1
|
Afzal J, Zhang J, Wang H. Fabrication of -SO 3H-functionalized polyphosphazene-reinforced proton conductive matrix-mixed membranes. RSC Adv 2024; 14:14456-14464. [PMID: 38699689 PMCID: PMC11063683 DOI: 10.1039/d3ra07094h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Proton exchange membranes (PEMs) have emerged as very promising membranes for automotive applications because of their notable proton conductivity at low temperatures. These membranes find extensive utilization in fuel cells. Several polymeric materials have been used, but their application is constrained by their expense and intricate synthetic processes. Affordable and efficient synthetic methods for polymeric materials are necessary for the widespread commercial use of PEM technology. The polymeric combination of hexachlorocyclotriphosphazene (HCCP) and 4,4-diamino-2,2-biphenyldisulfonic acid facilitated the synthesis of PP-(PhSO3H)2, a polyphosphazene with built-in -SO3H moieties. Characterization revealed that it was a porous organic polymer with high stability. PP-(PhSO3H)2 exhibited a proton conductivity of up to 8.24 × 10-2 S cm-1 (SD = ±0.031) at 353 K under 98% relative humidity (RH), which was more than two orders of magnitude higher than that of its -SO3H-free analogue, PP-(Ph)2 (2.32 × 10-4 S cm-1) (SD = ±0.019) under identical conditions. Therefore, for application in a PEM fuel cell, PP-(PhSO3H)2-based matrix-mixed membranes (PP-(PhSO3H)2-MMMs) were fabricated by mixing them with polyacrylonitrile (PAN) in various ratios. The proton conductivity could reach up to 6.11 × 10-2 S cm-1 (SD = ±0.0048) at 353 K and 98%RH, when the weight ratio of PP-(PhSO3H)2 : PAN was 3 : 1, the value of which was comparable with those of commercially available electrolytes used in PEM fuel cells. PP-(PhSO3H)2-MMM (3 : 1) had an extended lifetime of reusability. Using phosphazene and bisulfonated multiple-amine modules as precursors, we demonstrated that a porous organic polymer with a highly effective proton-conductive matrix-mixed membrane for PEM fuel cells could be produced readily by an intuitive polymeric reaction.
Collapse
Affiliation(s)
- Jamal Afzal
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiashun Zhang
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
2
|
Luan TX, Zhang P, Wang Q, Xiao X, Feng Y, Yuan S, Li PZ, Xu Q. "All in One" Strategy for Achieving Superprotonic Conductivity by Incorporating Strong Acids into a Robust Imidazole-Linked Covalent Organic Framework. NANO LETTERS 2024. [PMID: 38603798 DOI: 10.1021/acs.nanolett.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.
Collapse
Affiliation(s)
- Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Pengtu Zhang
- School of Chemical Engineering, Shandong Institute of Pertroleum and Chemical Technology, Dongying 257061, Shandong Province, China
| | - Qiurong Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong Province, China
| | - Yijing Feng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Shiling Yuan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
- School of Chemical Engineering, Shandong Institute of Pertroleum and Chemical Technology, Dongying 257061, Shandong Province, China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong Province, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
García-Salaberri PA, Zenyuk IV. A general-purpose tool for modeling multifunctional thin porous media ( POREnet): From pore network to effective property tensors. Heliyon 2024; 10:e26253. [PMID: 38404803 PMCID: PMC10884887 DOI: 10.1016/j.heliyon.2024.e26253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
POREnet, a novel approach to model effective properties of thin porous media, TPM, is presented. The methodology allows the extraction of local effective property tensors by volume averaging from discrete pore networks, PNs, built on the tessellated continuum space of a TPM. The gradient theorem is used to describe 3D transport in bulk tessellated space, providing an appropriate metric to normalize network fluxes. Implemented effective transport properties include diffusivity, permeability, solid-phase conductivity, and entry capillary pressure and contact angle under two-phase conditions, considering multi-component materials with several solid phases and local contact resistances. Calculated property tensors can be saved on 3D image stacks, where interfacial and sub-CV scale features can be added before exporting data to CFD meshes for simulation. Overall, POREnet provides a general-purpose, versatile methodology for modeling TPM in an ample range of conditions within a single CFD framework. Among other advantages, coupling of PN and continuum models at TPM-channel interfaces is simplified, interfacial contact resistances can be included using robin boundary conditions, and transient multiphysics simulations can be implemented more easily using CFD. The code is tested against a miscellaneousness of examples extracted from electrochemical applications.
Collapse
Affiliation(s)
- Pablo A. García-Salaberri
- Department of Thermal and Fluids Engineering, Universidad Carlos III de Madrid, Leganés 28911, Spain
| | - Iryna V. Zenyuk
- Department of Chemical & Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Freger V. Dielectric exclusion, an éminence grise. Adv Colloid Interface Sci 2023; 319:102972. [PMID: 37556866 DOI: 10.1016/j.cis.2023.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Dielectric exclusion has long been well-established as the key mechanism in membrane desalination, critical for delivering the required levels of salt rejection, also playing important role in electro-membrane processes, nanofluidics, and biomimetics. Unfortunately, its elusive nature and many features, such as dependence on the pore size, membrane hydration, and ion size and charge, make it deceivingly similar to the other ion exclusions mechanisms, steric and Donnan, which has led to much controversy and misconceptions. Starting from the Born model and the concept of self-energy, the present paper reviews and highlights the physical basis of dielectric exclusion, its main features and the ways it may be looked at. It discusses what makes the dielectric exclusion both similar and distinctly different from the other mechanism and its synergy and intimate connection with other phenomena, such as Donnan exclusion, permeability-selectivity upper-bound, and selectivity of charged membranes towards uncharged solutes. The paper also addresses subjects that still cause much controversy at present, such as appropriate measures of ionic radii and the subtle distinction between the dielectric exclusion and primary ion hydration. It also points to gaps that need to be bridged towards more complete theory. The points addressed here are important for understanding, modeling and development of various next-generation separation technologies including water purification, resource recovery and reuse, and green energy generation and storage.
