1
|
Paul J, Qamar A, Ahankari SS, Thomas S, Dufresne A. Chitosan-based aerogels: A new paradigm of advanced green materials for remediation of contaminated water. Carbohydr Polym 2024; 338:122198. [PMID: 38763724 DOI: 10.1016/j.carbpol.2024.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Chitosan (CS) aerogels are highly porous (∼99 %), exhibit ultralow density, and are excellent sorbents for removing ionic pollutants and oils/organic solvents from water. Their abundant hydroxyl and amino groups facilitate the adsorption of ionic pollutants through electrostatic interaction, complexation and chelation mechanisms. Selection of suitable surface wettability is the way to separate oils/organic solvents from water. This review summarizes the most recent developments in improving the adsorption performance, mechanical strength and regeneration of CS aerogels. The structure of the paper follows the extraction of chitosan, preparation and sorption characteristics of CS aerogels for heavy metal ions, organic dyes, and oils/organic solvents, sequentially. A detailed analysis of the parameters that influence the adsorption/absorption performance of CS aerogels is carried out and their effective control for improving the performance is suggested. The analysis of research outcomes of the recently published data came up with some interesting facts that the unidirectional pore structure and characteristics of the functional group of the aerogel and pH of the adsorbate have led to the enhanced adsorption performance of the CS aerogel. Finally, the excerpts of the literature survey highlighting the difficulties and potential of CS aerogels for water remediation are proposed.
Collapse
Affiliation(s)
- Joyel Paul
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Ahsan Qamar
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sandeep S Ahankari
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sabu Thomas
- School of Polymer Science and Technology, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Nanoscience, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Energy Science, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Chemical Sciences, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| | - Alain Dufresne
- Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| |
Collapse
|
2
|
Lu Z, Zou L, Zhou X, Huang D, Zhang Y. High strength chitosan hydrogels prepared from NaOH/urea aqueous solutions: The role of thermal gelling. Carbohydr Polym 2022; 297:120054. [DOI: 10.1016/j.carbpol.2022.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
3
|
Patel SR, Patel MP. Selective capture of anionic and cationic dyes via chitosan-g-poly-(IA-co-DADMAC)/Fe3O4 polymer composite hydrogel. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04017-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Mulvee M, Vasiljevic N, Mann S, Patil AJ. Stimuli-Responsive Nucleotide-Amino Acid Hybrid Supramolecular Hydrogels. Gels 2021; 7:gels7030146. [PMID: 34563032 PMCID: PMC8482081 DOI: 10.3390/gels7030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
The ability to assemble chemically different gelator molecules into complex supramolecular hydrogels provides excellent opportunities to construct functional soft materials. Herein, we demonstrate the formation of hybrid nucleotide–amino acid supramolecular hydrogels. These are generated by the silver ion (Ag+)-triggered formation of silver–guanosine monophosphate (GMP) dimers, which undergo self-assembly through non-covalent interactions to produce nanofilaments. This process results in a concomitant pH reduction due to the abstraction of a proton from the guanine residue, which triggers the in situ gelation of a pH-sensitive amino acid, N-fluorenylmethyloxycarbonyl tyrosine (FY), to form nucleotide–amino acid hybrid hydrogels. Alterations in the supramolecular structures due to changes in the assembly process are observed, with the molar ratio of Ag:GMP:FY affecting the assembly kinetics, and the resulting supramolecular organisation and mechanical properties of the hydrogels. Higher Ag:GMP stoichiometries result in almost instantaneous gelation with non-orthogonal assembly of the gelators, while at lower molar ratios, orthogonal assembly is observed. Significantly, by increasing the pH as an external stimulus, nanofilaments comprising FY can be selectively disassembled from the hybrid hydrogels. Our results demonstrate a simple approach for the construction of multicomponent stimuli-responsive supramolecular hydrogels with adaptable network and mechanical properties.
Collapse
Affiliation(s)
- Matthew Mulvee
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK;
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK;
| | - Natasa Vasiljevic
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK;
- School of Physics, University of Bristol, Bristol BS8 1TS, UK
| | - Stephen Mann
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK;
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK;
- Correspondence: (S.M.); (A.J.P.)
| | - Avinash J. Patil
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK;
- Correspondence: (S.M.); (A.J.P.)
