1
|
Chhabra M, Lewis EC, Balshaw R, Stewart B, Zaslawski Z, Lowthian T, Alidina Z, Chesick-Gordis M, Xie W, Drögemöller BI, Wright GEB, Birnie KA, Boerner KE, Tsang VWL, Irwin SL, Pohl D, Weil AG, Sell E, Penz E, Robson-MacKay A, Mbabaali S, Blackman S, Gordon S, Alcorn J, Huntsman RJ, Oberlander TF, Finley GA, Kelly LE. A multi-centre, tolerability study of a cannabidiol-enriched Cannabis Herbal Extract for chronic headaches in adolescents: The CAN-CHA protocol. PLoS One 2024; 19:e0290185. [PMID: 39302982 DOI: 10.1371/journal.pone.0290185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/18/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Cannabis products have been used in the management of headaches in adults and may play a role in pediatric chronic pain. Canadian pediatricians report increasing use of cannabis for the management of chronic headaches, despite no well-controlled studies to inform its dosing, safety, and effectiveness. The aim of our clinical trial is to determine the dosing and safety of a Cannabidiol (CBD)-enriched Cannabis Herbal Extract (CHE) for the treatment of chronic headaches in adolescents. METHODS AND ANALYSIS Youth, parents, and an expert steering committee co-designed this tolerability study. Twenty adolescents (aged 14 to 17 years), with a chronic migraine diagnosis for more than 6 months that has not responded to other therapies will be enrolled into an open label, dose escalation study across three Canadian sites. Study participants will receive escalating doses of a CBD-enriched CHE (MPL-001 with a THC:CBD of 1:25), starting at 0.2-0.4 mg/kg of CBD per day and escalating monthly up to 0.8-1.0 mg/kg of CBD per day. The primary objective of this study is to determine the safety and tolerability of CBD-enriched CHE in adolescents with chronic migraine. Secondary objectives of this study will inform the development of subsequent randomized controlled trials and include investigating the relationship between the dose escalation and change in the frequency of headache, impact and intensity of pain, changes in sleep, mood, function, and quality of life. Exploratory outcomes include investigating steady-state trough plasma levels of bioactive cannabinoids and investigating how pharmacogenetic profiles affect cannabinoid metabolism among adolescents receiving CBD-enriched CHE. DISCUSSION This protocol was co-designed with youth and describes a tolerability clinical trial of CBD-enriched CHE in adolescents with chronic headaches that have not responded to conventional therapies. This study is the first clinical trial on cannabis products in adolescents with chronic headaches and will inform the development of future comparative effectiveness clinical trials. TRIAL REGISTRATION CAN-CHA trial is registered with ClinicalTrials.gov with a number of register NCT05337033.
Collapse
Affiliation(s)
- Manik Chhabra
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Evan C Lewis
- North Toronto Neurology, Toronto, Ontario, Canada
| | - Robert Balshaw
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Breanne Stewart
- Quality Management in Clinical Research (QMCR), University of Alberta, Edmonton, Alberta, Canada
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, British Columbia, Canada
| | - Zina Zaslawski
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Trinity Lowthian
- Youth Research Partners, Childhood Cannabinoid Therapeutics (C4T), Ottawa, Ontario, Canada
| | - Zahra Alidina
- Youth Research Partners, Childhood Cannabinoid Therapeutics (C4T), Holland Landing, Ontario, Canada
| | - Melila Chesick-Gordis
- Youth Research Partners, Childhood Cannabinoid Therapeutics (C4T), Vancouver, British Columbia, Canada
| | - Wenli Xie
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, British Columbia, Canada
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Galen E B Wright
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kathryn A Birnie
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Katelynn E Boerner
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian W L Tsang
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, British Columbia, Canada
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samantha Lee Irwin
- University of Texas at Austin Pediatric Neurosciences at Dell Children's Pediatric Headache Program, Austin, Texas, United States of America
| | - Daniela Pohl
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexander G Weil
- Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Erick Sell
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Erika Penz
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amy Robson-MacKay
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sophia Mbabaali
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie Blackman
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Center for Pediatric Pain Research, IWK Health, Halifax, Nova Scotia, Canada
| | - Shanlea Gordon
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jane Alcorn
- Cannabinoid Research Initiative of Saskatchewan, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Huntsman
- Cannabinoid Research Initiative of Saskatchewan, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Division Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Tim F Oberlander
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Allen Finley
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Center for Pediatric Pain Research, IWK Health, Halifax, Nova Scotia, Canada
| | - Lauren E Kelly
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Mudgil U, Khullar L, Chadha J, Prerna, Harjai K. Beyond antibiotics: Emerging antivirulence strategies to combat Pseudomonas aeruginosa in cystic fibrosis. Microb Pathog 2024; 193:106730. [PMID: 38851361 DOI: 10.1016/j.micpath.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.
Collapse
Affiliation(s)
- Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Glasscoe C, Hope HF, Lancaster GA, McCray G, West K, Patel L, Patel T, Hill J, Quittner AL, Southern KW. Development and preliminary validation of the challenges of living with cystic fibrosis (CLCF) questionnaire: a 46-item measure of treatment burden for parent/carers of children with CF. Psychol Health 2023; 38:1309-1344. [PMID: 35259034 DOI: 10.1080/08870446.2021.2013483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Treatments for cystic fibrosis (CF) are complex, labour-intensive, and perceived as highly burdensome by caregivers of children with CF. An instrument assessing burden of care is needed. DESIGN A stepwise, qualitative design was used to create the CLCF with caregiver focus groups, participant researchers, a multidisciplinary professional panel, and cognitive interviews. MAIN OUTCOME MEASURES Preliminary psychometric analyses evaluated the reliability and convergent validity of the CLCF scores. Cronbach's alpha assessed internal consistency and t-tests examined test-retest reliability. Correlations measured convergence between the Treatment Burden scale of the Cystic Fibrosis Questionnaire-Revised (CFQ-R) and the CLCF. Discriminant validity was assessed by comparing CLCF scores in one vs two-parent families, across ages, and in children with vs without Pseudomonas aeruginosa (PA). RESULTS Six Challenge subscales emerged from the qualitative data and the professional panel constructed a scoresheet estimating the Time and Effort required for treatments. Internal consistency and test-retest reliability were adequate. Good convergence was found between the Total Challenge score and Treatment Burden on the CFQ-R (r=-0.49, p = 0.02, n = 31). A recent PA infection signalled higher Total Challenge for caregivers (F(23)11.72, p = 0.002). CONCLUSIONS The CLCF, developed in partnership with parents/caregivers and CF professionals, is a timely, disease-specific burden measure for clinical research.