Collapse
Affiliation(s)
- Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel; Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa 32000, Israel; Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel.
| |
Collapse
|
5
|
Wei P, Huang D, Luo C, Sui Y, Li X, Liu Q, Zhu B, Cong C, Zhou Q, Meng X. High-performance sandwich-structure PI/SPEEK+HPW nanofiber composite membrane with balanced proton conductivity and stability. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Meng X, Lv Y, Ding L, Peng L, Peng Q, Cong C, Ye H, Zhou Q. Effect of Covalent Organic Frameworks Containing Different Groups on Properties of Sulfonated Poly(ether ether ketone) Matrix Proton Exchange Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3518. [PMID: 36234649 PMCID: PMC9565559 DOI: 10.3390/nano12193518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The rich -SO3H groups enable sulfonated poly (ether ether ketone) (SPEEK) to possess excellent proton conductivities in proton exchange membrane (PEM), but cause excessive water absorption, resulting in the decline of dimensional stability. It is a challenge to resolve the conflict between conductivity and stability. Owing to its unique structural designability, covalent organic frameworks (COFs) have been used to regulate the performances of PEMs. The authors propose the use of COFs with acidic and basic groups for meeting the requirements of proton conductivity and dimensional stability. Herein, COFs containing different groups (sulfoacid, pyridine, and both) were uniformly dispersed into the SPEEK matrix by in situ synthesis, and the effects on the properties of SPEEK matrix PEMs were revealed. The sulfoacid group significantly improves proton conductivities. At 60 °C, under 95% RH, the conductivity of the SPEEK/TpPa-SO3H-20 composite membrane was 443.6 mS·cm-1, which was 3.3 times that of the pristine SPEEK membrane. The pyridine group reduced the swelling ratio at 50 °C from 220.7% to 2.4%, indicating an enhancement in dimensional stability. Combining the benefits of sulfoacid and pyridine groups, SPEEK/TpPa-(SO3H-Py) composite membrane has a conductivity of 360.3 mS·cm-1 at 60 °C and 95% RH, which is 1.86 times that of SPEEK, and its swelling ratio is 11.8%, about 1/20 of that of SPEEK membrane. The method of in situ combination and regulation of groups open up a way for the development of SPEEK/COFs composite PEMs.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum, Beijing 102249, China
| | - Yinan Lv
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Lei Ding
- CSSC Systems Engineering Research Institute, Beijing 100036, China
| | - Luman Peng
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Qiwang Peng
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Chuanbo Cong
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum, Beijing 102249, China
| | - Haimu Ye
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum, Beijing 102249, China
| | - Qiong Zhou
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
7
|
Yang Y, Tocchetto R, Nixon K, Sun R, Elabd YA. Dehumidification via polymer electrolyte membrane electrolysis with sulfonated pentablock terpolymer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Afzal J, Fu Y, Luan TX, Su Z, Li PZ. Highly Effective Proton-Conductive Matrix-Mixed Membrane Based on a -SO 3H-Functionalized Polyphosphazene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10503-10511. [PMID: 35976224 DOI: 10.1021/acs.langmuir.2c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A polyphosphazene with in-built -SO3H moieties (PP-PhSO3H) was facilely synthesized by the polymeric combination of hexachlorocyclotriphosphazene (HCCP) and sulfonate p-phenylenediamine. Characterization reveals that it is a highly stable amorphous polymer. Proton conductivity investigations showed that the synthesized PP-PhSO3H exhibits a proton conductivity of up to 6.64 × 10-2 S cm-1 at 353 K and 98% relative humidity (RH). This value is almost 2 orders of magnitude higher than the corresponding value for its -SO3H-free analogue, PP-Ph, which is 1.72 × 10-4 S cm-1 when measured under the same condition. Consequently, matrix-mixed membranes (labeled PP-PhSO3H-PAN) were further prepared by mixing PP-PhSO3H with polyacrylonitrile (PAN) in different ratios to test its potential application in the proton-exchange membrane (PEM) fuel cell. The analysis results indicate that when the weight ratio of PP-PhSO3H/PAN is 3:1 [named PP-PhSO3H-PAN (3:1)], its proton conductivity can reach up to 5.05 × 10-2 S cm-1 at 353 K and 98% RH, which is even comparable with those of proton-conductive electrolytes currently used in PEM fuel cells. Furthermore, the continuous test demonstrates that the PP-PhSO3H-PAN (3:1) has long-life reusability. This research reveals that by using phosphazene and sulfonated multiple-amine modules as precursors, organic polymers with excellent proton conductivity for the assembly of matrix-mixed membranes in PEM fuel cells can be easily synthesized by a simple polymeric process.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
9
|
Afzal J, Fu Y, Luan TX, Zhang D, Li Y, Li H, Cheng K, Su Z, Li PZ. Facile construction of a highly proton-conductive matrix-mixed membrane based on a -SO 3H functionalized polyamide. SOFT MATTER 2022; 18:5518-5523. [PMID: 35848897 DOI: 10.1039/d2sm00451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing a facile strategy to construct low-cost and efficient proton-conductive electrolytes is pivotal in the practical application of proton exchange membrane (PEM) fuel cells. Herein, a polyamide with in-built -SO3H moieties, PA(PhSO3H)2, was synthesized via a simple one-pot polymeric acylation process. Investigations via electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA(PhSO3H)2 displays a proton conductivity of up to 5.54 × 10-2 S cm-1 at 353 K under 98% relative humidity (RH), which is more than 2 orders of magnitude higher than that of its -SO3H-free analogue PA(Ph)2 (2.38 × 10-4 S cm-1) under the same conditions. Therefore, after mixing with polyacrylonitrile (PAN) at different ratios, PA(PhSO3H)2-based matrix-mixed membranes were subsequently made and the analysis results revealed that the proton conductivity can reach up to 5.82 × 10-2 S cm-1 at 353 K and 98% RH when the weight ratio of PA(PhSO3H)2 : PAN is in 3 : 1 (labeled as PA(PhSO3H)2-PAN(3 : 1)), the value of which is comparable even to those of commercially available electrolytes that are used in PEM fuel cells. In addition, continuous testing shows that PA(PhSO3H)2-PAN(3 : 1) possesses long-life reusability. This work demonstrates that, utilizing the simple reaction of polymeric acylation with a sulfonated module as a precursor, highly effective proton-conductive membranes for PEM fuel cells can be achieved in a facile manner.