| |
Collapse
|
5
|
Harris JT, McNeil AJ. Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Justin T. Harris
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
6
|
Galzerano B, Cabello CI, Muñoz M, Buonocore GG, Aprea P, Liguori B, Verdolotti L. Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3760. [PMID: 32854397 PMCID: PMC7503364 DOI: 10.3390/ma13173760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022]
Abstract
The latest tendency of the scientific community regards the development of different classes of green materials able to solve pollution problems caused by industrial and human activity. In this paper, chitosan and diatomite were used to produce a broad-spectrum hybrid adsorbent, either in powder or in monolithic form for environmental pollutant removal. Diatomite-chitosan-based powders and porous diatomite-chitosan hybrids were prepared and characterized by chemical-physical, thermal and morphological analysis. Moreover, their adsorbent capacity towards anionic dye (Indigo Carmine) was also evaluated. Obtained data showed that chitosan improves the adsorption capacity of both systems, increasing the uptake of dye in both diatomite-chitosan systems.
Collapse
Affiliation(s)
- Barbara Galzerano
- Institute of Polymers, Composite and Biomaterials, National Research Council, P.le Enrico Fermi, Portici, 80055 Naples, Italy; (B.G.); (G.G.B.); (L.V.)
- ACLabs—Applied Chemistry Labs, Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Carmen I. Cabello
- “Centro de Investigacion y Desarollo en Ciencias Aplicadas Dr. J. J. Ronco” (CINDECA-CONICET-CIC-UNLP), Calle 47 N 257, 1900 La Plata, Argentine; (C.I.C.); (M.M.)
| | - Mercedes Muñoz
- “Centro de Investigacion y Desarollo en Ciencias Aplicadas Dr. J. J. Ronco” (CINDECA-CONICET-CIC-UNLP), Calle 47 N 257, 1900 La Plata, Argentine; (C.I.C.); (M.M.)
| | - Giovanna G. Buonocore
- Institute of Polymers, Composite and Biomaterials, National Research Council, P.le Enrico Fermi, Portici, 80055 Naples, Italy; (B.G.); (G.G.B.); (L.V.)
| | - Paolo Aprea
- ACLabs—Applied Chemistry Labs, Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Barbara Liguori
- Institute of Polymers, Composite and Biomaterials, National Research Council, P.le Enrico Fermi, Portici, 80055 Naples, Italy; (B.G.); (G.G.B.); (L.V.)
- ACLabs—Applied Chemistry Labs, Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Letizia Verdolotti
- Institute of Polymers, Composite and Biomaterials, National Research Council, P.le Enrico Fermi, Portici, 80055 Naples, Italy; (B.G.); (G.G.B.); (L.V.)
| |
Collapse
|
7
|
Kekes T, Tzia C. Adsorption of indigo carmine on functional chitosan and β-cyclodextrin/chitosan beads: Equilibrium, kinetics and mechanism studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110372. [PMID: 32250827 DOI: 10.1016/j.jenvman.2020.110372] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 05/27/2023]
Abstract
The present study was designed to produce novel cross-linked Chitosan and Chitosan/β-Cyclodextrin beads and study the adsorption of Indigo Carmine. Both adsorbents were characterized by SEM and FTIR techniques. Batch experiments were conducted in order to evaluate the effect of initial adsorbent's concentration, dye's initial concentration, initial pH and temperature. In all cases Chitosan/β-Cyclodextrin crosslinked beads exhibited higher removal efficiency of Indigo Carmine. Higher removal rates of Indigo Carmine were observed at low values of dye's initial concentration, pH and temperature, and high concentrations of adsorbent. The equilibrium adsorption data were a good fit for both Langmuir and Freundlich models and maximum adsorption capacity was 500.0 and 1000.0 mgIC/gadsorbent for Chitosan and Chitosan/β-Cyclodextrin crosslinked beads, respectively. Adsorption of Indigo Carmine was found to follow the pseudo-second order. The negative values of ΔGo, ΔHo and ΔSo indicate that the adsorption process is exothermic, spontaneous and favorable at low temperatures.
Collapse
Affiliation(s)
- Tryfon Kekes
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Polytechnioupoli, Zografou, 15780, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Polytechnioupoli, Zografou, 15780, Athens, Greece.
