1
|
Nourkami-Tutdibi N, Freitag K, Zemlin M, Tutdibi E. Genetic Association With Pseudomonas aeruginosa Acquisition in Cystic Fibrosis: Influence of Surfactant Protein D and Mannose-Binding Lectin. Front Immunol 2021; 12:587313. [PMID: 33679736 PMCID: PMC7933032 DOI: 10.3389/fimmu.2021.587313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF) is associated with poor prognosis. Surfactant protein-D (SFTPD) and mannose-binding lectin (MBL) play a critical role in innate immunity and response to bacterial infections. We investigated serum levels and genetic variants of SFTPD and MBL in CF patients. Method: Thirty-five Caucasian patients homozygous for ΔF508del were genotyped for functional relevant polymorphisms within MBL2 (promoter-221 Y/X, codons 52, 54, and 57) and SFTPD genes (Met11Thr, Ala160Thr, and Ser270Thr). Serum levels of collectins, clinical characteristics, and PA status were correlated with genetic data. Results: Patients age, gender, and PA status did not affect MBL and SFTPD serum concentrations. MBL concentrations were correlated with MBL haplotypes. Patients with chronic Pseudomonas aeroginosa infection (PAC) and MBL insufficiency had a shorter interval between first PA infection and onset of PAC (0.01 vs. 4.6 years, p < 0.04) as well as a lower median age at transition to PAC (9.8 vs. 16.4 years, p < 0.03) compared to MBL sufficient patients with PAC. SFTPD serum level and FEV1% (Spearman r = -0.41, p < 0.03) showed a negative correlation irrespective of PA infection status. The hazard ratio to PA acquisition was increased in carriers of the SFTPD haplotype 11Thr-160Ala-270Ser compared to carriers of the common 11Met-160Thr-270Ser haplotype [HR 3.0 (95%CI: 1.1-8.6), p < 0.04]. Conclusion: MBL insufficiency leads to a shorter interval between first PA infection and onset of chronic infection. Susceptibility to PA acquisition is associated with SFTPD genetic variants with 11Thr-160Ala-270Ser as risk haplotype for early PA infection. This may be due to presence of threonine associated with oligomeric structure of SFTPD and binding ability to bacteria.
Collapse
Affiliation(s)
- Nasenien Nourkami-Tutdibi
- Saarland University Medical Center, Hospital for General Pediatrics and Neonatology, Homburg, Germany
| | - Klemens Freitag
- Saarland University Medical Center, Hospital for General Pediatrics and Neonatology, Homburg, Germany
| | - Michael Zemlin
- Saarland University Medical Center, Hospital for General Pediatrics and Neonatology, Homburg, Germany
| | - Erol Tutdibi
- Saarland University Medical Center, Hospital for General Pediatrics and Neonatology, Homburg, Germany
| |
Collapse
|
2
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Surfactant Protein D Binds to Coxiella burnetii and Results in a Decrease in Interactions with Murine Alveolar Macrophages. PLoS One 2015; 10:e0136699. [PMID: 26366725 PMCID: PMC4569269 DOI: 10.1371/journal.pone.0136699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
Coxiella burnetii is a Gram-negative, obligate intracellular bacterium and the causative agent of Q fever. Infections are usually acquired after inhalation of contaminated particles, where C. burnetii infects its cellular target cells, alveolar macrophages. Respiratory pathogens encounter the C-type lectin surfactant protein D (SP-D) during the course of natural infection. SP-D is a component of the innate immune response in the lungs and other mucosal surfaces. Many Gram-negative pulmonary pathogens interact with SP-D, which can cause aggregation, bactericidal effects and aid in bacterial clearance. Here we show that SP-D binds to C. burnetii in a calcium-dependent manner with no detectable bacterial aggregation or bactericidal effects. Since SP-D interactions with bacteria often alter macrophage interactions, it was determined that SP-D treatment resulted in a significant decrease in C. burnetii interactions to a mouse alveolar macrophage model cell line MH-S indicating SP-D causes a significant decrease in phagocytosis. The ability of SP-D to modulate macrophage activation by C. burnetii was tested and it was determined that SP-D does not alter the correlates measured for macrophage activation. Taken together these studies support those demonstrating limited activation of alveolar macrophages with C. burnetii and demonstrate interactions with SP-D participate in reduction of phagocyte attachment and phagocytosis.
