1
|
Pradhan SS, Saha S. Advances in design and applications of polymer brush modified anisotropic particles. Adv Colloid Interface Sci 2022; 300:102580. [PMID: 34922246 DOI: 10.1016/j.cis.2021.102580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Current advancements in the creation of anisotropy in particles and their surface modification with polymer brushes have established a new class of hybrid materials termed polymer brush modified anisotropic particles (PBMAP). PBMAPs display unique property combinations, e.g., multi-functionality in multiple directions along with smart behavior, which is not easily achievable in traditional hybrid materials. Typically, anisotropic particles can be categorized based on three different factors, such as shape anisotropy (geometry driven), compositional anisotropy (functionality driven), and surface anisotropy (spatio-selective surface modification driven). In this review, we have particularly focused on the synthetic strategies to construct the various type of PBMAPs based on inorganic or organic core which may or may not be isotropic in nature, and their applications in various fields ranging from drug delivery to catalysis. In addition, superior performances and fascinating properties of PBMAPs over their isotropic analogues are also highlighted. A brief overview of their future developments and associated challenges have been discussed at the end.
Collapse
Affiliation(s)
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
2
|
Zhang M, He S, Zou Q, Li ZA, Lai Y, Chen K, Ma L, Yin JF, Li M, He C, Ke Y, Yin P. Unique Dynamics of Hierarchical Constrained Macromolecular Ligands on Coordination Nanocage Surface Promotes Facile and Precise Assembly of Polymers. J Phys Chem Lett 2021; 12:5395-5403. [PMID: 34080876 DOI: 10.1021/acs.jpclett.1c01278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With access to the solution structures of nanocomposites of coordination nanocages (CNCs) via scattering and chromatography techniques, their mysterious solution dynamics have been, for the first time, resolved, and interestingly, the surface macromolecules can be substituted by extra free macromolecules in solutions. Obvious exchange of macromolecules can be observed in the solution mixtures of CNC nanocomposites at high temperatures, revising the understanding of the dynamics of CNC nanocomposites. Being distinct from nanocomposites of a simple coordination complex, the quantified solution dynamics of CNC nanocomposites indicates a typical logarithmic time dependence with the dissociation of surface macromolecules as the thermodynamically limiting step, suggesting strongly coupled and hierarchically constrained dynamics among the surface macromolecules. Their dynamics can be activated only upon application of high temperature or selected solvents, and therefore, the rational design of polymer assemblies, for example, hybrid-arm star polymers with precisely controlled compositions and reprocessable, robust CNC-cross-linked supramolecular polymer networks, is facilitated.
Collapse
Affiliation(s)
- Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shuqian He
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qin Zou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zi-Ang Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Litao Ma
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Chunyong He
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan 523000, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan 523000, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Hils C, Manners I, Schöbel J, Schmalz H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers (Basel) 2021; 13:1481. [PMID: 34064413 PMCID: PMC8125556 DOI: 10.3390/polym13091481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers bearing one crystallizable block has emerged to be a powerful and highly relevant method for the production of one- and two-dimensional micellar assemblies with controlled length, shape, and corona chemistries. This gives access to a multitude of potential applications, from hierarchical self-assembly to complex superstructures, catalysis, sensing, nanomedicine, nanoelectronics, and surface functionalization. Related to these applications, patchy crystalline-core micelles, with their unique, nanometer-sized, alternating corona segmentation, are highly interesting, as this feature provides striking advantages concerning interfacial activity, functionalization, and confinement effects. Hence, this review aims to provide an overview of the current state of the art with respect to self-assembly concepts, properties, and applications of patchy micelles with crystalline cores formed by CDSA. We have also included a more general discussion on the CDSA process and highlight block-type co-micelles as a special type of patchy micelle, due to similarities of the corona structure if the size of the blocks is well below 100 nm.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Judith Schöbel
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
4
|
Wen T, Wang Y, Yin P, Huang M. Hybrid Hairy Platelets with Tunable Structures by Inclusion Crystallization of Polyferrocene-Containing Block Copolymers and Silicotungstic Acid. ACS Macro Lett 2021; 10:272-277. [PMID: 35570793 DOI: 10.1021/acsmacrolett.0c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herein, we report hybrid hairy platelets formed by block copolymers containing a poly(ethylene oxide) (PEO) midblock and polyferrocene end-blocks with silicotungstic acid (STA). As inclusion crystallization of PEO midblocks and STA clusters lead to crystalline lamellae in thin films at room temperature, the polyferrocene end-blocks that are excluded from the lattice will graft on the surface of the lamellae, giving rise to hybrid hairy platelets. The dependence of crystallographic structures and morphologies of platelets on the length of end-blocks is investigated. The presence of relatively long end-blocks induces the formation of an inclusion crystal with a tetragonal cell (termed as β-form), whereas an inclusion crystal with an orthorhombic cell (termed as α-form) can be formed with block copolymers with relatively shorter end-blocks.
