1
|
Mendes JF, de Lima Fontes M, Barbosa TV, Paschoalin RT, Mattoso LHC. Membranes composed of poly(lactic acid)/poly(ethylene glycol) and Ora-pro-nóbis (Pereskia aculeata Miller) extract for dressing applications. Int J Biol Macromol 2024; 268:131365. [PMID: 38583829 DOI: 10.1016/j.ijbiomac.2024.131365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Wounds are considered one of the most critical medical conditions that must be managed appropriately due to the psychological and physical stress they cause for patients, as well as creating a substantial financial burden on patients and global healthcare systems. Nowadays, there is a growing interest in developing nanofiber mats loaded with varying plant extracts to meet the urgent need for advanced wound ressings. This study investigated the development and characterization of poly(lactic acid) (PLA)/ poly(ethylene glycol) (PEG) nanofiber membranes incorporated with Ora-pro-nóbis (OPN; 12.5, 25, and 50 % w/w) by the solution-blow-spinning (SBS) technique. The PLA/PEG and PLA/PEG/OPN nanofiber membranes were characterized by scanning electron microscopy (SEM), thermal properties (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), contact angle measurements and water vapor permeability (WVTR). In addition, the mats were analyzed for swelling properties in vitro cell viability, and fibroblast adhesion (L-929) tests. SEM images showed that smooth and continuous PLA/PEG and PLA/PEG/OPN nanofibers were obtained with a diameter distribution ranging from 171 to 1533 nm. The PLA/PEG and PLA/PEG/OPN nanofiber membranes showed moderate hydrophobicity (~109-120°), possibly preventing secondary injuries during dressing removal. Besides that, PLA/PEG/OPN nanofibers exhibited adequate WVTR, meeting wound healing requirements. Notably, the presence of OPN gave the PLA/PEG membranes better mechanical properties, increasing their tensile strength (TS) from 3.4 MPa (PLA/PEG) to 5.3 MPa (PLA/PEG/OPN), as well as excellent antioxidant properties (Antioxidant activity with approximately 45 % oxidation inhibition). Therefore, the nanofiber mats based on PLA/PEG, especially those incorporated with OPN, are promising options for use as antioxidant dressings to aid skin healing.
Collapse
Affiliation(s)
- Juliana Farinassi Mendes
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil.
| | - Marina de Lima Fontes
- Graduate of Pharmaceutical Sciences, Paulista State University, Araraquara 14800-901, São Paulo, Brazil
| | - Talita Villa Barbosa
- São Carlos School of Engineering, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Rafaella T Paschoalin
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil
| | | |
Collapse
|
2
|
Yu Y, Zhu L, Dai L, Hu Z, Li L, Xiang H, Zhou Z, Zhu M. Enhancing flame retardancy of polyphenylene sulfide nanocomposite fibers by the synergistic effect of catalytic crosslinking and physical barrier. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Lu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
- College of Mechanical and Engineering Donghua University Shanghai China
| | - Lili Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Zhe Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| |
Collapse
|
3
|
Moradienayat M, González-Benito J, Olmos D. Airbrushed PSF/ZnO Composite Coatings as a Novel Approach for the Consolidation of Historical Bones. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:625. [PMID: 36838993 PMCID: PMC9965243 DOI: 10.3390/nano13040625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In this work, the preparation and characterization of films based on polysulfone (PSF) filled with zinc oxide, ZnO, nanoparticles (NPs) are conducted. The novelty of this research mainly relies on two points: (i) the use of a commercial airbrush to prepare or modify materials, and (ii) the design of new materials (nanocomposites) for the consolidation and restoration of historical bones. To accomplish these objectives, free-standing thin films and ancient bone coatings of PSF/ZnO nanocomposites with different particle contents (0%, 1%, 2%, 5% and 10%, % wt) are prepared using a commercial airbrush. Mechanical characterization is carried out to correlate properties between free-standing thin films and coatings, thus understanding the final performance of the coatings as consolidants for ancient bones. Thin films of PSF/ZnO show that the elastic modulus (E) increases with particle content. The mechanical behavior of the surfaces of the treated and untreated bones is studied locally using Martens hardness measurements. Maximum values of Martens hardness are obtained for the bone samples treated with polysulfone filled with 1% ZnO nanoparticles (HM = 850 N·mm-2) or 2% ZnO (HM = 625 N·mm-2) compared to those treated just with neat PSF (HM = 282 N·mm-2) or untreated bone (HM = 140 N·mm-2), indicating there is a correspondence between rigidity of free-standing films and hardness of the corresponding coatings. In terms of mechanical performance, it is demonstrated the existence of a balance between nanoparticle concentration and probability of nanoparticle aggregation, which allows better material design for ancient bones consolidation.