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Yangyang Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Hailian Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Ke Cheng
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
10
|
Characteristics of Water Transport of Membrane Electrolyte over Selected Temperature for Proton Exchange Membrane Fuel Cell. Polymers (Basel) 2022; 14:polym14152972. [PMID: 35893936 PMCID: PMC9331710 DOI: 10.3390/polym14152972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The water contents at both the anode and cathode of PEMFCs depend on the water-transport mechanism at the membrane. The humidity at the outside layers of the membrane determines the diffusion of water through it. The operating temperatures and pressures regulate the humidity conditions in the system. Because these parameters are nonlinear, the water-transport mechanism is analyzed via the difference in the water concentration on each side of the membrane. In this work, an experimental configuration is designed to investigate the diffusion mechanism of water through the membrane. A flat membrane module is tested in an isothermal test chamber to test the influence of temperature on the water-absorption and -transport characteristics of Nafion 117 and Nafion 211 membranes. A parametric study is conducted to test the water-transport mechanism at an operating pressure of 1 bar; temperatures of 30 °C, 50 °C, 70 °C and 90 °C; and a relative humidity ranging from 10% to 100%. The results indicate that the water content of Nafion 211 is higher than that of Nafion 117. The water content and diffusion coefficient are proportional to the operating temperature. In addition, the diffusion coefficient reaches its peak at conditions of 1 bar, 100% humidity, and 90 °C for both membrane types.
Collapse
|
11
|
Im YK, Lee DG, Noh HJ, Yu SY, Mahmood J, Lee SY, Baek JB. Crystalline Porphyrazine-Linked Fused Aromatic Networks with High Proton Conductivity. Angew Chem Int Ed Engl 2022; 61:e202203250. [PMID: 35445524 DOI: 10.1002/anie.202203250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 02/02/2023]
Abstract
Fused aromatic networks (FANs) have been studied in efforts to overcome the low physicochemical stability of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), while preserving crystallinity. Herein, we describe the synthesis of a highly stable and crystalline FAN (denoted as Pz-FAN) using pyrazine-based building blocks to form porphyrazine (Pz) linkages via an irreversible reaction. Unlike most COFs and FANs, which are synthesized from two different building blocks, the new Pz-FAN is formed using a single building block by self-cyclotetramerization. Controlled and optimized reaction conditions result in a highly crystalline Pz-FAN with physicochemical stability. The newly prepared Pz-FAN displayed a high magnitude (1.16×10-2 S cm-1 ) of proton conductivity compared to other reported FANs and polymers. Finally, the Pz-FAN-based membrane was evaluated for a proton-exchange membrane fuel cell (PEMFC), which showed maximum power and current densities of 192 mW cm-2 and 481 mA cm-2 , respectively.
Collapse
Affiliation(s)
- Yoon-Kwang Im
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST, Ulsan, 44919, South Korea
| | - Dong-Gue Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST, Ulsan, 44919, South Korea
| | - Soo-Young Yu
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST, Ulsan, 44919, South Korea
| | - Javeed Mahmood
- Advanced Membranes & Porous Materials (AMPM) Center, Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
12
|
Afzal J, Fu Y, Luan TX, Su Z, Li PZ. Highly Effective Proton-Conduction Matrix-Mixed Membrane Derived from an -SO3H Functionalized Polyamide. Molecules 2022; 27:molecules27134110. [PMID: 35807357 PMCID: PMC9268481 DOI: 10.3390/molecules27134110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Developing a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming “hydrogen economy” society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SO3H moieties (PA-PhSO3H) was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells. Investigations of electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA-PhSO3H displays a proton conductivity of up to 8.85 × 10−2 S·cm−1 at 353 K under 98% relative humidity (RH), which is more than two orders of magnitude higher than that of its -SO3H-free analogue, PA-Ph (6.30 × 10−4 S·cm−1), under the same conditions. Therefore, matrix-mixed membranes were fabricated by mixing with polyacrylonitrile (PAN) in different ratios, and the EIS analyses revealed that its proton conductivity can reach up to 4.90 × 10−2 S·cm−1 at 353 K and a 98% relative humidity (RH) when the weight ratio of PA-PhSO3H:PAN is 3:1 (labeled as PA-PhSO3H-PAN (3:1)), the value of which is even comparable with those of commercial-available electrolytes being used in PEM fuel cells. Additionally, continuous tests showed that PA-PhSO3H-PAN (3:1) possesses a long-life reusability. This work demonstrates, using the simple acylation reaction with the sulfonated module as precursor, that low-cost and highly effective proton-conductive electrolytes for PEM fuel cells can be facilely achieved.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China; (Y.F.); (Z.S.)