Collapse
Affiliation(s)
- Claire Glasscoe
- Institute of Translational Medicine, Department of Women's & Children's Health, University of Liverpool, Liverpool, UK
| | - Holly F Hope
- Division of Psychology & Mental Health, University of Manchester, Manchester, UK
| | | | | | - Kiri West
- DMOPS (Movement Disorders), Liverpool University Hospitals NHS Foundation Trust (Aintree site), Liverpool, UK
| | - Latifa Patel
- Respiratory Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Tulsi Patel
- Evelina London Children's Hospital, London, UK
| | - Jonathan Hill
- School of Psychology & Clinical Language Sciences, University of Reading, Reading, UK
| | | | - Kevin W Southern
- Institute of Translational Medicine, Department of Women's & Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Langton Hewer SC, Smith S, Rowbotham NJ, Yule A, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2023; 6:CD004197. [PMID: 37268599 PMCID: PMC10237531 DOI: 10.1002/14651858.cd004197.pub6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Respiratory tract infections with Pseudomonas aeruginosa occur in most people with cystic fibrosis (CF). Established chronic P aeruginosa infection is virtually impossible to eradicate and is associated with increased mortality and morbidity. Early infection may be easier to eradicate. This is an updated review. OBJECTIVES Does giving antibiotics for P aeruginosa infection in people with CF at the time of new isolation improve clinical outcomes (e.g. mortality, quality of life and morbidity), eradicate P aeruginosa infection, and delay the onset of chronic infection, but without adverse effects, compared to usual treatment or an alternative antibiotic regimen? We also assessed cost-effectiveness. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and conference proceedings. Latest search: 24 March 2022. We searched ongoing trials registries. Latest search: 6 April 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) of people with CF, in whom P aeruginosa had recently been isolated from respiratory secretions. We compared combinations of inhaled, oral or intravenous (IV) antibiotics with placebo, usual treatment or other antibiotic combinations. We excluded non-randomised trials and cross-over trials. DATA COLLECTION AND ANALYSIS Two authors independently selected trials, assessed risk of bias and extracted data. We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 11 trials (1449 participants) lasting between 28 days and 27 months; some had few participants and most had relatively short follow-up periods. Antibiotics in this review are: oral - ciprofloxacin and azithromycin; inhaled - tobramycin nebuliser solution for inhalation (TNS), aztreonam lysine (AZLI) and colistin; IV - ceftazidime and tobramycin. There was generally a low risk of bias from missing data. In most trials it was difficult to blind participants and clinicians to treatment. Two trials were supported by the manufacturers of the antibiotic used. TNS versus placebo TNS may improve eradication; fewer participants were still positive for P aeruginosa at one month (odds ratio (OR) 0.06, 95% confidence interval (CI) 0.02 to 0.18; 3 trials, 89 participants; low-certainty evidence) and two months (OR 0.15, 95% CI 0.03 to 0.65; 2 trials, 38 participants). We are uncertain whether the odds of a positive culture decrease at 12 months (OR 0.02, 95% CI 0.00 to 0.67; 1 trial, 12 participants). TNS (28 days) versus TNS (56 days) One trial (88 participants) comparing 28 days to 56 days TNS treatment found duration of treatment may make little or no difference in time to next isolation (hazard ratio (HR) 0.81, 95% CI 0.37 to 1.76; low-certainty evidence). Cycled TNS versus culture-based TNS One trial (304 children, one to 12 years old) compared cycled TNS to culture-based therapy and also ciprofloxacin to placebo. We found moderate-certainty evidence of an effect favouring cycled TNS therapy (OR 0.51, 95% CI 0.31 to 0.82), although the trial publication reported age-adjusted OR and no difference between groups. Ciprofloxacin versus placebo added to cycled and culture-based TNS therapy One trial (296 participants) examined the effect of adding ciprofloxacin versus placebo to cycled and culture-based TNS therapy. There is probably no difference between ciprofloxacin and placebo in eradicating P aeruginosa (OR 0.89, 95% CI 0.55 to 1.44; moderate-certainty evidence). Ciprofloxacin and colistin versus TNS We are uncertain whether there is any difference between groups in eradication of P aeruginosa at up to six months (OR 0.43, 95% CI 0.15 to 1.23; 1 trial, 58 participants) or up to 24 months (OR 0.76, 95% CI 0.24 to 2.42; 1 trial, 47 participants); there was a low rate of short-term eradication in both groups. Ciprofloxacin plus colistin versus ciprofloxacin plus TNS One trial (223 participants) found there may be no difference in positive respiratory cultures at 16 months between ciprofloxacin with colistin versus TNS with ciprofloxacin (OR 1.28, 95% CI 0.72 to 2.29; low-certainty evidence). TNS plus azithromycin compared to TNS plus oral placebo Adding azithromycin may make no difference to the number of participants eradicating P aeruginosa after a three-month treatment phase (risk ratio (RR) 1.01, 95% CI 0.75 to 1.35; 1 trial, 91 participants; low-certainty evidence); there was also no evidence of any difference in the time to recurrence. Ciprofloxacin and colistin versus no treatment A single trial only reported one of our planned outcomes; there were no adverse effects in either group. AZLI for 14 days plus placebo for 14 days compared to AZLI for 28 days We are uncertain whether giving 14 or 28 days of AZLI makes any difference to the proportion of participants having a negative respiratory culture at 28 days (mean difference (MD) -7.50, 95% CI -24.80 to 9.80; 1 trial, 139 participants; very low-certainty evidence). Ceftazidime with IV tobramycin compared with ciprofloxacin (both regimens in conjunction with three months colistin) IV ceftazidime with tobramycin compared with ciprofloxacin may make little or no difference to eradication of P aeruginosa at three months, sustained to 15 months, provided that inhaled antibiotics are also used (RR 0.84, 95 % CI 0.65 to 1.09; P = 0.18; 1 trial, 255 participants; high-certainty evidence). The results do not support using IV antibiotics over oral therapy to eradicate P aeruginosa, based on both eradication rate and financial cost. AUTHORS' CONCLUSIONS We found that nebulised antibiotics, alone or with oral antibiotics, were better than no treatment for early infection with P aeruginosa. Eradication may be sustained in the short term. There is insufficient evidence to determine whether these antibiotic strategies decrease mortality or morbidity, improve quality of life, or are associated with adverse effects compared to placebo or standard treatment. Four trials comparing two active treatments have failed to show differences in rates of eradication of P aeruginosa. One large trial showed that intravenous ceftazidime with tobramycin is not superior to oral ciprofloxacin when inhaled antibiotics are also used. There is still insufficient evidence to state which antibiotic strategy should be used for the eradication of early P aeruginosa infection in CF, but there is now evidence that intravenous therapy is not superior to oral antibiotics.
