Huffman LM, Bronlund JE. Prediction of the glass transition temperature of low molecular weight components and polysaccharide mixtures. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Larder RR, Bennett TM, Blankenship LS, Fernandes JA, Husband BK, Atkinson RL, Derry MJ, Toolan DTW, Centurion HA, Topham PD, Gonçalves RV, Taresco V, Howdle SM. Porous hollow TiO2 microparticles for photocatalysis: exploiting novel ABC triblock terpolymer templates synthesised in supercritical CO2. Polym Chem 2021. [DOI: 10.1039/d1py00334h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of phase separated PMMA-b-PS-b-P4VP microparticles via RAFT-mediated dispersion polymerisation in scCO2 and their use as a structure-directing agent for the fabrication of TiO2 microparticles for photocatalysis.
Collapse
|
21
|
Scoti M, Di Girolamo R, De Stefano F, Giordano A, Malafronte A, Talarico G, Cipullo R, De Rosa C. Synthesis, structure and properties of copolymers of syndiotactic polypropylene with 1-hexene and 1-octene. Polym Chem 2021. [DOI: 10.1039/d1py00975c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of long branches, such as 1-hexene or 1-octene, in syndiotactic polypropylene gives novel elastomeric materials, whose crystallization behavior and elastic properties can be easily tailored through tuning of the branches concentration.
Collapse
Affiliation(s)
- Miriam Scoti
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Rocco Di Girolamo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Fabio De Stefano
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Angelo Giordano
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Anna Malafronte
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Roberta Cipullo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Claudio De Rosa
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
22
|
Wu J, Xia G, Li S, Wang L, Ma J. A Flexible and Self-Healable Gelled Polymer Electrolyte Based on a Dynamically Cross-Linked PVA Ionogel for High-Performance Supercapacitors. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jintian Wu
- College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Gaojing Xia
- College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Shangbo Li
- College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lupei Wang
- College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jianjun Ma
- College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
23
|
Smola-Dmochowska A, Śmigiel-Gac N, Kaczmarczyk B, Sobota M, Janeczek H, Karpeta-Jarząbek P, Kasperczyk J, Dobrzyński P. Triple-Shape Memory Behavior of Modified Lactide/Glycolide Copolymers. Polymers (Basel) 2020; 12:E2984. [PMID: 33327569 PMCID: PMC7765011 DOI: 10.3390/polym12122984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
The paper presents the formation and properties of biodegradable thermoplastic blends with triple-shape memory behavior, which were obtained by the blending and extrusion of poly(l-lactide-co-glycolide) and bioresorbable aliphatic oligoesters with side hydroxyl groups: oligo (butylene succinate-co-butylene citrate) and oligo(butylene citrate). Addition of the oligoesters to poly (l-lactide-co-glycolide) reduces the glass transition temperature (Tg) and also increases the flexibility and shape memory behavior of the final blends. Among the tested blends, materials containing less than 20 wt % of oligo (butylene succinate-co-butylene citrate) seem especially promising for biomedical applications as materials for manufacturing bioresorbable implants with high flexibility and relatively good mechanical properties. These blends show compatibility, exhibiting one glass transition temperature and macroscopically uniform physical properties.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland; (N.Ś.-G.); (B.K.); (M.S.); (H.J.); (P.K.-J.); (J.K.)
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland; (N.Ś.-G.); (B.K.); (M.S.); (H.J.); (P.K.-J.); (J.K.)
| | - Bożena Kaczmarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland; (N.Ś.-G.); (B.K.); (M.S.); (H.J.); (P.K.-J.); (J.K.)
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland; (N.Ś.-G.); (B.K.); (M.S.); (H.J.); (P.K.-J.); (J.K.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland; (N.Ś.-G.); (B.K.); (M.S.); (H.J.); (P.K.-J.); (J.K.)
| | - Paulina Karpeta-Jarząbek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland; (N.Ś.-G.); (B.K.); (M.S.); (H.J.); (P.K.-J.); (J.K.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland; (N.Ś.-G.); (B.K.); (M.S.); (H.J.); (P.K.-J.); (J.K.)
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-000 Katowice, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland; (N.Ś.-G.); (B.K.); (M.S.); (H.J.); (P.K.-J.); (J.K.)