Collapse
Affiliation(s)
- Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yingying Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
5
|
|
6
|
Mei S, Staub M, Li CY. Directed Nanoparticle Assembly through Polymer Crystallization. Chemistry 2019; 26:349-361. [PMID: 31374132 DOI: 10.1002/chem.201903022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 11/11/2022]
Abstract
Nanoparticles can be assembled into complex structures and architectures by using a variety of methods. In this review, we discuss recent progress of using polymer crystallization (particularly polymer single crystals, PSCs) to direct nanoparticle assembly. PSCs have been extensively studied since 1957. Mainly appearing as quasi-two-dimensional (2D) lamellae, PSCs are typically used as model systems to determine polymer crystalline structures, or as markers to investigate the crystallization process. Recent research has demonstrated that they can also be used as nanoscale functional materials. Herein, we show that nanoparticles can be directed to assemble into complex shapes by using in situ or ex situ polymer crystal growth. End-functionalized polymers can crystallize into 2D nanosheet PSCs, which are used to conjugate with complementary nanoparticles, leading to a nanosandwich structure. These nanosandwiches can find interesting applications for catalysis, surface-enhanced Raman spectroscopy, and nanomotors. Dissolution of the nanosandwich leads to the formation of Janus nanoparticles, providing a unique method for asymmetric nanoparticle synthesis.
Collapse
Affiliation(s)
- Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mark Staub
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Percebom AM, Costa LHM. Formation and assembly of amphiphilic Janus nanoparticles promoted by polymer interactions. Adv Colloid Interface Sci 2019; 269:256-269. [PMID: 31102800 DOI: 10.1016/j.cis.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023]
Abstract
Almost three decades after de Gennes have introduced the term Janus for particles possessing two faces with different chemical nature, Janus particles are currently a hot topic in itself. Although de Gennes was not concerned with the size of particles, due to the advent and perspectives of nanotechnology, nanosized Janus particles have particularly received great attention. The capacity of having two antagonistic properties within the same particle has attracted interest on Janus nanoparticles for innumerous potential applications. It took some years for the studies about Janus nanoparticles to finally see great advances, mainly due to the progress in nanoparticle synthesis. What de Gennes might have not predicted (or at least he did not mention it during his speech) is that intermolecular interactions between polymers would be of immense importance to the actual achievement of Janus nanoparticles. Moreover, these interactions can also have large effects on the assembly process of amphiphilic Janus nanoparticles, which is important to form hierarchical structures and new materials at different scales. Hence, it is interesting to notice that de Gennes' contribution for the polymer field has been influencing the preparation and the controlled assembly of Janus nanoparticles. This article attempts to summarize empirical studies where noncovalent forces between polymers played a role, either on the production of Janus nanoparticles or on their assembly.
Collapse
Affiliation(s)
- Ana Maria Percebom
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil.