Collapse
Affiliation(s)
- Simon C Langton Hewer
- Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Sherie Smith
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nicola J Rowbotham
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Alexander Yule
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Alan R Smyth
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Møller R, Pressler T, Qvist T. Antimicrobial Strategies for Cystic Fibrosis. Semin Respir Crit Care Med 2023; 44:297-306. [PMID: 36535665 DOI: 10.1055/s-0042-1758733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung infection is the leading cause of death in cystic fibrosis (CF), and antimicrobial therapies are the backbone of infection management. While many different strategies may be applied, rigorous microbiological surveillance, intensive eradication therapy, and long-term maintenance therapy based on inhaled antibiotics may be considered the main strategy for infection control in individuals with CF. While most of the existing evidence is based on infection with Pseudomonas aeruginosa, other important pathogens causing lung inflammation and deterioration exist and should be treated despite the evidence gap. In this chapter, we describe the approaches to the antimicrobial treatment of the most important pathogens in CF and the evidence behind.
Collapse
Affiliation(s)
- Rikke Møller
- Department of Infectious Diseases, Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Tacjana Pressler
- Department of Infectious Diseases, Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Tavs Qvist
- Department of Infectious Diseases, Cystic Fibrosis Center Copenhagen, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
6
|
Vijaykumar K, Rowe SM. Lessons from other fields of medicine, Part 2: Cystic fibrosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:119-130. [PMID: 36796937 DOI: 10.1016/b978-0-323-85538-9.00006-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cystic fibrosis (CF), first described in 1938, is a common, life-limiting monogenetic disease. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989 was crucial in advancing our understanding of disease pathogenesis and paving the road for treatment aimed at the fundamental molecular defect. With the delineation of over 2000 variations in the CFTR gene, a sound understanding of the individual variations in cell biology, and electrophysiological abnormalities conferred by the most common defects propelled the advent of targeted disease-modifying therapeutics beginning in 2012. Since then, CF care has transformed beyond just symptomatic treatment to include a variety of small-molecule therapies that address the basic electrophysiologic defect and cause profound improvements in physiology, clinical manifestations, and long-term outcomes, designed to differentially address six genetic/molecular subtypes. This chapter illustrates the progress made toward how fundamental science and translational initiatives enabled personalized, mutation specific treatment. We highlight the importance of preclinical assays and mechanistically-driven development strategies that were coupled with sensitive biomarkers and a clinical trial cooperative to provide a platform for successful drug development. This convergence of academic and private partnerships, and formation of multidisciplinary care teams directed by evidence-based initiatives provide a seminal example of addressing the needs of individuals with a rare, but fatal genetic disease.
Collapse
Affiliation(s)
- Kadambari Vijaykumar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
7
|
Elborn JS, Blasi F, Burgel PR, Peckham D. Role of inhaled antibiotics in the era of highly effective CFTR modulators. Eur Respir Rev 2023; 32:32/167/220154. [PMID: 36631132 PMCID: PMC9879329 DOI: 10.1183/16000617.0154-2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/15/2022] [Indexed: 01/13/2023] Open
Abstract
Recurrent and chronic bacterial infections are common in people with cystic fibrosis (CF) and contribute to lung function decline. Antibiotics are the mainstay in the treatment of exacerbations and chronic bacterial infection in CF. Inhaled antibiotics are effective in treating chronic respiratory bacterial infections and eradicating Pseudomonas aeruginosa from the respiratory tract, with limited systemic adverse effects. In the past decade, highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulators have become a new therapy that partially corrects/opens chloride transport in patients with selected CFTR mutations, restoring mucus hydration and improving mucociliary clearance. The recent triple CFTR modulator combination is approved for ∼80-90% of the CF population and significantly reduces pulmonary exacerbations and improves respiratory symptoms and lung function. CFTR modulators have shifted the focus from symptomatic treatment to personalised/precision medicine by targeting genotype-specific CFTR defects. While these are highly effective, they do not fully normalise lung physiology, stop inflammation or resolve chronic lung damage, such as bronchiectasis. The impact of these new drugs on lung health is likely to change the future management of chronic pulmonary infections in people with CF. This article reviews the role of inhaled antibiotics in the era of CFTR modulators.
Collapse
Affiliation(s)
- J. Stuart Elborn
- Faculty of Medicine Health and Life Sciences, Queen's University, Belfast, UK,Corresponding author: J. Stuart Elborn ()
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierre-Régis Burgel
- Université Paris Cité, Institut Cochin, Paris, France,Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Daniel Peckham
- Respiratory Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Havens TN, Rosen DA, Rivera-Spoljaric K. Airway multidrug-resistant organisms in a population of tracheostomy and chronic ventilator-dependent children at a tertiary care pediatric hospital. Pediatr Pulmonol 2023; 58:26-34. [PMID: 36100968 DOI: 10.1002/ppul.26152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE/BACKGROUND Children with tracheostomies are at an increased risk of bacterial respiratory tract infections. Infections caused by multidrug-resistant organisms (MDROs) are more difficult to treat and can result in severe complications. This study aimed to investigate the risk factors and sequelae of MDRO positivity in tracheostomy and chronic ventilator-dependent children. METHODS We performed a retrospective chart review of 75 tracheostomy and chronic ventilator-dependent children at St. Louis Children's Hospital. Data on demographics, respiratory cultures, hospitalizations, emergency department (ED) visits, and antibiotic usage were collected. We determined the frequency of MDRO positivity and compared the number of hospitalizations, number of ED visits, and antibiotic usage in patients with and without MDRO-positive cultures. Patient clinical variables were analyzed before and after MDRO acquisition. RESULTS We found 75.7% (56/74) of our participants had an MDRO-positive culture, with methicillin-resistant Staphylococcus aureus (MRSA, n = 36, 64%) and Pseudomonas aeruginosa (n = 8, 14%) being the most commonly detected organisms. Participants with a greater number of annual nonpulmonary admissions (odds ratio [OR] = 1.99, 95% confidence interval [CI] (1.21-3.29), p = 0.008], inpatient antibiotic courses [OR = 1.27, 95% CI (1.07-1.50), p = 0.006], total antibiotic courses [OR = 1.26, 95% CI (1.08-1.48), p = 0.004], and chronic antibiotic use [OR = 2.31, 95% CI (1.12-4.74), p = 0.03] were at an increased risk for MDRO positivity. Those who were MDRO-positive had more pulmonary admissions following MDRO acquisition compared those who were MDRO-negative [p = 0.005] but not more antibiotic usage or ED visits. CONCLUSION Frequent antibiotic usage and hospitalizations increase the risk of MDRO acquisition in children with tracheostomies and ventilator-dependence. Further antibiotic stewardship may help prevent resistant infections in technology-dependent children.