- Faculty of Science and Technology, Jan Dlugosz University, 42-200 Czestochowa, Poland
| |
Collapse
|
24
|
Corres MÁ, Mayor Á, Sangroniz A, del Río J, Iriarte M, Etxeberria A. Blends based on biodegradable poly(caprolactone) with outstanding barrier properties for packaging applications: The role of free volume and interactions. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Squillace O, Fong R, Shepherd O, Hind J, Tellam J, Steinke NJ, Thompson RL. Influence of PVAc/PVA Hydrolysis on Additive Surface Activity. Polymers (Basel) 2020; 12:polym12010205. [PMID: 31947559 PMCID: PMC7023474 DOI: 10.3390/polym12010205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
This aims to establish design rules for the influence of complex polymer matrices on the surface properties of small molecules. Here, we consider the dependence of the surface behaviour of some model additives on polymer matrix hydrophobicity. With stoichiometric control over hydrolysis, we generate systematic changes in matrix chemistry from non-polar, hydrophobic PVAc to its hydrolysed and hydrophilic analogue, PVA. With the changing degree of hydrolysis (DH), the behaviour of additives can be switched in terms of compatibility and surface activity. Sorbitol, a polar sugar-alcohol of inherently high surface energy, blooms to the surface of PVAc, forming patchy domains on surfaces. With the increasing DH of the polymer matrix, its surface segregation decreases to the point where sorbitol acts as a homogeneously distributed plasticiser in PVA. Conversely, and despite its low surface energy, octanoic acid (OA) surprisingly causes the increased wettability of PVAc. We attribute these observations to the high compatibility of OA with PVAc and its ability to reorient upon exposure to water, presenting a hydrophilic COOH-rich surface. The surfactant sodium dodecyl sulfate (SDS) does not show such a clear dependence on the matrix and formed wetting layers over a wide range of DH. Interestingly, SDS appears to be most compatible with PVAc at intermediate DH, which is consistent with the amphiphilic nature of both species under these conditions. Thus, we show that the prediction of the segregation is not simple and depends on multiple factors including hydrophobicity, compatibility, blockiness, surface energy, and the mobility of the components.
Collapse
Affiliation(s)
- Ophélie Squillace
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK; (R.F.); (O.S.); (R.L.T.)
- Correspondence: ; Tel.: +44(0)-7999-284328
| | - Rebecca Fong
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK; (R.F.); (O.S.); (R.L.T.)
| | - Oliver Shepherd
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK; (R.F.); (O.S.); (R.L.T.)
| | - Jasmine Hind
- STFC ISIS Facility, Rutherford Appleton Laboratories, Chilton, Didcot OX11 0QX, UK; (J.H.); (J.T.); (N.-J.S.)
| | - James Tellam
- STFC ISIS Facility, Rutherford Appleton Laboratories, Chilton, Didcot OX11 0QX, UK; (J.H.); (J.T.); (N.-J.S.)
| | - Nina-Juliane Steinke
- STFC ISIS Facility, Rutherford Appleton Laboratories, Chilton, Didcot OX11 0QX, UK; (J.H.); (J.T.); (N.-J.S.)
| | - Richard L. Thompson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK; (R.F.); (O.S.); (R.L.T.)
| |
Collapse
|
26
|
Mechanical, rheological and anaerobic biodegradation behavior of a Poly(lactic acid) blend containing a Poly(lactic acid)-co-poly(glycolic acid) copolymer. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.109018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ambrosi M, Raudino M, Diañez I, Martínez I. Non-isothermal crystallization kinetics and morphology of poly(3-hydroxybutyrate)/pluronic blends. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Drug-Polymer Solubility Determination: A New Thermodynamic Model Free from Lattice Theory Assumptions. Pharm Res 2019; 36:175. [DOI: 10.1007/s11095-019-2710-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
29
|
Effect of surface charge and roughness on ultrafiltration membranes performance and polyelectrolyte nanofiltration layer assembly. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123753] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Zhang X, Guillerm B, Prud'homme RE. Synthesis and thermal properties of a triblock copolymer for lithium metal polymer batteries. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Qiang W, Hu DD, Liu T, Zhao L. Strategy to control CO2 diffusion in polystyrene microcellular foaming via CO2-philic additives. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Gomes Neto RJ, Genevro GM, Paulo LDA, Lopes PS, de Moraes MA, Beppu MM. Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydr Polym 2019; 212:59-66. [DOI: 10.1016/j.carbpol.2019.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/20/2018] [Accepted: 02/06/2019] [Indexed: 01/23/2023]
|
33
|
Pruksawan S, Samitsu S, Yokoyama H, Naito M. Homogeneously Dispersed Polyrotaxane in Epoxy Adhesive and Its Improvement in the Fracture Toughness. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02450] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sirawit Pruksawan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tenodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Sadaki Samitsu
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Toudaikasiwakyanpasu, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
| | - Masanobu Naito
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tenodai, Tsukuba, Ibaraki 305-8571, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Toudaikasiwakyanpasu, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
| |
Collapse
|
34
|
Tuffnell JM, Ashling CW, Hou J, Li S, Longley L, Ríos Gómez ML, Bennett TD. Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites. Chem Commun (Camb) 2019; 55:8705-8715. [DOI: 10.1039/c9cc01468c] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This Feature Article reviews a range of amorphisation mechanisms of Metal–Organic Frameworks (MOFs) and presents recent advances to produce novel MOF materials including porous MOF glasses, MOF crystal–glass composites, flux melted MOF glasses and blended zeolitic imidazolate framework glasses.