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China; (Y.F.); (Z.S.)
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
13
|
Chatterjee S, Zamani E, Farzin S, Evazzade I, Obewhere OA, Johnson TJ, Alexandrov V, Dishari SK. Molecular-Level Control over Ionic Conduction and Ionic Current Direction by Designing Macrocycle-Based Ionomers. JACS AU 2022; 2:1144-1159. [PMID: 35647599 PMCID: PMC9131371 DOI: 10.1021/jacsau.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Poor ionic conductivity of the catalyst-binding, sub-micrometer-thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1-2 orders of magnitude higher than Nafion at 20-25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us to demonstrate the role of macrocyclic cavities in boosting the proton conductivity. The systematic self-assembly of calix-2 chains into ellipsoids in thin films was evidenced from atomic force microscopy and grazing incidence small-angle X-ray scattering measurements. Moreover, the likelihood of alignment and stacking of macrocyclic units, the presence of one-dimensional water wires across this macrocycle stacks, and thus the formation of long-range proton conduction pathways were suggested by atomistic simulations. We not only did see an unprecedented improvement in thin-film proton conductivity but also saw an improvement in proton conductivity of bulk membranes when calix-2 was added to the Nafion matrices. Nafion-calix-2 composite membranes also took advantage of the asymmetric charge distribution across calix[4]arene repeat units collectively and exhibited voltage-gating behavior. The inclusion of molecular macrocyclic cavities into the ionomer chemical structure can thus emerge as a promising design concept for highly efficient ion-conducting and ion-permselective materials for sustainable energy applications.
Collapse
Affiliation(s)
| | | | | | - Iman Evazzade
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Oghenetega Allen Obewhere
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Tyler James Johnson
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| |
Collapse
|
14
|
Im Y, Lee D, Noh H, Yu S, Mahmood J, Lee S, Baek J. Crystalline Porphyrazine‐Linked Fused Aromatic Networks with High Proton Conductivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yoon‐Kwang Im
- School of Energy and Chemical Engineering Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Dong‐Gue Lee
- Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Hyuk‐Jun Noh
- School of Energy and Chemical Engineering Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Soo‐Young Yu
- School of Energy and Chemical Engineering Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Javeed Mahmood
- Advanced Membranes & Porous Materials (AMPM) Center Physical Sciences and Engineering (PSE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Sang‐Young Lee
- Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Jong‐Beom Baek
- School of Energy and Chemical Engineering Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| |
Collapse
|
15
|
Sandwich-structure PI/SPEEK/PI proton exchange membrane developed for achieving the high durability on excellent proton conductivity and stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Wang S, Xin Y, Hu H, Su X, Wu J, Yan Q, Qian J, Xiao S, Gao Y. Adsorption of sulfur into an alkynyl-based covalent organic framework for mercury removal. RSC Adv 2022; 12:35445-35451. [DOI: 10.1039/d2ra06838a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
A simple mercury removal strategy was developed that used a stable alkyl based covalent organic framework to adsorb sulfur first and then served as an adsorbent to remove Hg(ii) effectively.
Collapse
Affiliation(s)
- Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Yingxiang Xin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Jifeng Wu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Jiaying Qian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing, 102413, P. R. China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| |
Collapse
|
17
|
Fu Y, Wu Y, Chen S, Zhang W, Zhang Y, Yan T, Yang B, Ma H. Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction. ACS NANO 2021; 15:19743-19755. [PMID: 34846130 DOI: 10.1021/acsnano.1c07178] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ionic covalent organic frameworks (COFs) consisting of an anionic or cationic skeleton and corresponding counterions have demonstrated great potential in many application fields such as ion conduction, molecular separation, and catalysis. However, arranging anionic and cationic groups into the same COF to form zwitterionic materials is still unexplored. Herein we design the synthesis of three zwitterionic COFs as attractive porous hosts for SO2/CO2 separation and anhydrous proton conduction. The separated cationic and anionic groups in zwitterionic COFs' channels can act as two different polar sites for SO2 adsorption, allowing zwitterionic COFs to achieve a high SO2 adsorption capacity (216 mL/g, 298 K) and impressive SO2/CO2 selectivity (118, 298 K). Furthermore, after loading with triazole/imidazole, the zwitterionic groups in COFs' channels can induce complete proton carrier deprotonation, producing more freely migrating protons. The free protons migrate along a continuous hydrogen-bonding network in zwitterionic COFs' channels, leading to outstanding anhydrous proton conductivity up to 4.38 × 10-2 S/cm, which is much higher than other N-heterocyclic-doped porous materials under anhydrous conditions. Proton dissociation energy calculations combined with frequency-dependent dielectric analysis give insight into the role of zwitterionic COFs for proton conductivity. Our work provides the possibility to design well-defined zwitterionic frameworks for gas separation and ion conduction.
Collapse
Affiliation(s)
- Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yue Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shuhui Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Ying Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tong Yan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Bolun Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
18
|
Berg P, Nadon P. Random pore-network model for polymer electrolyte membranes. SOFT MATTER 2021; 17:5907-5920. [PMID: 34038499 DOI: 10.1039/d0sm02212h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A random pore-network model for polymer electrolyte membranes (PEM) is presented that couples the flow of protons and water through cylindrical channels to the swelling of the membrane. While the flows are determined by closed-form solutions of the Poisson-Nernst-Planck-Stokes equations, the fluid-structure interaction is described by a pressure balance at the channel walls. Macroscopic membrane properties, such as the conductivity, permeability and electro-osmotic coefficient, are computed and compared to experimental data in the literature. In light of the model simplifications, the results compare favourably to data but they also point to the importance of describing proton diffusion in PEM nanopores accurately.