Collapse
Affiliation(s)
- Tara N Havens
- Division of Pediatric Allergy and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - David A Rosen
- Division of Pediatric Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Katherine Rivera-Spoljaric
- Division of Pediatric Allergy and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
9
|
Muacevic A, Adler JR. Role of Inhalational Aztreonam Lysine in Lower Airway Infections in Cystic Fibrosis: An Updated Literature Review. Cureus 2022; 14:e30833. [PMID: 36451641 PMCID: PMC9703835 DOI: 10.7759/cureus.30833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/29/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder most prevalent in the Caucasian population, characterized by a functional abnormality of the transmembrane conductance regulator protein that leads to a wide array of complications, including chronic lung infections. Pseudomonas aeruginosa (PA) is a frequently acquired microbe in CF patients and is associated with deterioration in pulmonary function and increased mortality. Inhaled anti-infective agents are an established curative therapy for CF airway infections, especially with chronic PA lung disease. Amongst them, aztreonam lysine for inhalation (AZLI) is an aerosolized monobactam antibiotic aztreonam, approved for use in CF patients nearly a decade ago. This literature review aims to explore studies based on the efficacy, safety, and tolerability of AZLI use in CF patients with pulmonary infections. We searched for all the relevant articles present in PubMed, Google Scholar, Cochrane Library, EMBASE, ClinicalTrials.gov, and Journal of Cystic Fibrosis for our data collection from 2000 to 2020. The use of AZLI has substantially improved lung function, respiratory symptoms, and remarkably reduced sputum PA density in CF patients, thereby improving the patient's overall quality of life. The adverse effects reported were compatible with CF lung disease. Hence, inhalational therapy with AZLI is highly efficacious and safe in the management of chronic airway infections. More clinical trials need to be conducted in the future to assess its long-term clinical benefits and adverse events as well as to explore the role of AZLI in the setting of acute lung infections.
Collapse
|
10
|
Caverly LJ, VanDevanter DR. The Elusive Role of Airway Infection in Cystic Fibrosis Exacerbation. J Pediatric Infect Dis Soc 2022; 11:S40-S45. [PMID: 36069900 DOI: 10.1093/jpids/piac062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/14/2022]
Abstract
Cystic fibrosis (CF) pulmonary exacerbations (PEx) are clinical events that commonly result in increased treatment burden, decreased quality of life, and accelerated lung disease progression. CF PEx have historically been approached as though dealing with acute infections, and antibiotic treatments have been associated with improved outcomes. In this review, we discuss data supporting a causal role of CF airway infection in PEx as well studies that highlight our knowledge gaps in regard to PEx definitions, pathophysiology, and optimal treatment approaches. In the era of highly effective cystic fibrosis transmembrane conductance regulator modulator therapy, and the continually increasing health and longevity of persons with CF, a better understanding of PEx and further optimization of PEx antibiotic treatment approaches are needed.
Collapse
Affiliation(s)
- Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Donald R VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Ciuca IM, Dediu M, Popin D, Pop LL, Tamas LA, Pilut CN, Almajan Guta B, Popa ZL. Antibiotherapy in Children with Cystic Fibrosis—An Extensive Review. CHILDREN 2022; 9:children9081258. [PMID: 36010149 PMCID: PMC9406924 DOI: 10.3390/children9081258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
In cystic fibrosis (CF), the respiratory disease is the main factor that influences the outcome and the prognosis of patients, bacterial infections being responsible for severe exacerbations. The etiology is often multi-microbial and with resistant strains. The aim of this paper is to present current existing antibiotherapy solutions for CF-associated infections in order to offer a reliable support for individual, targeted, and specific treatment. The inclusion criteria were studies about antibiotherapy in CF pediatric patients. Studies involving adult patients or those with only in vitro results were excluded. The information sources were all articles published until December 2021, in PubMed and ScienceDirect. A total of 74 studies were included, with a total number of 26,979 patients aged between 0–18 years. We approached each pathogen individual, with their specific treatment, comparing treatment solutions proposed by different studies. Preservation of lung function is the main goal of therapy in CF, because once parenchyma is lost, it cannot be recovered. Early personalized intervention and prevention of infection with reputable germs is of paramount importance, even if is an asymmetrical challenge. This research received no external funding.
Collapse
Affiliation(s)
- Ioana Mihaiela Ciuca
- Pediatric Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Pediatric Pulmonology Unit, Clinical County Hospital Timisoara, Evlia Celebi 1-3, 300226 Timisoara, Romania
| | - Mihaela Dediu
- Pediatric Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Diana Popin
- Pediatric Pulmonology Unit, Clinical County Hospital Timisoara, Evlia Celebi 1-3, 300226 Timisoara, Romania
| | - Liviu Laurentiu Pop
- Pediatric Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Liviu Athos Tamas
- Biochemistry Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-744-764737
| | - Ciprian Nicolae Pilut
- Microbiology Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Bogdan Almajan Guta
- Kinesiotherapy and Special Motricity Department, West University of Timisoara, 4 Vasile Parvan bld., 300223 Timisoara, Romania
| | - Zoran Laurentiu Popa
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Abstract
BACKGROUND Cystic fibrosis is a genetic disorder in which abnormal mucus in the lungs is associated with susceptibility to persistent infection. Pulmonary exacerbations are when symptoms of infection become more severe. Antibiotics are an essential part of treatment for exacerbations and inhaled antibiotics may be used alone or in conjunction with oral antibiotics for milder exacerbations or with intravenous antibiotics for more severe infections. Inhaled antibiotics do not cause the same adverse effects as intravenous antibiotics and may prove an alternative in people with poor access to their veins. This is an update of a previously published review. OBJECTIVES To determine if treatment of pulmonary exacerbations with inhaled antibiotics in people with cystic fibrosis improves their quality of life, reduces time off school or work, and improves their long-term lung function. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Group's Cystic Fibrosis Trials Register. Date of the last search: 7 March 2022. We also searched ClinicalTrials.gov, the Australia and New Zealand Clinical Trials Registry and WHO ICTRP for relevant trials. Date of last search: 3 May 2022. SELECTION CRITERIA Randomised controlled trials in people with cystic fibrosis with a pulmonary exacerbation in whom treatment with inhaled antibiotics was compared to placebo, standard treatment or another inhaled antibiotic for between one and four weeks. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible trials, assessed the risk of bias in each trial and extracted data. They assessed the certainty of the evidence using the GRADE criteria. Authors of the included trials were contacted for more information. MAIN RESULTS Five trials with 183 participants are included in the review. Two trials (77 participants) compared inhaled antibiotics alone to intravenous antibiotics alone and three trials (106 participants) compared a combination of inhaled and intravenous antibiotics to intravenous antibiotics alone. Trials were heterogenous in design and two were only available in abstract form. Risk of bias was difficult to assess in most trials but, for four out of five trials, we judged there to be a high risk from lack of blinding and an unclear risk with regards to randomisation. Results were not fully reported and only limited data were available for analysis. One trial was a cross-over design and we only included data from the first intervention arm. Inhaled antibiotics alone versus intravenous antibiotics alone Only one trial (18 participants) reported a perceived improvement in lifestyle (quality of life) in both groups (very low-certainty evidence). Neither trial reported on time off work or school. Both trials measured lung function, but there was no difference reported between treatment groups (very low-certainty evidence). With regards to our secondary outcomes, one trial (18 participants) reported no difference in the need for additional antibiotics and the second trial (59 participants) reported on the time to next exacerbation. In neither case was a difference between treatments identified (both very low-certainty evidence). The single trial (18 participants) measuring adverse events and sputum microbiology did not observe any in either treatment group for either outcome (very low-certainty evidence). Inhaled antibiotics plus intravenous antibiotics versus intravenous antibiotics alone Inhaled antibiotics plus intravenous antibiotics may make little or no difference to quality of life compared to intravenous antibiotics alone. None of the trials reported time off work or school. All three trials measured lung function, but found no difference between groups in forced expiratory volume in one second (two trials; 44 participants; very low-certainty evidence) or vital capacity (one trial; 62 participants). None of the trials reported on the need for additional antibiotics. Inhaled plus intravenous antibiotics may make little difference to the time to next exacerbation; however, one trial (28 participants) reported on hospital admissions and found no difference between groups. There is likely no difference between groups in adverse events (very low-certainty evidence) and one trial (62 participants) reported no difference in the emergence of antibiotic-resistant organisms (very low-certainty evidence). AUTHORS' CONCLUSIONS We identified only low- or very low-certainty evidence to judge the effectiveness of inhaled antibiotics for the treatment of pulmonary exacerbations in people with cystic fibrosis. The included trials were not sufficiently powered to achieve their goals. Hence, we are unable to demonstrate whether one treatment was superior to the other or not. Further research is needed to establish whether inhaled tobramycin may be used as an alternative to intravenous tobramycin for some pulmonary exacerbations.