| | - Lais Helena Moreira Costa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Xue D, Meng QB, Song X. Fabrication of Ternary Hybrid Colloids via In‐Situ Polymerization at the Interface of Oil/Water Emulsion. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Xue
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced MaterialsCollege of ChemistryLiaoning University Shenyang 110036 China
| | - Qing Bo Meng
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced MaterialsCollege of ChemistryLiaoning University Shenyang 110036 China
| | - Xi‐Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced MaterialsCollege of ChemistryLiaoning University Shenyang 110036 China
| |
Collapse
|
9
|
Agbolaghi S, Abbaspoor S, Abbasi F. A comprehensive review on polymer single crystals—From fundamental concepts to applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Ji X, Zhang Y, Zhao H. Amphiphilic Janus Twin Single-Chain Nanoparticles. Chemistry 2018; 24:3005-3012. [DOI: 10.1002/chem.201705487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaotian Ji
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; P. R. China
| | - Yue Zhang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; P. R. China
| |
Collapse
|
11
|
Burks GR, Qi H, Gleeson SE, Mei S, Li CY. Structure and Morphology of Poly(vinylidene fluoride) Nanoscrolls. ACS Macro Lett 2018; 7:75-79. [PMID: 35610920 DOI: 10.1021/acsmacrolett.7b00921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date the scrolled morphology of γ-phase poly(vinylidene fluoride) (PVDF) has been witnessed via high temperature melt crystallization of crystalline thin films and through imaging of chemical etched PVDF bulk films. Here we show the first growth and characterization of free-standing γ-phase PVDF scrolls via solution crystallization. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy have been used to characterize and to further understand the fundamental preferred crystalline habit of the γ-phase of PVDF.
Collapse
Affiliation(s)
- Gabriel R. Burks
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Qi
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Sarah E. Gleeson
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Shan Mei
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Christopher Y. Li
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Synthesis of Janus POSS star polymer and exploring its compatibilization behavior for PLLA/PCL polymer blends. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Wang W, Staub MC, Zhou T, Smith DM, Qi H, Laird ED, Cheng S, Li CY. Polyethylene nano crystalsomes formed at a curved liquid/liquid interface. NANOSCALE 2017; 10:268-276. [PMID: 29210419 DOI: 10.1039/c7nr08106e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Crystallization is incommensurate with nanoscale curved space due to the lack of three dimensional translational symmetry of the latter. Herein, we report the formation of single-crystal-like, nanosized polyethylene (PE) capsules using a miniemulsion solution crystallization method. The miniemulsion was formed at elevated temperatures using PE organic solution as the oil phase and sodium dodecyl sulfate as the surfactant. Subsequently, cooling the system stepwisely for controlled crystallization led to the formation of hollow, nanosized PE crystalline capsules, which are named as crystalsomes since they mimic the classical self-assembled structures such as liposome, polymersome and colloidosome. We show that the formation of the nanosized PE crystalsomes is driven by controlled crystallization at the curved liquid/liquid interface of the miniemulson droplet. The morphology, structure and mechanical properties of the PE crystalsomes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force spectroscopy. Electron diffraction showed the single-crystal-like nature of the crystalsomes. The incommensurateness between the nanocurved interface and the crystalline packing led to reduced crystallinity and crystallite size of the PE crystalsome, as observed from the X-ray diffraction measurements. Moreover, directly quenching the emulsion below the spinodal line led to the formation of hierarchical porous PE crystalsomes due to the coupling of the PE crystallization and liquid/liquid phase separation. We anticipate that this unique crystalsome represents a new type of nanostructure that might be used as nanodrug carriers and ultrasound contrast agents.
Collapse
Affiliation(s)
- Wenda Wang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mei S, Qi H, Zhou T, Li CY. Precisely Assembled Cyclic Gold Nanoparticle Frames by 2D Polymer Single‐Crystal Templating. Angew Chem Int Ed Engl 2017; 56:13645-13649. [DOI: 10.1002/anie.201706180] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Shan Mei
- Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Hao Qi
- Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Tian Zhou
- Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Christopher Y. Li
- Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| |
Collapse
|
15
|
Mei S, Qi H, Zhou T, Li CY. Precisely Assembled Cyclic Gold Nanoparticle Frames by 2D Polymer Single‐Crystal Templating. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shan Mei
- Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Hao Qi
- Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Tian Zhou
- Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Christopher Y. Li
- Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| |
Collapse
|
16
|
Qiao Y, Du Y, Zhang X, Li Y. Preparation at the water-oil interface of Janus composite nanoparticles and their photoelectric properties. J Appl Polym Sci 2017. [DOI: 10.1002/app.45107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yisha Qiao
- School of Materials Science and Engineering; Shanghai University; Shanghai 200444 China
| | - Yixuan Du
- School of Materials Science and Engineering; Shanghai University; Shanghai 200444 China
| | - Xiaowei Zhang
- School of Materials Science and Engineering; Shanghai University; Shanghai 200444 China
| | - Yunbo Li
- School of Materials Science and Engineering; Shanghai University; Shanghai 200444 China