Collapse
Affiliation(s)
- Peter Berg
- Theoretical Physics Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | | |
Collapse
|
19
|
Zou XN, Zhang D, Xie Y, Luan TX, Li W, Li L, Li PZ. High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a Zirconium-Based Metal-Organic Framework via "Click" Reaction. Inorg Chem 2021; 60:10089-10094. [PMID: 34180672 DOI: 10.1021/acs.inorgchem.1c01191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taking a robust zirconium-based metal-organic framework, UiO-66, as a prototype, functional postmodification via the versatile Cu(I)-catalyzed azide-alkyne "click" reaction was carried out, and sulfonic acid groups were successfully grafted into its skeleton. Characterizations revealed that the MOF network was still well maintained after being treated by "clicked" modification. Investigations by electrochemical impedance spectroscopy measurements revealed that its proton conductivity increases exponentially up to 8.8 × 10-3 S cm-1 at 80 °C and 98% RH, while those of the UiO-66 and UiO-66-NH2 are only 6.3 × 10-6 and 3.5 × 10-6 S cm-1, respectively, at the same condition. Additionally, the continuous test shows it possesses long-life reusability. Such a remarkable enhancement on the proton conductivities and high performance in long-life reusability of the resultant MOF demonstrated that the "click" reaction is a facile reaction in postmodification of robust porous materials toward targeted applications, with which highly promising candidates of proton-conductive electrolytes for applying in proton-exchange-membrane (PEM) fuel cell can be achieved.
Collapse
Affiliation(s)
- Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Yulong Xie
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Wanchao Li
- No. 1 Institute of Geology and Mineral Resources of Shandong Province, No. 521 Jingde Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Lei Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.,Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
20
|
Wang Z, Yang Y, Zhao Z, Zhang P, Zhang Y, Liu J, Ma S, Cheng P, Chen Y, Zhang Z. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat Commun 2021; 12:1982. [PMID: 33790298 PMCID: PMC8012354 DOI: 10.1038/s41467-021-22288-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Green synthesis of crystalline porous materials for energy-related applications is of great significance but very challenging. Here, we create a green strategy to fabricate a highly crystalline olefin-linked pyrazine-based covalent organic framework (COF) with high robustness and porosity under solvent-free conditions. The abundant nitrogen sites, high hydrophilicity, and well-defined one-dimensional nanochannels make the resulting COF an ideal platform to confine and stabilize the H3PO4 network in the pores through hydrogen-bonding interactions. The resulting material exhibits low activation energy (Ea) of 0.06 eV, and ultrahigh proton conductivity across a wide relative humidity (10-90 %) and temperature range (25-80 °C). A realistic proton exchange membrane fuel cell using the olefin-linked COF as the solid electrolyte achieve a maximum power of 135 mW cm-2 and a current density of 676 mA cm-2, which exceeds all reported COF materials.
Collapse
Affiliation(s)
- Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, China
| | - Yi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, China
| | - Zhengfeng Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Penghui Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Yushu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Jinjin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, China
- Renewable energy conversion and storage center, Nankai University, Tianjin, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, China.
- Renewable energy conversion and storage center, Nankai University, Tianjin, China.
| |
Collapse
|
21
|
Huang W, Li B, Wu Y, Zhang Y, Zhang W, Chen S, Fu Y, Yan T, Ma H. In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13604-13612. [PMID: 33719388 DOI: 10.1021/acsami.1c01134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesis of solid-state proton-conducting membranes with low activation energy and high proton conductivity under anhydrous conditions is a great challenge. Here, we show a simple and convenient way to prepare covalent triazine framework membranes (CTF-Mx) with acid in situ doping for anhydrous proton conduction in a wide temperature range from subzero to elevated temperature (160 °C). The low proton dissociation energy and continuous hydrogen bond network in CTF-Mx make the membrane achieve high proton conductivity from 1.21×10-3 S cm-1 (-40 °C) to 2.08×10-2 S cm-1 (160 °C) under anhydrous conditions. Molecular dynamics and proton relaxation time analyses reveal proton hopping at low activation energies with greatly enhanced mobility in the CTF membranes.
Collapse
Affiliation(s)
- Wenbo Huang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Wu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Zhang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenxiang Zhang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuhui Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Fu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tong Yan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heping Ma
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
22
|
Effective ion mobility in anion exchange ionomers: Relations with hydration, porosity, tortuosity, and percolation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118622] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Maleki F, Dasgupta PK. Moldable Strong Cation Exchange Polymer and Microchannel Fabrication. Anal Chem 2020; 92:13378-13386. [DOI: 10.1021/acs.analchem.0c02754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fereshteh Maleki
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Purnendu K. Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
24
|
|
25
|
Deng WH, Naresh Kumar P, Li WH, Kashi C, Yao MS, Wu GD, Xu G. Superprotonic conductivity of Ti-based MOFs with Brønsted acid–base pairs. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Yang Y, He X, Zhang P, Andaloussi YH, Zhang H, Jiang Z, Chen Y, Ma S, Cheng P, Zhang Z. Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angew Chem Int Ed Engl 2020; 59:3678-3684. [DOI: 10.1002/anie.201913802] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yi Yang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
| | - Xueyi He
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Penghui Zhang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
| | - Yassin H. Andaloussi
- Department of Chemical Sciences, Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Hailu Zhang
- Suzhou institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Zhongyi Jiang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
| | - Shengqian Ma
- Department of ChemistryUniversity of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Peng Cheng
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| |
Collapse
|
27
|
Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem Rev 2020; 120:8814-8933. [PMID: 31967791 DOI: 10.1021/acs.chemrev.9b00550] [Citation(s) in RCA: 1295] [Impact Index Per Article: 323.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with permanent porosity and highly ordered structures. Unlike other polymers, a significant feature of COFs is that they are structurally predesignable, synthetically controllable, and functionally manageable. In principle, the topological design diagram offers geometric guidance for the structural tiling of extended porous polygons, and the polycondensation reactions provide synthetic ways to construct the predesigned primary and high-order structures. Progress over the past decade in the chemistry of these two aspects undoubtedly established the base of the COF field. By virtue of the availability of organic units and the diversity of topologies and linkages, COFs have emerged as a new field of organic materials that offer a powerful molecular platform for complex structural design and tailor-made functional development. Here we target a comprehensive review of the COF field, provide a historic overview of the chemistry of the COF field, survey the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, scrutinize the development and potential of various functions through elucidating structure-function correlations based on interactions with photons, electrons, holes, spins, ions, and molecules, discuss the key fundamental and challenging issues that need to be addressed, and predict the future directions from chemistry, physics, and materials perspectives.