Collapse
|
4
|
Thacker S, Moran A, Lionakis M, Mastrangelo MAA, Halder T, del Pilar Huby M, Wu Y, Tweardy DJ. Restoration of lung surfactant protein D by IL-6 protects against secondary pneumonia following hemorrhagic shock. J Infect 2014; 68:231-41. [PMID: 24291043 PMCID: PMC4692462 DOI: 10.1016/j.jinf.2013.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/19/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To identify novel approaches to improve innate immunity in the lung following trauma complicated by hemorrhagic shock (T/HS) for prevention of nosocomial pneumonia. METHODS We developed a rat model of T/HS followed by Pseudomonas aeruginosa (PA) pneumonia to assess the effect of alveolar epithelial cell (AEC) apoptosis, and its prevention by IL-6, on lung surfactant protein (SP)-D protein levels, lung bacterial burden, and survival from PA pneumonia, as well as to determine whether AEC apoptosis is a consequence of the unfolded protein response (UPR). Lung UPR transcriptome analysis was performed on rats subjected to sham, T/HS, and T/HS plus IL-6 protocols. Group comparisons were performed via Kaplan-Meier or ANOVA. RESULTS T/HS decreased lung SP-D by 1.8-fold (p < 0.05), increased PA bacterial burden 9-fold (p < 0.05), and increased PA pneumonia mortality by 80% (p < 0.001). IL-6, when provided at resuscitation, normalized SP-D levels (p < 0.05), decreased PA bacterial burden by 4.8-fold (p < 0.05), and prevented all mortality from PA pneumonia (p < 0.001). The UPR transcriptome was significantly impacted by T/HS; IL-6 treatment normalized the T/HS-induced UPR transcriptome changes (p < 0.05). CONCLUSIONS Impaired innate lung defense occurs following T/HS and is mediated, in part, by reduction in SP-D protein levels, which, along with AEC apoptosis, may be mediated by the UPR, and prevented by use of IL-6 as a resuscitation adjuvant.
Collapse
Affiliation(s)
- Stephen Thacker
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ana Moran
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mihalis Lionakis
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mary-Ann A Mastrangelo
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tripti Halder
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Maria del Pilar Huby
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yong Wu
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David J Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Kotecha S, Doull I, Davies P, McKenzie Z, Madsen J, Clark HW, McGreal EP. Functional heterogeneity of pulmonary surfactant protein-D in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2391-400. [DOI: 10.1016/j.bbadis.2013.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/16/2013] [Accepted: 10/01/2013] [Indexed: 01/21/2023]
|
6
|
Pulmonary Collectins in Diagnosis and Prevention of Lung Diseases. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121960 DOI: 10.1007/978-3-7091-1065-2_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pulmonary surfactant is a complex mixture of lipids and proteins, and is synthesized and secreted by alveolar type II epithelial cells and bronchiolar Clara cells. It acts to keep alveoli from collapsing during the expiratory phase of the respiratory cycle. After its secretion, lung surfactant forms a lattice structure on the alveolar surface, known as tubular myelin. Surfactant proteins (SP)-A, B, C and D make up to 10% of the total surfactant. SP-B and SPC are relatively small hydrophobic proteins, and are involved in the reduction of surface-tension at the air-liquid interface. SP-A and SP-D, on the other hand, are large oligomeric, hydrophilic proteins that belong to the collagenous Ca2+-dependent C-type lectin family (known as “Collectins”), and play an important role in host defense and in the recycling and transport of lung surfactant (Awasthi 2010) (Fig. 43.1). In particular, there is increasing evidence that surfactant-associated proteins A and -D (SP-A and SP-D, respectively) contribute to the host defense against inhaled microorganisms (see 10.1007/978-3-7091-1065_24 and 10.1007/978-3-7091-1065_25). Based on their ability to recognize pathogens and to regulate the host defense, SP-A and SP-D have been recently categorized as “Secretory Pathogen Recognition Receptors”. While SP-A and SP-D were first identified in the lung; the expression of these proteins has also been observed at other mucosal surfaces, such as lacrimal glands, gastrointestinal mucosa, genitourinary epithelium and periodontal surfaces. SP-A is the most prominent among four proteins in the pulmonary surfactant-system. The expression of SP-A is complexly regulated on the transcriptional and the chromosomal level. SP-A is a major player in the pulmonary cytokine-network and moreover has been described to act in the pulmonary host defense. This chapter gives an overview on the understanding of role of SP-A and SP-D in for human pulmonary disorders and points out the importance for pathology-orientated research to further elucidate the role of these molecules in adult lung diseases. As an outlook, it will become an issue of pulmonary pathology which might provide promising perspectives for applications in research, diagnosis and therapy (Awasthi 2010).
Collapse
|
7
|
Douda DN, Jackson R, Grasemann H, Palaniyar N. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. THE JOURNAL OF IMMUNOLOGY 2011; 187:1856-65. [PMID: 21724991 DOI: 10.4049/jimmunol.1004201] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutrophils release DNA-based extracellular traps to capture and kill bacteria. The mechanism(s) and proteins that promote neutrophil extracellular trap (NET)-mediated bacterial trapping are not clearly established. Surfactant protein D (SP-D) is an innate immune collectin present in many mucosal surfaces. We hypothesized that SP-D can bind both the pathogens and NETs to augment NET-mediated bacterial trapping. To test this hypothesis, we used LPS and Pseudomonas aeruginosa pneumonia mouse models and performed in vivo and ex vivo assays. In this study, we show that NETs are produced by the neutrophils recruited to the airways in response to the bacterial ligand. Notably, NETs are detected as short fragments of DNA-protein complexes in the airways as opposed to the long stringlike structures seen in ex vivo cultures. SP-D recognizes both the short NET fragments and the long NET DNA structures. SP-D-NET copurification studies further show that SP-D can simultaneously recognize NETs and carbohydrate ligands in vivo. Similar to the LPS model, soluble DNA-protein complexes and increased amounts of SP-D are detected in the murine model of P. aeruginosa pneumonia. We then tested the effect of SP-D on NET-mediated trapping of P. aeruginosa by means of Western blots, fluorescence microscopy, and scanning electron microscopy. Results of these experiments show that SP-D microagglutinates P. aeruginosa and allows an efficient bacterial trapping by NETs. Collectively, these findings provide a unique biological relevance for SP-D-DNA interactions and places SP-D as an important innate immune protein that promotes bacterial trapping by NETs during neutrophil-mediated host defense.