Collapse
|
4
|
Nonwoven Mats Based on Segmented Biopolyurethanes Filled with MWCNT Prepared by Solution Blow Spinning. Polymers (Basel) 2022; 14:polym14194175. [PMID: 36236123 PMCID: PMC9572556 DOI: 10.3390/polym14194175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
To prepare nonwoven mats constituted by submicrometric fibers of thermally responsive biopolyurethanes (TPU) modified with multiwalled carbon nanotubes (MWCNT), solution blow spinning (SBS) was used. The TPU was the product of synthesis using poly(butylene sebacate)diol, PBSD, ethyl ester L-lysine diisocyanate (LDI), and 1,3-propanediol (PD) (PBSe:LDI:PD) as reactants. TPU was modified by adding different amounts of MWCNT (0, 0.5, 1, 2, and 3 wt.%). The effect of the presence and amount of MWCNT on the morphology and structure of the materials was studied using field-emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FTIR), respectively, while their influence on the thermal and electric behaviors was studied using differential scanning calorimetry (DSC) and capacitance measurements, respectively. The addition of MWCNT by SBS induced morphological changes in the fibrous materials, affecting the relative amount and size of submicrometric fibers and, therefore, the porosity. As the MWCNT content increased, the diameter of the fibers increased and their relative amount with respect to all morphological microfeatures increased, leading to a more compact microstructure with lower porosity. The highly porous fibrous morphology of TPU-based materials achieved by SBS allowed turning a hydrophilic material to a highly hydrophobic one. Percolation of MWCNT was attained between 2 and 3 wt.%, affecting not only the electric properties of the materials but also their thermal behavior.
Collapse
|
5
|
Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior. Polymers (Basel) 2022; 14:polym14040753. [PMID: 35215666 PMCID: PMC8878103 DOI: 10.3390/polym14040753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Nanocomposite films of polysulfone (PSF)—hydroxyapatite (HA) were prepared with a commercial airbrush. Structural, thermal, and mechanical characterization allows obtaining new information to understand the role of the nanofiller–polymer matrix interphase in the final performance of these materials in relation to its possible applications in the restoration of bones. Fourier-transform infrared spectroscopy shows that there are hardly any structural changes in the polymer when adding HA particles. From thermal analysis (differential scanning calorimetry and thermogravimetry), it can be highlighted that the presence of HA does not significantly affect the glass transition temperature of the PSF but decelerates its thermal degradation. All this information points out that any change in the PSF performance because of the addition of HA particles cannot be due to specific interactions between the filler and the polymer. Results obtained from uniaxial tensile tests indicate that the addition of small amounts of HA particles (1% wt) leads to elastic moduli higher than the upper bound predicted by the rule of mixtures suggesting there must be a high contribution of the interphase. A simple model of the nanocomposite is proposed for which three contributions must be considered, particles, interphase and matrix, in such a way that interphases arising from different particles can interact by combining with each other thus leading to a decrease in its global contribution when the amount of particles is high enough. The mechanical behavior can be explained considering a balance between the contribution of the interphase and the number of particles. Finally, a particular mechanism is proposed to explain why in certain nanocomposites relatively high concentrations of nanoparticles may substantially increase the strain to failure.
Collapse
|
6
|
Domínguez JE, Olivos E, Vázquez C, Rivera J, Hernández-Cortes R, González-Benito J. Automated low-cost device to produce sub-micrometric polymer fibers based on blow spun method. HARDWAREX 2021; 10:e00218. [PMID: 35607673 PMCID: PMC9123463 DOI: 10.1016/j.ohx.2021.e00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Attending the latest advances in polymeric fibers, the design of low-cost, and high-quality scientific equipment for obtaining fibers seemed essential. To overcome this challenge, a 3D printable prototype was designed, assembled, and validated to obtain fibers using the SBS method. The particular configuration of the prototype consisted of controlling the process conditions such as working distance and injection flow, as well as other parameters such as RPM and the axial movement of the cylindrical collector. Thus, these parameters were automated using a microcontroller (Arduino) that receives information from an Android device with bluetooth connectivity to control each of the elements of the equipment. Subsequently, the repeatability and reproducibility of the fibers was verified using polymers such as polystyrene (PS), polysulfone (PSF) and polyethylene oxide (PEO); furthermore, PSF fibers were manufactured to analyze the influence of working distance and the axial movement of the collector on their production.