Collapse
Affiliation(s)
- Keyu Geng
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ting He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sasanka Dalapati
- Field of Environment and Energy, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Ke Tian Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhongping Li
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qiuhong Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
28
|
Yang Y, He X, Zhang P, Andaloussi YH, Zhang H, Jiang Z, Chen Y, Ma S, Cheng P, Zhang Z. Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913802] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yi Yang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
| | - Xueyi He
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Penghui Zhang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
| | - Yassin H. Andaloussi
- Department of Chemical Sciences, Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Hailu Zhang
- Suzhou institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Zhongyi Jiang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
| | - Shengqian Ma
- Department of ChemistryUniversity of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Peng Cheng
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| |
Collapse
|
29
|
Sendi A, Fattoum A, Pedicini R, Carbone A. Preparation and Dielectric Investigation of Sulfonated PEEK Films for Fuel Cell Application. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19080029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Non-invasive macroscopic and molecular quantification of water in Nafion® and SPEEK Proton Exchange Membranes using terahertz spectroscopy. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Hänsel C, Kundu D. Development of Hierarchically Porous Ionomer Membranes for Versatile and Fast Metal Ion Conduction. ACS OMEGA 2019; 4:2684-2692. [PMID: 31459504 PMCID: PMC6648066 DOI: 10.1021/acsomega.8b03552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 06/10/2023]
Abstract
Innovative design concepts can play a key role in the realization of high-performance ionomer membranes that are capable of exclusive metal ion conduction and potentially applicable in electrochemical devices including sensors, fuel cells, and high-energy batteries. Herein, we report on the development of new ionomers, based on sulfonated poly(ether ether ketone) (SPEEK), engineered to conduct a variety of ions, namely, Li+, Na+, K+, Zn2+, and Mg2+, when soaked with nonaqueous solvents. Application of a facile phase-inversion method results in M-SPEEK (M = Li/Na/K/Zn/Mg) membranes with a hierarchical porous network, facilitating organic solvent infusion that is necessary to promote dissociation and rapid transport of cations between anionic sulfonate groups on the polymer chains. This strategy leads to membranes with alkali ion conductivities approaching 10-4 S cm-1 at room temperature, and near unity cation transference numbers (t M+ ≥ 0.9). Furthermore, an exceptionally high Zn-ion conductivity of 10-2 S cm-1 is obtained for the water-infused Zn-SPEEK membrane. In comparison, the dense membranes demonstrate 2-3 orders of magnitude lower conductivities because of insufficient solvent infusion. Preliminary electrochemical studies with solvent-infused ionomer membranes as the electrolyte look promising.
Collapse
|
32
|
The use of Nafion membranes to measure 2H/1H and 18O/16O isotopic ratios in water. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Guo TT, Cheng DM, Yang J, Xu X, Ma JF. Calix[4]resorcinarene-based [Co16] coordination cages mediated by isomorphous auxiliary ligands for enhanced proton conduction. Chem Commun (Camb) 2019; 55:6277-6280. [DOI: 10.1039/c9cc01828j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two remarkable calix[4]resorcinarene-based [Co16] coordination cages were assembled by a design approach, where the proton conductivity was enhanced drastically by carefully mediating the auxiliary ligands.