| |
Collapse
|
17
|
|
18
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1107] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
19
|
Wright RAE, Henn DM, Zhao B. Thermally Reversible Physically Cross-Linked Hybrid Network Hydrogels Formed by Thermosensitive Hairy Nanoparticles. J Phys Chem B 2016; 120:8036-45. [DOI: 10.1021/acs.jpcb.6b06009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Roger A. E. Wright
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Daniel M. Henn
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Qi H, Zhou T, Mei S, Chen X, Li CY. Responsive Shape Change of Sub-5 nm Thin, Janus Polymer Nanoplates. ACS Macro Lett 2016; 5:651-655. [PMID: 35614666 DOI: 10.1021/acsmacrolett.6b00251] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Responsive shape changes in soft materials have attracted significant attention in recent years. Despite extensive studies, it is still challenging to prepare nanoscale assemblies with responsive behaviors. Herein we report on the fabrication and pH-responsive properties of sub-5 nm thin, Janus polymer nanoplates prepared via crystallization-driven self-assembly of poly(ε-caprolactone)-b-poly(acrylic acid) (PCL-b-PAA) followed by cross-linking and disassembly. The resultant Janus nanoplate is comprised of partially cross-linked PAA and tethered PCL brush layers with an overall thickness of ∼4 nm. We show that pronounced and reversible shape changes from nanoplates to nanobowls can be realized in such a thin free-standing film. This shape change is achieved by exceptionally small stress-a few orders of magnitude smaller than conventional hydrogel bilayers. These three-dimensional ultrathin nanobowls are also mechanically stable, which is attributed to the tortoise-shell-like crystalline domains formed in the nanoconfined curved space. Our results pave a way to a new class of free-standing, ultrathin polymer Janus nanoplates that may find applications in nanomotors and nanoactuators.
Collapse
Affiliation(s)
- Hao Qi
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Tian Zhou
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Shan Mei
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Xi Chen
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Christopher Y. Li
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
Quan X, Peng C, Dong J, Zhou J. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations. SOFT MATTER 2016; 12:3352-3359. [PMID: 26954721 DOI: 10.1039/c5sm02721g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, the structural properties of amphiphilic polymer-brush-grafted gold nanoparticles (AuNPs) at the oil-water interface were investigated by coarse-grained simulations. The effects of grafting architecture (diblock, mixed and Janus brush-grafted AuNPs) and hydrophilicity of polymer brushes are discussed. Simulation results indicate that functionalized AuNPs present abundant morphologies including typical core-shell, Janus-type, jellyfish-like, etc., in a water or oil-water solvent environment. It is found that hydrophobic/weak hydrophilic polymer-brush-grafted AuNPs have better phase transfer performance, especially for AuNPs modified with hydrophobic chains as outer blocks and weak hydrophilic chains as inner blocks. This kind of AuNP can cross the interface region and move into the oil phase completely. For hydrophobic/strong hydrophilic polymer-brush-grafted AuNPs, they are trapped in the interface region instead of moving into any phase. The mechanism of phase transfer is ascribed to the flexibility and mobility of outer blocks. Besides, we study the desorption energy by PMF analysis. The results demonstrate that Janus brush-grafted AuNPs show the highest interfacial stability and activity, which can be further strengthened by increasing the hydrophilicity of grafted polymer brushes. This work will promote the industrial applications of polymer-brush-grafted NPs such as phase transfer catalysis and Pickering emulsion catalysis.
Collapse
Affiliation(s)
- Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | |
Collapse
|
22
|
Zhou T, Qi H, Han L, Barbash D, Li CY. Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach. Nat Commun 2016; 7:11119. [PMID: 27009369 PMCID: PMC4820851 DOI: 10.1038/ncomms11119] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/19/2016] [Indexed: 12/23/2022] Open
Abstract
Precise synthesis of polymer brushes to modify the surface of nanoparticles and nanodevices for targeted applications has been one of the major focuses in the community for decades. Here we report a self-assembly-assisted-grafting-to approach to synthesize polymer brushes on flat substrates. In this method, polymers are pre-assembled into two-dimensional polymer single crystals (PSCs) with functional groups on the surface. Chemically coupling the PSCs onto solid substrates leads to the formation of polymer brushes. Exquisite control of the chain folding in PSCs allows us to obtain polymer brushes with well-defined grafting density, tethering points and brush conformation. Extremely high grafting density (2.12 chains per nm(2)) has been achieved in the synthesized single-tethered polymer brushes. Moreover, polymer loop brushes have been successfully obtained using oddly folded PSCs from telechelic chains. Our approach combines some of the important advantages of conventional 'grafting-to' and 'grafting-from' methods, and is promising for tailored synthesis of polymer brushes.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Hao Qi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Dmitri Barbash
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Shao Y, Yin H, Wang XM, Han SY, Yan X, Xu J, He J, Ni P, Zhang WB. Mixed [2 : 6] hetero-arm star polymers based on Janus POSS with precisely defined arm distribution. Polym Chem 2016. [DOI: 10.1039/c6py00241b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of mixed [2 : 6] hetero-arm star polymers are prepared, whose arms (polystyrene and poly(ε-caprolactone)) are precisely arranged on a cubic scaffold of T8polyhedral oligomeric silsesquioxane (POSS).