Collapse
Affiliation(s)
- Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| | - Nicola J Rowbotham
- Division of Child Health, Obstetrics & Gynaecology, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Edward Charbek
- Division of Pulmonary, Critical Care and Sleep Medicine, St Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
13
|
Katiyar SK, Gaur SN, Solanki RN, Sarangdhar N, Suri JC, Kumar R, Khilnani GC, Chaudhary D, Singla R, Koul PA, Mahashur AA, Ghoshal AG, Behera D, Christopher DJ, Talwar D, Ganguly D, Paramesh H, Gupta KB, Kumar T M, Motiani PD, Shankar PS, Chawla R, Guleria R, Jindal SK, Luhadia SK, Arora VK, Vijayan VK, Faye A, Jindal A, Murar AK, Jaiswal A, M A, Janmeja AK, Prajapat B, Ravindran C, Bhattacharyya D, D'Souza G, Sehgal IS, Samaria JK, Sarma J, Singh L, Sen MK, Bainara MK, Gupta M, Awad NT, Mishra N, Shah NN, Jain N, Mohapatra PR, Mrigpuri P, Tiwari P, Narasimhan R, Kumar RV, Prasad R, Swarnakar R, Chawla RK, Kumar R, Chakrabarti S, Katiyar S, Mittal S, Spalgais S, Saha S, Kant S, Singh VK, Hadda V, Kumar V, Singh V, Chopra V, B V. Indian Guidelines on Nebulization Therapy. Indian J Tuberc 2022; 69 Suppl 1:S1-S191. [PMID: 36372542 DOI: 10.1016/j.ijtb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.
Collapse
Affiliation(s)
- S K Katiyar
- Department of Tuberculosis & Respiratory Diseases, G.S.V.M. Medical College & C.S.J.M. University, Kanpur, Uttar Pradesh, India.
| | - S N Gaur
- Vallabhbhai Patel Chest Institute, University of Delhi, Respiratory Medicine, School of Medical Sciences and Research, Sharda University, Greater NOIDA, Uttar Pradesh, India
| | - R N Solanki
- Department of Tuberculosis & Chest Diseases, B. J. Medical College, Ahmedabad, Gujarat, India
| | - Nikhil Sarangdhar
- Department of Pulmonary Medicine, D. Y. Patil School of Medicine, Navi Mumbai, Maharashtra, India
| | - J C Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, National Centre of Allergy, Asthma & Immunology; University of Delhi, Delhi, India
| | - G C Khilnani
- PSRI Institute of Pulmonary, Critical Care, & Sleep Medicine, PSRI Hospital, Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rupak Singla
- Department of Tuberculosis & Respiratory Diseases, National Institute of Tuberculosis & Respiratory Diseases (formerly L.R.S. Institute), Delhi, India
| | - Parvaiz A Koul
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ashok A Mahashur
- Department of Respiratory Medicine, P. D. Hinduja Hospital, Mumbai, Maharashtra, India
| | - A G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - D Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - D J Christopher
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Talwar
- Metro Centre for Respiratory Diseases, Noida, Uttar Pradesh, India
| | | | - H Paramesh
- Paediatric Pulmonologist & Environmentalist, Lakeside Hospital & Education Trust, Bengaluru, Karnataka, India
| | - K B Gupta
- Department of Tuberculosis & Respiratory Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak, Haryana, India
| | - Mohan Kumar T
- Department of Pulmonary, Critical Care & Sleep Medicine, One Care Medical Centre, Coimbatore, Tamil Nadu, India
| | - P D Motiani
- Department of Pulmonary Diseases, Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - P S Shankar
- SCEO, KBN Hospital, Kalaburagi, Karnataka, India
| | - Rajesh Chawla
- Respiratory and Critical Care Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine & Sleep Disorders, AIIMS, New Delhi, India
| | - S K Jindal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S K Luhadia
- Department of Tuberculosis and Respiratory Medicine, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - V K Arora
- Indian Journal of Tuberculosis, Santosh University, NCR Delhi, National Institute of TB & Respiratory Diseases Delhi, India; JIPMER, Puducherry, India
| | - V K Vijayan
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, University of Delhi, Delhi, India
| | - Abhishek Faye
- Centre for Lung and Sleep Disorders, Nagpur, Maharashtra, India
| | | | - Amit K Murar
- Respiratory Medicine, Cronus Multi-Specialty Hospital, New Delhi, India
| | - Anand Jaiswal
- Respiratory & Sleep Medicine, Medanta Medicity, Gurugram, Haryana, India
| | - Arunachalam M
- All India Institute of Medical Sciences, New Delhi, India
| | - A K Janmeja
- Department of Respiratory Medicine, Government Medical College, Chandigarh, India
| | - Brijesh Prajapat
- Pulmonary and Critical Care Medicine, Yashoda Hospital and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - C Ravindran
- Department of TB & Chest, Government Medical College, Kozhikode, Kerala, India
| | - Debajyoti Bhattacharyya
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, Army Hospital (Research & Referral), New Delhi, India
| | | | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - J K Samaria
- Centre for Research and Treatment of Allergy, Asthma & Bronchitis, Department of Chest Diseases, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Jogesh Sarma
- Department of Pulmonary Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Lalit Singh
- Department of Respiratory Medicine, SRMS Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | - M K Sen
- Department of Respiratory Medicine, ESIC Medical College, NIT Faridabad, Haryana, India; Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mahendra K Bainara
- Department of Pulmonary Medicine, R.N.T. Medical College, Udaipur, Rajasthan, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi PostGraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nilkanth T Awad
- Department of Pulmonary Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, M.K.C.G. Medical College, Berhampur, Orissa, India
| | - Naveed N Shah
- Department of Pulmonary Medicine, Chest Diseases Hospital, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Neetu Jain
- Department of Pulmonary, Critical Care & Sleep Medicine, PSRI, New Delhi, India
| | - Prasanta R Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pawan Tiwari
- School of Excellence in Pulmonary Medicine, NSCB Medical College, Jabalpur, Madhya Pradesh, India
| | - R Narasimhan
- Department of EBUS and Bronchial Thermoplasty Services at Apollo Hospitals, Chennai, Tamil Nadu, India
| | - R Vijai Kumar
- Department of Pulmonary Medicine, MediCiti Medical College, Hyderabad, Telangana, India
| | - Rajendra Prasad
- Vallabhbhai Patel Chest Institute, University of Delhi and U.P. Rural Institute of Medical Sciences & Research, Safai, Uttar Pradesh, India
| | - Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital & Research Institute, Nagpur, Maharashtra, India
| | - Rakesh K Chawla
- Department of, Respiratory Medicine, Critical Care, Sleep & Interventional Pulmonology, Saroj Super Speciality Hospital, Jaipur Golden Hospital, Rajiv Gandhi Cancer Hospital, Delhi, India
| | - Rohit Kumar
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - S Chakrabarti
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Surya Kant
- Department of Respiratory (Pulmonary) Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - V K Singh
- Centre for Visceral Mechanisms, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vijay Hadda
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Kumar
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Virendra Singh
- Mahavir Jaipuria Rajasthan Hospital, Jaipur, Rajasthan, India
| | - Vishal Chopra
- Department of Chest & Tuberculosis, Government Medical College, Patiala, Punjab, India
| | - Visweswaran B
- Interventional Pulmonology, Yashoda Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Pailhoriès H, Herrmann JL, Velo-Suarez L, Lamoureux C, Beauruelle C, Burgel PR, Héry-Arnaud G. Antibiotic resistance in chronic respiratory diseases: from susceptibility testing to the resistome. Eur Respir Rev 2022; 31:31/164/210259. [PMID: 35613743 DOI: 10.1183/16000617.0259-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
The development of resistome analysis, i.e. the comprehensive analysis of antibiotic-resistance genes (ARGs), is enabling a better understanding of the mechanisms of antibiotic-resistance emergence. The respiratory microbiome is a dynamic and interactive network of bacteria, with a set of ARGs that could influence the response to antibiotics. Viruses such as bacteriophages, potential carriers of ARGs, may also form part of this respiratory resistome. Chronic respiratory diseases (CRDs) such as cystic fibrosis, severe asthma, chronic obstructive pulmonary disease and bronchiectasis, managed with long-term antibiotic therapies, lead to multidrug resistance. Antibiotic susceptibility testing provides a partial view of the bacterial response to antibiotics in the complex lung environment. Assessing the ARG network would allow personalised, targeted therapeutic strategies and suitable antibiotic stewardship in CRDs, depending on individual resistome and microbiome signatures. This review summarises the influence of pulmonary antibiotic protocols on the respiratory microbiome, detailing the variable consequences according to antibiotic class and duration of treatment. The different resistome-profiling methods are explained to clarify their respective place in antibiotic-resistance analysis in the lungs. Finally, this review details current knowledge on the respiratory resistome related to therapeutic strategies and provides insight into the application of resistome analysis to counter the emergence of multidrug-resistant respiratory pathogens.
Collapse
Affiliation(s)
- Hélène Pailhoriès
- Laboratoire de Bactériologie, Institut de Biologie en Santé - PBH, CHU Angers, Angers, France.,HIFIH Laboratory UPRES EA3859, SFR ICAT 4208, Angers University, Angers, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection and Inflammation, Montigny-le-Bretonneux, France.,AP-HP, Groupe Hospitalo-Universitaire Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Lourdes Velo-Suarez
- Brest Center for Microbiota Analysis (CBAM), Brest University Hospital, Brest, France
| | - Claudie Lamoureux
- Dept of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Brest, France.,Université de Brest, INSERM, EFS, UMR 1078, GGB, Brest, France
| | - Clémence Beauruelle
- Dept of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Brest, France.,Université de Brest, INSERM, EFS, UMR 1078, GGB, Brest, France
| | - Pierre-Régis Burgel
- Respiratory Medicine and National Cystic Fibrosis Reference Center, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Institut Cochin, INSERM U1016, Paris, France
| | - Geneviève Héry-Arnaud
- Brest Center for Microbiota Analysis (CBAM), Brest University Hospital, Brest, France .,Dept of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Brest, France.,Université de Brest, INSERM, EFS, UMR 1078, GGB, Brest, France
| |
Collapse
|
15
|
Anderson S, Atkins P, Bäckman P, Cipolla D, Clark A, Daviskas E, Disse B, Entcheva-Dimitrov P, Fuller R, Gonda I, Lundbäck H, Olsson B, Weers J. Inhaled Medicines: Past, Present, and Future. Pharmacol Rev 2022; 74:48-118. [PMID: 34987088 DOI: 10.1124/pharmrev.120.000108] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to summarize essential pharmacological, pharmaceutical, and clinical aspects in the field of orally inhaled therapies that may help scientists seeking to develop new products. After general comments on the rationale for inhaled therapies for respiratory disease, the focus is on products approved approximately over the last half a century. The organization of these sections reflects the key pharmacological categories. Products for asthma and chronic obstructive pulmonary disease include β -2 receptor agonists, muscarinic acetylcholine receptor antagonists, glucocorticosteroids, and cromones as well as their combinations. The antiviral and antibacterial inhaled products to treat respiratory tract infections are then presented. Two "mucoactive" products-dornase α and mannitol, which are both approved for patients with cystic fibrosis-are reviewed. These are followed by sections on inhaled prostacyclins for pulmonary arterial hypertension and the challenging field of aerosol surfactant inhalation delivery, especially for prematurely born infants on ventilation support. The approved products for systemic delivery via the lungs for diseases of the central nervous system and insulin for diabetes are also discussed. New technologies for drug delivery by inhalation are analyzed, with the emphasis on those that would likely yield significant improvements over the technologies in current use or would expand the range of drugs and diseases treatable by this route of administration. SIGNIFICANCE STATEMENT: This review of the key aspects of approved orally inhaled drug products for a variety of respiratory diseases and for systemic administration should be helpful in making judicious decisions about the development of new or improved inhaled drugs. These aspects include the choices of the active ingredients, formulations, delivery systems suitable for the target patient populations, and, to some extent, meaningful safety and efficacy endpoints in clinical trials.