Collapse
Affiliation(s)
- Ting-Ting Guo
- Key Lab for Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Dong-Ming Cheng
- Key Lab for Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Jin Yang
- Key Lab for Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xianxiu Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Jian-Fang Ma
- Key Lab for Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
34
|
Nagy G, Sproll V, Gasser U, Schmidt TJ, Gubler L, Balog S. Scaling the Graft Length and Graft Density of Irradiation-Grafted Copolymers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gergely Nagy
- Laboratory for Neutron Scattering and Imaging; Paul Scherrer Institut; 5232 Villigen PSI Switzerland
| | - Véronique Sproll
- Electrochemistry Laboratory; Paul Scherrer Institut; 5232 Villigen PSI Switzerland
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging; Paul Scherrer Institut; 5232 Villigen PSI Switzerland
| | - Thomas J. Schmidt
- Electrochemistry Laboratory; Paul Scherrer Institut; 5232 Villigen PSI Switzerland
- Laboratory of Physical Chemistry; ETH Zurich; 8093 Zürich Switzerland
| | - Lorenz Gubler
- Electrochemistry Laboratory; Paul Scherrer Institut; 5232 Villigen PSI Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute; University of Fribourg; 1700 Fribourg Switzerland
| |
Collapse
|
35
|
Stevens JE, Utterbeck KD, Piatkowski A, Spicer MN. Density functional theory investigation of mechanisms of degradation reactions of sulfonated PEEK membranes with H radicals in fuel cells: addition–elimination bond-breaking reactions in a model molecule. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2281-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Nafion® modified with primary amines: chemical structure, sorption properties and pervaporative separation of methanol-dimethyl carbonate mixtures. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Choi SW, Kim TH, Jo SW, Lee JY, Cha SH, Hong YT. Hydrocarbon membranes with high selectivity and enhanced stability for vanadium redox flow battery applications: Comparative study with sulfonated poly(ether sulfone)s and sulfonated poly(thioether ether sulfone)s. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Okuwaki K, Mochizuki Y, Doi H, Kawada S, Ozawa T, Yasuoka K. Theoretical analyses on water cluster structures in polymer electrolyte membrane by using dissipative particle dynamics simulations with fragment molecular orbital based effective parameters. RSC Adv 2018; 8:34582-34595. [PMID: 35548624 PMCID: PMC9086946 DOI: 10.1039/c8ra07428c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 12/04/2022] Open
Abstract
The mesoscopic structures of polymer electrolyte membrane (PEM) affect the performances of fuel cells. Nafion® with the Teflon® backbone has been the most widely used of all PEMs, but sulfonated poly-ether ether-ketone (SPEEK) having an aromatic backbone has drawn interest as an alternative to Nafion. In the present study, a series of dissipative particle dynamics (DPD) simulations were performed to compare Nafion and SPEEK. These PEM polymers were modeled by connected particles corresponding to the hydrophobic backbone and the hydrophilic moiety of sulfonic acid group. The water particle interacting with Nafion particles was prepared as well. The crucial interaction parameters among DPD particles were evaluated by a series of calculations based on the fragment molecular orbital (FMO) method in a non-empirical way (Okuwaki et al., J. Phys. Chem. B, 2018, 122, 338–347). Through the DPD simulations, the water and hydrophilic particles aggregated, forming cluster networks surrounded by the hydrophobic phase. The structural features of formed water clusters were investigated in detail. Furthermore, the differences in percolation behaviors between Nafion and SPEEK revealed much better connectivity among water clusters by Nafion. The present FMO-DPD simulation results were in good agreement with available experimental data. The mesoscopic structures of polymer electrolyte membrane (PEM) affect the performances of fuel cells.![]()
Collapse
Affiliation(s)
- Koji Okuwaki
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Toshima-ku
- Japan
| | - Yuji Mochizuki
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Toshima-ku
- Japan
| | - Hideo Doi
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Toshima-ku
- Japan
| | - Shutaro Kawada
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Toshima-ku
- Japan
| | | | - Kenji Yasuoka
- Department of Mechanical Engineering
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
39
|
Yoshimura K, Zhao Y, Hasegawa S, Hiroki A, Kishiyama Y, Shishitani H, Yamaguchi S, Tanaka H, Koizumi S, Appavou MS, Radulescu A, Richter D, Maekawa Y. Imidazolium-based anion exchange membranes for alkaline anion fuel cells: (2) elucidation of the ionic structure and its impact on conducting properties. SOFT MATTER 2017; 13:8463-8473. [PMID: 29090306 DOI: 10.1039/c7sm01774j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In our previous study (Soft Matter, 2016, 12, 1567), the relationship between the morphology and properties of graft-type imidazolium-based anion exchange membranes (AEMs) was revealed, in that the semi-crystalline features of the polymer matrix maintain its mechanical properties and the formation of interconnected hydrophilic domains promotes the membrane conductivity. Here, we report a novel ionic structure of the same graft-type AEMs with different grafting degrees, analyzed using a small-angle X-ray scattering method under different relative humidity (RH) conditions. The characteristic "ionomer peak" with a corresponding correlation distance of approximately 1.0 nm was observed at RH < 80%. This distance is much smaller than the literature-reported mean distance between two ionic clusters, but close to the Bjerrum length of water. Since the representative number of water molecules per cation, nw, was small, we proposed that dissociated ion-pairs are distributed in the hydrophilic domains (ion-channels). At RH < 80%, ion-channels are disconnected, however in liquid water, they are well-connected as evidenced by the sharp increase in nw. The disconnected ion-channels even under relatively high RH conditions should be a substantial factor for the low power generation efficiency of AEM-type fuel cells.
Collapse
Affiliation(s)
- Kimio Yoshimura
- Department of Advanced Functional Materials Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), Watanuki-machi 1233, Takasaki, Gunma 370-1292, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gloukhovski R, Freger V, Tsur Y. Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Composite membranes based on porous support membranes filled with a proton-conducting polymer appear to be a promising approach to develop novel proton exchange membranes (PEMs). It allows optimization of the properties of the filler and the matrix separately, e.g. for maximal conductivity of the former and maximal physical strength of the latter. In addition, the confinement itself can alter the properties of the filling ionomer, e.g. toward higher conductivity and selectivity due to alignment and restricted swelling. This article reviews the literature on PEMs prepared by filling of submicron and nanometric size pores with Nafion and other proton-conductive polymers. PEMs based on alternating perfluorinated and non-perfluorinated polymer systems and incorporation of fillers are briefly discussed too, as they share some structure/transport relationships with the pore-filling PEMs. We also review here the background knowledge on structural and transport properties of Nafion and proton-conducting polymers in general, as well as experimental methods concerned with preparation and characterization of pore-filling membranes. Such information will be useful for preparing next-generation composite membranes, which will allow maximal utilization of beneficial characteristics of polymeric proton conductors and understanding the complicated structure/transport relationships in the pore-filling composite PEMs.