Collapse
Affiliation(s)
- Yu Shao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Hang Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xiao-Man Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Shuai-Yuan Han
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xuesheng Yan
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Jun Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
24
|
Cheng S, Smith DM, Li CY. Anisotropic Ion Transport in a Poly(ethylene oxide)–LiClO4 Solid State Electrolyte Templated by Graphene Oxide. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00972] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shan Cheng
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Derrick M. Smith
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Christopher Y. Li
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Kim S, Kim TH, Huh J, Bang J, Choi SH. Nanoscale Phase Behavior of Mixed Polymer Ligands on a Gold Nanoparticle Surface. ACS Macro Lett 2015; 4:417-421. [PMID: 35596306 DOI: 10.1021/acsmacrolett.5b00101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phase behavior of mixed polymer ligands anchored on Au nanoparticle surfaces was investigated using small-angle neutron scattering (SANS). An equimolar mixture of deuterated polystyrene (dPS) and normal poly(methyl methacrylate) (PMMA) was attached to Au nanoparticles, and the polymer-grafted nanoparticles were characterized in an isotopic toluene mixture, a good solvent for both homopolymers. Poly(deuterated styrene-ran-methyl methacrylate) (P(dS-r-MMA)) attached to the Au nanoparticles was also characterized as a control case. The results suggest that as the molecular weight increases, the two species of polymers become phase-separated on the nanoparticle surface, resulting in the formation of Janus-type nanoparticles. Monte Carlo simulations for the model polymer-grafted particle system suggest that the effective attraction between the polymers and the particle leads to dense wetting layers of solvophilic polymer blends in the vicinity of the solvophobic particle surface, which plays a decisive role in the formation of the phase-separated morphology.
Collapse
Affiliation(s)
- Seyong Kim
- Department
of Chemical and Biological Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Tae-Hwan Kim
- Neutron
Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353, Republic of Korea
| | - June Huh
- Department
of Chemical and Biological Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Joona Bang
- Department
of Chemical and Biological Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Soo-Hyung Choi
- Department
of Chemical Engineering, Hongik University, Seoul, 121-791, Republic of Korea
| |
Collapse
|
26
|
Zhu S, Li ZW, Zhao H. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4129-4136. [PMID: 25811763 DOI: 10.1021/acs.langmuir.5b00526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.
Collapse
Affiliation(s)
- Shuzhe Zhu
- †Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhan-Wei Li
- ‡State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hanying Zhao
- †Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Cheng S, Smith DM, Pan Q, Wang S, Li CY. Anisotropic ion transport in nanostructured solid polymer electrolytes. RSC Adv 2015. [DOI: 10.1039/c5ra05240h] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We discuss recent progresses on anisotropic ion transport in solid polymer electrolytes.
Collapse
Affiliation(s)
- Shan Cheng
- Department of Materials Science and Engineering
- Drexel University
- Philadelphia
- USA
| | - Derrick M. Smith
- Department of Materials Science and Engineering
- Drexel University
- Philadelphia
- USA
| | - Qiwei Pan
- Department of Materials Science and Engineering
- Drexel University
- Philadelphia
- USA
- Department of Materials Science and Engineering
| | - Shijun Wang
- Department of Materials Science and Engineering
- Drexel University
- Philadelphia
- USA
| | - Christopher Y. Li
- Department of Materials Science and Engineering
- Drexel University
- Philadelphia
- USA
| |
Collapse
|