Collapse
Affiliation(s)
- José E. Domínguez
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de Madrid, Madrid, Spain
- Department of Nanotechnology, INTESU, Universidad Tecnológica del Centro de Veracruz, Mexico
| | - E Olivos
- Department of Nanotechnology, INTESU, Universidad Tecnológica del Centro de Veracruz, Mexico
| | - Carlos Vázquez
- Institute of Industrial Engineering and Automotive Mechanics, Universidad Tecnológica de la Mixteca, Mexico
| | - J.M. Rivera
- LADISER Organic Chemistry, Faculty of Chemical Sciences, Universidad Veracruzana, Orizaba, Mexico
| | | | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Domínguez JE, Kasiri A, González‐Benito J. Wettability behavior of solution blow spun polysulfone by controlling morphology. J Appl Polym Sci 2021. [DOI: 10.1002/app.50200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- José E. Domínguez
- Departamento de investigación Universidad Tecnológica del Centro de Veracruz Veracruz Mexico
| | - Ali Kasiri
- Department of Materials Science and Engineering and Chemical Engineering Universidad Carlos III de Madrid Madrid Spain
| | - Javier González‐Benito
- Department of Materials Science and Engineering and Chemical Engineering, IQMAAB Universidad Carlos III de Madrid Madrid Spain
| |
Collapse
|
8
|
Olmos D, González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers (Basel) 2021; 13:613. [PMID: 33670638 PMCID: PMC7922637 DOI: 10.3390/polym13040613] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Infections caused by bacteria are one of the main causes of mortality in hospitals all over the world. Bacteria can grow on many different surfaces and when this occurs, and bacteria colonize a surface, biofilms are formed. In this context, one of the main concerns is biofilm formation on medical devices such as urinary catheters, cardiac valves, pacemakers or prothesis. The development of bacteria also occurs on materials used for food packaging, wearable electronics or the textile industry. In all these applications polymeric materials are usually present. Research and development of polymer-based antibacterial materials is crucial to avoid the proliferation of bacteria. In this paper, we present a review about polymeric materials with antibacterial materials. The main strategies to produce materials with antibacterial properties are presented, for instance, the incorporation of inorganic particles, micro or nanostructuration of the surfaces and antifouling strategies are considered. The antibacterial mechanism exerted in each case is discussed. Methods of materials preparation are examined, presenting the main advantages or disadvantages of each one based on their potential uses. Finally, a review of the main characterization techniques and methods used to study polymer based antibacterial materials is carried out, including the use of single force cell spectroscopy, contact angle measurements and surface roughness to evaluate the role of the physicochemical properties and the micro or nanostructure in antibacterial behavior of the materials.
Collapse
Affiliation(s)
- Dania Olmos
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| |
Collapse
|
9
|
Gao Y, Zhang J, Su Y, Wang H, Wang XX, Huang LP, Yu M, Ramakrishna S, Long YZ. Recent progress and challenges in solution blow spinning. MATERIALS HORIZONS 2021; 8:426-446. [PMID: 34821263 DOI: 10.1039/d0mh01096k] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the past 30 years, researchers have worked towards reducing the size of ordinary three-dimensional (3D) materials into 1D or 2D materials in order to obtain new properties and applications of these low-dimensional systems. Among them, functional nanofibers with large surface area and high porosity have been widely studied and paid attention to. Because of the interesting properties of nanofibers, they find extensive application in filtration, wound dressings, composites, sensors, capacitors, nanogenerators, etc. Recently, a variety of nanofiber preparation methods such as melt blowing, electrospinning (e-spinning), centrifugal spinning and solution blow spinning (SBS) have been proposed. This paper includes a brief review of the fundamental principles of the preparation of nanofibers for solution jet spinning, the influence of experimental parameters, and the properties and potential applications of the solution-blown fibers. And the industrialization and challenges of SBS are also included.
Collapse
Affiliation(s)
- Yuan Gao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dias FTG, Rempel SP, Agnol LD, Bianchi O. The main blow spun polymer systems: processing conditions and applications. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02173-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Ruiz VM, Sirera R, Martínez JM, González-Benito J. Solution blow spun graded dielectrics based on poly(vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Rempel SP, Engler LG, Soares MRF, Catafesta J, Moura S, Bianchi O. Nano/microfibers of EVA copolymer obtained by solution blow spinning: Processing, solution properties, and pheromone release application. J Appl Polym Sci 2019. [DOI: 10.1002/app.47647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Silvana Pereira Rempel
- Programa de Pós‐Graduação em Engenharia e Ciência dos MateriaisUniversidade de Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Leonardo Galli Engler
- Programa de Pós‐Graduação em Engenharia e Ciência dos MateriaisUniversidade de Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Márcio R. F. Soares
- Programa de Pós‐Graduação em Engenharia e Ciência dos MateriaisUniversidade de Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Jadna Catafesta
- Programa de Pós‐Graduação em Engenharia e Ciência dos MateriaisUniversidade de Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Sidnei Moura
- Programa de Pós‐Graduação em BiotecnologiaUniversidade de Caxias do Sul (UCS), Laboratory of Biotechnology of Natural and Synthetics Products Caxias do Sul Rio Grande do Sul Brazil
- Programa de Pós‐Graduação em Ciências da SaúdeUniversidade de Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Otávio Bianchi
- Programa de Pós‐Graduação em Engenharia e Ciência dos MateriaisUniversidade de Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
- Programa de Pós‐Graduação em Ciências da SaúdeUniversidade de Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| |
Collapse
|
13
|
Conformational changes on PMMA induced by the presence of TiO2 nanoparticles and the processing by Solution Blow Spinning. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4268-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|