Collapse
Affiliation(s)
- Joshua M. Tuffnell
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
| | | | - Jingwei Hou
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
| | - Shichun Li
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
- Institute of Chemical Materials
| | - Louis Longley
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
| | - María Laura Ríos Gómez
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
- Institute of Materials Research (IIM-UNAM). Circuito Exterior
| | - Thomas D. Bennett
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
35
|
Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Rafiee Z, Mohagheghnezhad M. Synthesis and properties of organosoluble and thermal stable polyimides from 3,5-diamino-N-(4-(5-(4,5-diphenyl-1H-imidazol-2-yl)furan-2-yl)phenyl)benzamide. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Kwon SJ, Kim T, Jung BM, Lee SB, Choi UH. Multifunctional Epoxy-Based Solid Polymer Electrolytes for Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35108-35117. [PMID: 30230315 DOI: 10.1021/acsami.8b11016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solid polymer electrolytes (SPEs) have drawn attention for promising multifunctional electrolytes requiring very good mechanical properties and ionic conductivity. To develop a safe SPE for energy storage applications, mechanically robust cross-linked epoxy matrix is combined with fast ion-diffusing ionic liquid/lithium salt electrolyte (ILE) via a simple one-pot curing process. The epoxy-rich SPEs show higher Young's modulus ( E), with higher glass transition temperature ( Tg) but lower ionic conductivity (σdc) with a higher activation energy, compared to the ILE-rich SPEs. The incorporation of inorganic robust Al2O3 nanowire simultaneously provides excellent mechanical robustness ( E ≈ 1 GPa at 25 °C) and good conductivity (σdc ≈ 2.9 × 10-4 S/cm at 25 °C) to the SPE. This suggests that the SPE has a bicontinuous microphase separation into ILE-rich and epoxy-rich microdomain, where ILE continuous conducting phases are intertwined with a sturdy cross-linked amorphous epoxy framework, supported by the observation of the two Tgs and low tortuosity as well as the microstructural investigation. After assembling the SPE with activated carbon electrodes, we successfully demonstrate the supercapacitor performance, exhibiting high energy and power density (75 W h/kg at 382 W/kg and 9.3 kW/kg at 44 W h/kg). This facile strategy holds tremendous potential to advance multifunctional energy storage technology for next-generation electric vehicles.