Collapse
Affiliation(s)
- David Nobuhiro Douda
- Program in Physiology and Experimental Medicine, SickKids Research Institute, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
8
|
Griese M, Steinecker M, Schumacher S, Braun A, Lohse P, Heinrich S. Children with absent surfactant protein D in bronchoalveolar lavage have more frequently pneumonia. Pediatr Allergy Immunol 2008; 19:639-47. [PMID: 18266831 DOI: 10.1111/j.1399-3038.2007.00695.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surfactant protein D (SP-D) is an important component of the pulmonary host defense system. We hypothesized that bronchoalveolar lavage (BAL) SP-D levels are lower in children presenting with recurrent bronchitis, providing evidence for a role of SP-D in human respiratory diseases. SP-D levels in BAL were measured in 45 children, who suffered from recurrent bronchitis for an average of 2-3 yr. Clinical outcome was assessed 2 yr after BAL. For comparison, BAL fluids from 15 control children without respiratory symptoms were evaluated. Among the 45 children with recurrent bronchitis, 12 had no SP-D in their BAL at the time of investigation. These SP-D-deficient patients had more frequently pneumonias and their long-term outcome was worse than that of the children with detectable SP-D. No genetic cause could be identified for the SP-D deficiency. Among the children with recurrent bronchitis and SP-D clearly detectable in BAL, those with the diagnosis of allergic asthma had threefold elevated levels compared with controls. In accordance with animal and in vitro data, elevated SP-D concentrations in BAL may represent an up-regulation due to allergic airway inflammation. In contrast, SP-D deficiency due to consumption or failure to up-regulate SP-D may be linked to pulmonary morbidity in children.
Collapse
Affiliation(s)
- M Griese
- Children's Hospital, Grosshadern, University of Munich, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Breij ECW, Batenburg JJ. Surfactant protein D/anti-Fc receptor bifunctional proteins as a tool to enhance host defence. Expert Opin Biol Ther 2008; 8:409-19. [PMID: 18352846 DOI: 10.1517/14712598.8.4.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Drug-resistant pathogens are an increasing threat, particularly for hospitalised patients. In search of a new approach in pathogen targeting, we developed bifunctional proteins that combine broad spectrum pathogen recognition with efficient targeting to phagocytes. Pathogen recognition is provided by a recombinant fragment of surfactant protein D (rfSP-D) while targeting to phagocytic cells is accomplished by coupling rfSP-D to F(ab') fragments directed against Fcalpha receptor I (FcalphaRI) or Fcgamma receptor I (FcgammaRI). FcalphaRI and FcgammaRI are expressed on myeloid cells, and induce rapid internalisation of particles after crosslinking. OBJECTIVE/METHODS In this review we discuss the roles of SP-D and Fc receptors in host defence as a rationale for rfSP-D/anti-FcR bifunctional proteins. Furthermore we summarise the available data on rfSP-D/anti-FcR proteins as well as opportunities and considerations for future use of such bifunctional proteins. RESULTS/CONCLUSION rfSP-D/anti-FcR bifunctional proteins could be of great value for the treatment of a variety of infectious diseases. The focus in the near future should be on proof-of-principle by testing the bifunctional proteins in different mouse models of infectious disease.
Collapse
Affiliation(s)
- Esther C W Breij
- Utrecht University, Department of Biochemistry and Cell Biology, Veterinary Sciences Faculty, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | | |
Collapse
|
10
|
Abstract
The lung is continuously exposed to inhaled pollutants, microbes and allergens. Therefore, the pulmonary immune system has to defend against harmful pathogens, while an inappropriate inflammatory response to harmless particles must be avoided. In the bronchoalveolar space this critical balance is maintained by innate immune proteins, termed surfactant proteins. Among these, surfactant protein D (SP-D) plays a central role in the pulmonary host defence and the modulation of allergic responses. Several human lung diseases are characterized by decreased levels of bronchoalveolar SP-D. Thus, recombinant SP-D has been proposed as a therapeutical option for cystic fibrosis, neonatal lung disease and smoking-induced emphysema. Furthermore, SP-D serum levels can be used as disease activity markers for interstitial lung diseases. This review illustrates the emerging role of SP-D translated from in vitro studies to human lung diseases.
Collapse
Affiliation(s)
- D Hartl
- Department of Pediatric Pneumology, Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|