Collapse
Affiliation(s)
- Sandra Anderson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Paul Atkins
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Per Bäckman
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - David Cipolla
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Andrew Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Evangelia Daviskas
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bernd Disse
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Plamena Entcheva-Dimitrov
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Rick Fuller
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Igor Gonda
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Hans Lundbäck
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bo Olsson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Jeffry Weers
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| |
Collapse
|
16
|
Therapeutic Approach of Chronic Pseudomonas Infection in Cystic Fibrosis-A Network Meta-Analysis. Antibiotics (Basel) 2021; 10:antibiotics10080936. [PMID: 34438986 PMCID: PMC8388982 DOI: 10.3390/antibiotics10080936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas infection is a major determinant of morbidity and mortality in cystic fibrosis (CF). Maintaining optimal lung function in CF patients carrying Pseudomonas remains a challenge. Our study aims to investigate the efficacy of antipseudomonal inhaled antibiotics in CF patients with chronic Pseudomonas infection. A Bayesian network meta-analysis of randomized controlled trials was conducted. The main outcomes were changes in: (a) forced respiratory volume (FEV1), (b) Pseudomonas aeruginosa sputum density, and (c) CF Questionnaire Revised Respiratory Symptom Score (CFQR-RSS) at 4 weeks follow-up. Eighteen trials which reported on treatment with aztreonam lysine, tobramycin, colistin, levofloxacin, fosfomycin/tobramycin, and amikacin in various dosages were eligible for inclusion. In terms of change in FEV1%, aztreonam lysine (t.i.d., 75 mg) with a 28-day run in the tobramycin phase, aztreonam lysine (b.i.d., 75 mg) with a 28-day run in the tobramycin phase had the highest probability of being the most effective treatment (SUCRAs were 77, 76%, respectively). Regarding change in Pseudomonas sputum density, aztreonam lysine (b.i.d., 75 mg) with a 28-day run in the tobramycin phase, aztreonam lysine (t.i.d., 75 mg) with a 28-day run in the tobramycin phase had the highest probability of being the most effective treatment (SUCRAs were 90, 86%, respectively). Regarding change in CFQR-RSS, aztreonam lysine (t.i.d., 75 mg) and aztreonam lysine (b.i.d., 75 mg) with a 28-day run in the tobramycin inhalation solution phase had the highest probability of being the most effective treatments (SUCRA:74% and 72%, respectively). Regarding changes in FEV1% and Pseudomonas sputum density, aztreonam lysine with a run in tobramycin phase may be the best treatment option in treating chronic Pseudomonas in CF. According to CFQR-RSS no significant differences were found. Given the limitations of the studies included, validation trials are called for.
Collapse
|
17
|
Bilton D, Fajac I, Pressler T, Clancy JP, Sands D, Minic P, Cipolli M, Galeva I, Solé A, Quittner AL, Jumadilova Z, Ciesielska M, Konstan MW. Long-term amikacin liposome inhalation suspension in cystic fibrosis patients with chronic P. aeruginosa infection. J Cyst Fibros 2021; 20:1010-1017. [PMID: 34144923 DOI: 10.1016/j.jcf.2021.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND . In CLEAR-108-a phase 3, randomised, open-label study-once-daily amikacin liposome inhalation suspension (ALIS) was noninferior to twice-daily tobramycin inhalation solution (TIS) in improving lung function in patients with cystic fibrosis (CF) and chronic Pseudomonas aeruginosa infection after 3 treatment cycles (28 days on/28 days off). The CLEAR-110 extension study (ClinicalTrials.gov: NCT01316276; EudraCT: 2011-000443-24) assessed long-term safety, tolerability, and efficacy of ALIS in eligible patients who completed CLEAR-108. METHODS . Patients received once-daily ALIS 590 mg for 12 treatment cycles (96 weeks). Patients were grouped by prior treatment: the "prior-ALIS" cohort received ALIS in CLEAR-108, and the "ALIS-naive" cohort received TIS in CLEAR-108. RESULTS . Overall, 206 patients (prior-ALIS, n=92; ALIS-naive, n=114) entered CLEAR-110 and received ≥1 dose of ALIS. Most patients (88.8%) experienced ≥1 treatment-emergent adverse event (TEAE) through day 672 (end of year 2). Most TEAEs (72.3%) were mild or moderate in severity. Severe TEAEs were reported in 31 patients (15.0%). Two life-threatening TEAEs (haemoptysis; intestinal obstruction) and 1 death (cardiac failure) were reported. Twenty-one patients (10.2%) discontinued treatment due to a TEAE (mostly infective pulmonary exacerbation of CF). Mean change from baseline in forced expiratory volume in 1 second percent predicted at day 672 was -3.1% (prior-ALIS, -4.0%; ALIS-naive, -2.3%). Mean change from baseline in sputum density of P. aeruginosa at day 672 was 0.02 (prior-ALIS, -0.16; ALIS-naive, 0.19) log CFU/g. CONCLUSIONS . Long-term treatment with ALIS was well tolerated with a favourable adverse event profile and demonstrated continued antibacterial activity in CF patients with chronic P. aeruginosa infection.