Collapse
Affiliation(s)
- Suk Jin Kwon
- Functional Composite Department , Korea Institute of Materials Science (KIMS) , Changwon 51508 , Korea
| | - Taehoon Kim
- Functional Composite Department , Korea Institute of Materials Science (KIMS) , Changwon 51508 , Korea
| | - Byung Mun Jung
- Functional Composite Department , Korea Institute of Materials Science (KIMS) , Changwon 51508 , Korea
| | - Sang Bok Lee
- Functional Composite Department , Korea Institute of Materials Science (KIMS) , Changwon 51508 , Korea
| | - U Hyeok Choi
- Department of Polymer Engineering , Pukyong National University , Busan 48547 , Korea
| |
Collapse
|
38
|
Chaos A, Sangroniz A, Gonzalez A, Iriarte M, Sarasua JR, del Río J, Etxeberria A. Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. POLYM INT 2018. [DOI: 10.1002/pi.5705] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ana Chaos
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| | - Ainara Sangroniz
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| | - Alba Gonzalez
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| | - Marian Iriarte
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| | - Jose-Ramon Sarasua
- POLYMAT, Department of Mining-Metallurgy Engineering and Materials Science; University of the Basque Country UPV/EHU; Bilbao Spain
| | - Javier del Río
- Departamento de Física de Materiales; Universidad Complutense de Madrid; Madrid Spain
| | - Agustin Etxeberria
- POLYMAT, Department of Polymer Science and Technology; Faculty of Chemistry, University of the Basque Country UPV/EHU; Donostia Spain
| |
Collapse
|
39
|
Abstract
The liquid and glass states of metal-organic frameworks (MOFs) have recently become of interest due to the potential for liquid-phase separations and ion transport, alongside the fundamental nature of the latter as a new, fourth category of melt-quenched glass. Here we show that the MOF liquid state can be blended with another MOF component, resulting in a domain structured MOF glass with a single, tailorable glass transition. Intra-domain connectivity and short range order is confirmed by nuclear magnetic resonance spectroscopy and pair distribution function measurements. The interfacial binding between MOF domains in the glass state is evidenced by electron tomography, and the relationship between domain size and Tg investigated. Nanoindentation experiments are also performed to place this new class of MOF materials into context with organic blends and inorganic alloys.
Collapse
|
40
|
Sangroniz A, Gonzalez A, Martin L, Irusta L, Iriarte M, Etxeberria A. Miscibility and degradation of polymer blends based on biodegradable poly(butylene adipate-co-terephthalate). Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Boonsuk P, Kaewtatip K, Chantarak S, Kelarakis A, Chaibundit C. Super-tough biodegradable poly(vinyl alcohol)/poly(vinyl pyrrolidone) blends plasticized by glycerol and sorbitol. J Appl Polym Sci 2018. [DOI: 10.1002/app.46406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Phetdaphat Boonsuk
- Department of Materials Science and Technology, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90110 Thailand
| | - Kaewta Kaewtatip
- Department of Materials Science and Technology, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90110 Thailand
| | - Sirinya Chantarak
- Department of Materials Science and Technology, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90110 Thailand
| | - Antonios Kelarakis
- Centre for Materials Science, School of Physical Sciences and Computing; University of Central Lancashire; Preston PR12HE United Kingdom
| | - Chiraphon Chaibundit
- Department of Materials Science and Technology, Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla 90110 Thailand
| |
Collapse
|
42
|
Ang HY, Chan J, Toong D, Venkatraman SS, Chia SJ, Huang YY. Tailoring the mechanical and biodegradable properties of binary blends of biomedical thermoplastic elastomer. J Mech Behav Biomed Mater 2018; 79:64-72. [DOI: 10.1016/j.jmbbm.2017.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
|
43
|
Reglero Ruiz JA, Vallejos S, Sanjuán AM, García FC, Múgica M, Rodríguez-Pérez MÁ, García JM. Microcellular polymeric foams based on 1-vinyl-2-pyrrolidone and butyl-acrylate with tuned thermal conductivity. J Appl Polym Sci 2018. [DOI: 10.1002/app.45872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José A. Reglero Ruiz
- Departamento de Química, Facultad de Ciencias; Universidad de Burgos; Plaza de Misael Bañuelos s/n, Burgos 09001 Spain
| | - Saúl Vallejos
- Departamento de Química, Facultad de Ciencias; Universidad de Burgos; Plaza de Misael Bañuelos s/n, Burgos 09001 Spain
| | - Ana M. Sanjuán
- Departamento de Química, Facultad de Ciencias; Universidad de Burgos; Plaza de Misael Bañuelos s/n, Burgos 09001 Spain
| | - Félix C. García
- Departamento de Química, Facultad de Ciencias; Universidad de Burgos; Plaza de Misael Bañuelos s/n, Burgos 09001 Spain
| | - Mikel Múgica
- Cellular Materials Laboratory (CellMat), Departamento de Física de la Materia Condensada; Universidad de Valladolid; Paseo Belén 7, Campus “Miguel Delibes”, Valladolid 47011 Spain
| | - Miguel Ángel Rodríguez-Pérez