| |
Collapse
|
8
|
Chitosan-based electrospun membranes: Effects of solution viscosity, coagulant and crosslinker. Carbohydr Polym 2020; 235:115976. [DOI: 10.1016/j.carbpol.2020.115976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
|
9
|
Bertasa M, Dodero A, Alloisio M, Vicini S, Riedo C, Sansonetti A, Scalarone D, Castellano M. Agar gel strength: A correlation study between chemical composition and rheological properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Oliviero M, Stanzione M, D'Auria M, Sorrentino L, Iannace S, Verdolotti L. Vegetable Tannin as a Sustainable UV Stabilizer for Polyurethane Foams. Polymers (Basel) 2019; 11:E480. [PMID: 30960464 PMCID: PMC6473369 DOI: 10.3390/polym11030480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 11/18/2022] Open
Abstract
A vegetable tannin, a flavonoid-type natural polyphenolic compound, was used to promote the stabilization of polyurethane foams against UV radiation. Several polyurethane foams were synthesized by using an isocyanate, and a mixture of ethoxylated cocoalkyl amine and vegetable tannin. The content of vegetable tannin was varied from 0 to 40 wt %. The effects of tannin and water (used as a blowing agent) on the foaming kinetics and cellular morphology of foams were investigated. Samples were subjected to accelerated weathering under UV radiation for 3 to 24 h, and FTIR and DMA analyses were conducted to assess the performance change. The former analysis revealed a strong inhibiting effect of tannin on urethane linkage degradation during the UV treatment. The mechanical properties were significantly affected by the addition of tannin. The capability of the foams to withstand UV radiation was dependent on the amount of tannin. At tannin contents higher than 20%, the decrease in mechanical properties under UV irradiation was almost avoided.
Collapse
Affiliation(s)
- Maria Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, 80055 Portici (NA), Italy.
| | - Mariamelia Stanzione
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, 80055 Portici (NA), Italy.
| | - Marco D'Auria
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, 80055 Portici (NA), Italy.
| | - Luigi Sorrentino
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, 80055 Portici (NA), Italy.
| | - Salvatore Iannace
- Institute for Macromolecular Studies, National Research Council, v. Corti 12, 20133 Milano, Italy.
| | - Letizia Verdolotti
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, 80055 Portici (NA), Italy.
| |
Collapse
|
11
|
Salzano de Luna M, Ascione C, Santillo C, Verdolotti L, Lavorgna M, Buonocore GG, Castaldo R, Filippone G, Xia H, Ambrosio L. Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr Polym 2019; 211:195-203. [PMID: 30824079 DOI: 10.1016/j.carbpol.2019.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Chitosan (CS) aerogels were prepared by freeze-drying as potential adsorbents for water purification, and the effect of the strategy of crosslinking was investigated by varying the amount of crosslinker (glutaraldehyde) and the sequence of steps for the preparation of the aerogel. Two procedures were compared, in which the crosslinking step was carried out before or after the freeze-drying of the starting CS solution. When crosslinking was postponed after the freeze-drying step, the adsorption capacity towards an anionic dye, such as indigo carmine, considerably increased (up to +45%), reaching values as high as 534.4 ± 30.5 mg g-1. The same crosslinking strategy ensured a comparable improvement also in nanocomposite aerogels containing graphene oxide (GO), which was added to enhance the mechanical strength and provide adsorption capacity towards cationic dyes. Besides possessing good mechanical strength (compressive modulus higher than 1 MPa), the CS/GO aerogels were able to bind also cationic pollutants such as methylene blue. The maximum uptake capacity increased from 4.3 ± 1.6 to 168.6 ± 9.6 mg of cationic dye adsorbed per gram of adsorbent with respect to pristine CS aerogels.
Collapse
Affiliation(s)
- M Salzano de Luna
- Department of Chemical, Materials and Production Engineering (INSTM Consortium - UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, Italy.
| | - C Ascione
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - C Santillo
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, Italy
| | - L Verdolotti
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, Italy
| | - M Lavorgna
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, Italy.
| | - G G Buonocore
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055 Portici, Italy
| | - R Castaldo
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - G Filippone
- Department of Chemical, Materials and Production Engineering (INSTM Consortium - UdR Naples), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - H Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - L Ambrosio
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
12
|
|
13
|
Kluczka J, Gnus M, Kazek-Kęsik A, Dudek G. Zirconium-chitosan hydrogel beads for removal of boron from aqueous solutions. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Diryak R, Kontogiorgos V, Ghori MU, Bills P, Tawfik A, Morris GA, Smith AM. Behavior of In Situ Cross-Linked Hydrogels with Rapid Gelation Kinetics on Contact with Physiological Fluids. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ramadan Diryak
- Department of Pharmacy; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| | - Vassilis Kontogiorgos
- Department of Biological Sciences; School of Computing and Engineering University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| | - Muhammad U. Ghori
- Department of Pharmacy; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| | - Paul Bills
- EPSRC Future Metrology Hub; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| | - Ahmed Tawfik
- EPSRC Future Metrology Hub; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| | - Gordon A. Morris
- Department of Chemical Sciences; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| | - Alan M. Smith
- Department of Pharmacy; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|