Collapse
Affiliation(s)
- Robert Gloukhovski
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology , Haifa 3200003 , Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology , Haifa 3200003 , Israel
| | - Yoed Tsur
- Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology , Haifa 3200003 , Israel
| |
Collapse
|
41
|
Arias JJR, Carlos Dutra J, Gomes ADS. Hybrid membranes of sulfonated poly ether ether ketone, ionic liquid and organically modified montmorillonite for proton exchange membranes with enhanced ionic conductivity and ionic liquid lixiviation protection. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Transport in Proton Exchange Membranes for Fuel Cell Applications-A Systematic Non-Equilibrium Approach. MATERIALS 2017; 10:ma10060576. [PMID: 28772939 PMCID: PMC5552083 DOI: 10.3390/ma10060576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
We hypothesize that the properties of proton-exchange membranes for fuel cell applications cannot be described unambiguously unless interface effects are taken into account. In order to prove this, we first develop a thermodynamically consistent description of the transport properties in the membranes, both for a homogeneous membrane and for a homogeneous membrane with two surface layers in contact with the electrodes or holder material. For each subsystem, homogeneous membrane, and the two surface layers, we limit ourselves to four parameters as the system as a whole is considered to be isothermal. We subsequently analyze the experimental results on some standard membranes that have appeared in the literature and analyze these using the two different descriptions. This analysis yields relatively well-defined values for the homogeneous membrane parameters and estimates for those of the surface layers and hence supports our hypothesis. As demonstrated, the method used here allows for a critical evaluation of the literature values. Moreover, it allows optimization of stacked transport systems such as proton-exchange membrane fuel cell units where interfacial layers, such as that between the catalyst and membrane, are taken into account systematically.
Collapse
|
43
|
Singh C, S N, Jana A, Mishra AK, Paul A. Proton conduction through oxygen functionalized few-layer graphene. Chem Commun (Camb) 2016; 52:12661-12664. [PMID: 27722614 DOI: 10.1039/c6cc07231c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first report of oxygen functionalized few-layer graphene (OFG) having an interlayer distance of 3.6 Å as an excellent proton conductor (8.7 × 10-3 S cm-1 at 80 °C, 95% RH) utilizing hydrophilic oxygen functionalities present at sheet edges bypassing the theoretical limitation of proton conduction through a basal plane. The synthesized OFG also exhibited excellent supercapacitor performance (296 F g-1).
Collapse
Affiliation(s)
- Chanderpratap Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| | - Nikhil S
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| | - Anwesha Jana
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| | - Ashish Kumar Mishra
- Department of Physics, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
44
|
Sadrjahani M, Gharehaghaji AA, Javanbakht M. Aligned electrospun sulfonated polyetheretherketone nanofiber based proton exchange membranes for fuel cell applications. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mehdi Sadrjahani
- Department of Textile Engineering; Amirkabir University of Technology; Tehran, Iran
| | | | - Mehran Javanbakht
- Department of Chemistry; Amirkabir University of Technology; Tehran Iran
- Renewable Energy Research Center, Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
45
|
Anderson K, Kingston E, Romeo J, Doan J, Loupe N, Dimakis N, Smotkin ES. Infrared spectroscopy of ion-induced cross-linked sulfonated poly(ether ether ketone). POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Sproll V, Nagy G, Gasser U, Embs JP, Obiols-Rabasa M, Schmidt TJ, Gubler L, Balog S. Radiation Grafted Ion-Conducting Membranes: The Influence of Variations in Base Film Nanostructure. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00180] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Véronique Sproll
- Electrochemistry
Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Gergely Nagy
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Gasser
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jan Peter Embs
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marc Obiols-Rabasa
- Division
of Physical Chemistry, Department of Chemistry, University of Lund, 22362 Lund, Sweden
| | - Thomas J. Schmidt
- Electrochemistry
Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Laboratory
of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Lorenz Gubler
- Electrochemistry
Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Sandor Balog
- Adolphe
Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
47
|
Hodakovska J, Kleperis J. Sulfonated poly(ether-ether-ketone) and Nafion composite membrane with aluminium oxide additive for fuel cell applications. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x16020103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
He C, Mighri F, Guiver MD, Kaliaguine S. Tuning surface hydrophilicity/hydrophobicity of hydrocarbon proton exchange membranes (PEMs). J Colloid Interface Sci 2016; 466:168-77. [DOI: 10.1016/j.jcis.2015.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/12/2015] [Indexed: 11/26/2022]
|
49
|
Ajith C, Deshpande AP, Varughese S. Proton conductivity in crosslinked hydrophilic ionic polymer system: Competitive hydration, crosslink heterogeneity, and ineffective domains. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- C. Ajith
- Department of Chemical Engineering; Indian Institute of Technology Madras; Chennai, India
| | - Abhijit P. Deshpande
- Department of Chemical Engineering; Indian Institute of Technology Madras; Chennai, India
| | - Susy Varughese
- Department of Chemical Engineering; Indian Institute of Technology Madras; Chennai, India
| |
Collapse
|
50
|
Pasquini L, Di Vona ML, Knauth P. Effects of anion substitution on hydration, ionic conductivity and mechanical properties of anion-exchange membranes. NEW J CHEM 2016. [DOI: 10.1039/c5nj03212a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic conductivity and the mechanical properties of ionomers with various anions.
Collapse
Affiliation(s)
- L. Pasquini
- Aix Marseille Université (AMU)
- CNRS
- F-13397 Marseille
- France
- Università di Roma Tor Vergata (URoma2)
| | - M. L. Di Vona
- Università di Roma Tor Vergata (URoma2)
- Dipartimento di Ingegneria Industriale
- I-00133 Roma
- Italy
- International Associated Laboratory (L.I.A.): Ionomer Materials for Energy (AMU, URoma2, CNRS)
| | - P. Knauth
- Aix Marseille Université (AMU)
- CNRS
- F-13397 Marseille
- France
- International Associated Laboratory (L.I.A.): Ionomer Materials for Energy (AMU, URoma2, CNRS)
| |
Collapse
|