- Cellular Materials Laboratory (CellMat), Departamento de Física de la Materia Condensada; Universidad de Valladolid; Paseo Belén 7, Campus “Miguel Delibes”, Valladolid 47011 Spain
| | - José M. García
- Departamento de Química, Facultad de Ciencias; Universidad de Burgos; Plaza de Misael Bañuelos s/n, Burgos 09001 Spain
| |
Collapse
|
44
|
Sappati PK, Nayak B, van Walsum GP. Effect of glass transition on the shrinkage of sugar kelp (Saccharina latissima) during hot air convective drying. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Nebipasagil A, Park J, Lane OR, Sundell BJ, Mecham SJ, Freeman BD, Riffle JS, McGrath JE. Polyurethanes containing Poly(arylene ether sulfone) and Poly(ethylene oxide) segments for gas separation membranes. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Nugroho FAA, Diaz de Zerio Mendaza A, Lindqvist C, Antosiewicz TJ, Müller C, Langhammer C. Plasmonic Nanospectroscopy for Thermal Analysis of Organic Semiconductor Thin Films. Anal Chem 2017; 89:2575-2582. [PMID: 28194946 DOI: 10.1021/acs.analchem.6b04807] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organic semiconductors are key materials for the next generation thin film electronic devices like field-effect transistors, light-emitting diodes, and solar cells. Accurate thermal analysis is essential for the fundamental understanding of these materials, for device design, stability studies, and quality control because the desired nanostructures are often far from thermodynamic equilibrium and therefore tend to evolve with time and temperature. However, classical experimental techniques are insufficient because the active layer of most organoelectronic device architectures is typically only on the order of a hundred nanometers or less. Scrutinizing the thermal properties in this size range is, however, critical because strong deviations of the thermal properties from bulk values due to confinement effects and pronounced influence of the substrate become significant. Here, we introduce plasmonic nanospectroscopy as an experimental approach to scrutinize the thickness dependence of the thermal stability of semicrystalline, liquid-crystalline, and glassy organic semiconductor thin films down to the sub-100 nm film thickness regime. In summary, we find a pronounced thickness dependence of the glass transition temperature of ternary polymer/fullerene blend thin films and their constituents, which can be resolved with exceptional precision by the plasmonic nanospectroscopy method, which relies on remarkably simple instrumentation.
Collapse
Affiliation(s)
| | | | | | - Tomasz J Antosiewicz
- Centre of New Technologies, University of Warsaw , Banacha 2c, 02-097 Warsaw, Poland
| | | | | |
Collapse
|
47
|
Miscibility of polyimide blends: Physicochemical characterization of two high performance polyimide polymers. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Tiwari SK, Verma K, Saren P, Oraon R, De Adhikari A, Nayak GC, Kumar V. Manipulating selective dispersion of reduced graphene oxide in polycarbonate/nylon 66 based blend nanocomposites for improved thermo-mechanical properties. RSC Adv 2017. [DOI: 10.1039/c7ra02044a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Selective dispersion of rGO in PC/nylon blend by varying mixing sequence of rGO during melt mixing.
Collapse
Affiliation(s)
- Santosh Kr. Tiwari
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Kartikey Verma
- Department of Applied Physics
- Chandigarh University
- Mohali
- India
| | - Pupulata Saren
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Ramesh Oraon
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Amrita De Adhikari
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | | | - Vijay Kumar
- Department of Applied Physics
- Chandigarh University
- Mohali
- India
| |
Collapse
|
49
|
dos Santos FA, Valle Iulianelli GC, Bruno Tavares MI. Development and properties evaluation of bio-based PLA/PLGA blend films reinforced with microcrystalline cellulose and organophilic silica. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fernanda Abbate dos Santos
- Instituto de Macromoléculas Professora Eloisa Mano-Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
- Centro de Tecnologia Bloco J-Cidade Universitária Ilha do Fundão; Rio de Janeiro RJ CEP 21945-970, CP 68525 Brazil
| | - Gisele Cristina Valle Iulianelli
- Instituto de Macromoléculas Professora Eloisa Mano-Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
- Centro de Tecnologia Bloco J-Cidade Universitária Ilha do Fundão; Rio de Janeiro RJ CEP 21945-970, CP 68525 Brazil
| | - Maria Inês Bruno Tavares
- Instituto de Macromoléculas Professora Eloisa Mano-Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
- Centro de Tecnologia Bloco J-Cidade Universitária Ilha do Fundão; Rio de Janeiro RJ CEP 21945-970, CP 68525 Brazil
| |
Collapse
|
50
|
Xavier P, Bose S. Nanomechanical Mapping, Hierarchical Polymer Dynamics, and Miscibility in the Presence of Chain-End Grafted Nanoparticles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b01849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Priti Xavier
- Department
of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Suryasarathi Bose
- Department
of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|