Collapse
Affiliation(s)
- Diana Bilton
- Royal Brompton Hospital, Sydney Street, London SW3 6NP, United Kingdom
| | - Isabelle Fajac
- AP-HP, Centre-Université de Paris, 27, Rue du Faubourg Saint-Jacques, Paris 75014, France; European Reference Network ERN-LUNG, Cystic Fibrosis Core Network, Germany
| | - Tacjana Pressler
- Cystic Fibrosis Center, Rigshospitalet (Hospital), Blegdamsvej 9, Copenhagen 2100, Denmark
| | - John Paul Clancy
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, 17a Kasprzaka Str. 01-211, Warsaw, Poland
| | - Predrag Minic
- Institute for Mother and Child Health Care, Department of Pulmonology, Medical School University of Belgrade, 6-8, Radoja Dakica Str. New Belgrade 11070, Serbia
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Piazzale Stefani, 1, Verona 37126, Italy
| | - Ivanka Galeva
- Pediatric Clinic, Infants Department, Alexandrovska University Hospital, 1 Georgi Sofiiski Blvd, Sofia 1431, Bulgaria
| | - Amparo Solé
- Lung Transplant and Cystic Fibrosis Unit, Hospital Universitari i Politecnic La Fe, Valencia 46026, Spain
| | | | - Zhanna Jumadilova
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ 08807, USA
| | - Monika Ciesielska
- Insmed Incorporated, 700 US Highway 202/206, Bridgewater, NJ 08807, USA
| | - Michael W Konstan
- Case Western Reserve University and Rainbow Babies and Children's Hospital, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
18
|
Schwarz C, Grehn C, Temming S, Holz F, Eschenhagen PN. Clinical impact of levofloxacin inhalation solution in cystic fibrosis patients in a real-world setting. J Cyst Fibros 2021; 20:1035-1039. [PMID: 34099405 DOI: 10.1016/j.jcf.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Levofloxacin inhalation solution is the most recently approved inhaled antibiotic in Europe and Canada for adult cystic fibrosis patients. Its efficacy and safety have been assessed in randomized controlled trials. Our aim was to evaluate real life experience and outcomes in our treatment centre. METHODS We evaluated the efficacy of inhaled levofloxacin solution in 86 patients with cystic fibrosis in terms of the following outcome parameters: changes in %-predicted forced expiratory volume in one second (FEV1), body-mass index (BMI), and exacerbation rate. We conducted an intraindividual analysis of patients who received levofloxacin inhalation solution twice daily 240 mg for at least 4 weeks. RESULTS Change in FEV1% predicted for the treatment period was +2.27% (p=0.0027) after 4 weeks. There was no change in BMI for overall group, but exacerbation rate compared to one year before initiation of inhaled levofloxacin decreased significantly (p=0.0024) after 1 year of treatment (3.23 ± 1.39 versus 2.71 ± 1.58). CONCLUSIONS In patients with cystic fibrosis, inhaled levofloxacin solution has the potential to improve FEV1 and to reduce the number of bronchopulmonary exacerbations.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Claudia Grehn
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Svenja Temming
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Frederik Holz
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Patience Ndidi Eschenhagen
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
19
|
Cystic Fibrosis: Recent Insights into Inhaled Antibiotic Treatment and Future Perspectives. Antibiotics (Basel) 2021; 10:antibiotics10030338. [PMID: 33810116 PMCID: PMC8004710 DOI: 10.3390/antibiotics10030338] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Although new inhaled antibiotics have profoundly improved respiratory diseases in cystic fibrosis (CF) patients, lung infections are still the leading cause of death. Inhaled antibiotics, i.e., colistin, tobramycin, aztreonam lysine and levofloxacin, are used as maintenance treatment for CF patients after the development of chronic Pseudomonas aeruginosa (P. aeruginosa) infection. Their use offers advantages over systemic therapy since a relatively high concentration of the drug is delivered directly to the lung, thus, enhancing the pharmacokinetic/pharmacodynamic parameters and decreasing toxicity. Notably, alternating treatment with inhaled antibiotics represents an important strategy for improving patient outcomes. The prevalence of CF patients receiving continuous inhaled antibiotic regimens with different combinations of the anti-P. aeruginosa antibiotic class has been increasing over time. Moreover, these antimicrobial agents are also used for preventing acute pulmonary exacerbations in CF. In this review, the efficacy and safety of the currently available inhaled antibiotics for lung infection treatment in CF patients are discussed, with a particular focus on strategies for eradicating P. aeruginosa and other pathogens. Moreover, the effects of long-term inhaled antibiotic therapy for chronic P. aeruginosa infection and for the prevention of pulmonary exacerbations is reviewed. Finally, how the mucus environment and microbial community richness can influence the efficacy of aerosolized antimicrobial agents is discussed.
Collapse
|
20
|
Smith S, Waters V, Jahnke N, Ratjen F. Standard versus biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis. Cochrane Database Syst Rev 2020; 6:CD009528. [PMID: 32520436 PMCID: PMC7388933 DOI: 10.1002/14651858.cd009528.pub5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Clinicians typically select the antibiotics used to treat pulmonary infections in people with cystic fibrosis based on the results of antimicrobial susceptibility testing performed on bacteria traditionally grown in a planktonic mode (grown in a liquid). However, there is considerable evidence to suggest that Pseudomonas aeruginosa actually grows in a biofilm (or slime layer) in the airways of people with cystic fibrosis with chronic pulmonary infections. Therefore, choosing antibiotics based on biofilm rather than conventional antimicrobial susceptibility testing could potentially improve response to treatment of Pseudomonas aeruginosa in people with cystic fibrosis. This is an update of a previously published Cochrane Review. OBJECTIVES To compare biofilm antimicrobial susceptibility testing-driven therapy to conventional antimicrobial susceptibility testing-driven therapy in the treatment of Pseudomonas aeruginosa infection in people with cystic fibrosis. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Most recent search: 07 April 2020. We also searched two ongoing trials registries and the reference lists of relevant articles and reviews. Most recent searches: 07 April 2020 and 05 September 2017. SELECTION CRITERIA Randomized controlled trials (RCTs) of antibiotic therapy based on biofilm antimicrobial susceptibility testing compared to antibiotic therapy based on conventional antimicrobial susceptibility testing in the treatment of Pseudomonas aeruginosa pulmonary infection in people with cystic fibrosis. DATA COLLECTION AND ANALYSIS Two authors independently selected RCTs, assessed their risk of bias and extracted data from eligible trials. Additionally, the review authors contacted the trial investigators to obtain further information. The quality of the evidence was assessed using the GRADE criteria. MAIN RESULTS The searches identified two multicentre, double-blind RCTs eligible for inclusion in the review with a total of 78 participants (adults and children); one RCT was undertaken in people who were clinically stable, the second was in people experiencing pulmonary exacerbations. Both RCTs prospectively assessed whether the use of biofilm antimicrobial susceptibility testing improved microbiological and clinical outcomes in participants with cystic fibrosis who were infected with Pseudomonas aeruginosa. The primary outcome was the change in sputum Pseudomonas aeruginosa density from the beginning to the end of antibiotic therapy. Although the intervention was shown to be safe, the data from these two RCTs did not provide evidence that biofilm susceptibility testing was superior to conventional susceptibility testing either in terms of microbiological or lung function outcomes. One of the trials also measured risk and time to subsequent exacerbation as well as quality of life measures and did not demonstrate any difference between groups in these outcomes. Both RCTs had an overall low risk of bias and the quality of the evidence using GRADE criteria was deemed to be moderate to high for the outcomes selected. AUTHORS' CONCLUSIONS The current evidence is insufficient to recommend choosing antibiotics based on biofilm antimicrobial susceptibility testing rather than conventional antimicrobial susceptibility testing in the treatment of Pseudomonas aeruginosa pulmonary infections in people with cystic fibrosis. Biofilm antimicrobial susceptibility testing may be more appropriate in the development of newer, more effective formulations of drugs which can then be tested in clinical trials.
Collapse
Affiliation(s)
- Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| | - Valerie Waters
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, Toronto, Canada
| | - Nikki Jahnke
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Felix Ratjen
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
21
|
Smith S, Ratjen F, Remmington T, Waters V. Combination antimicrobial susceptibility testing for acute exacerbations in chronic infection of Pseudomonas aeruginosa in cystic fibrosis. Cochrane Database Syst Rev 2020; 5:CD006961. [PMID: 32412092 PMCID: PMC7387858 DOI: 10.1002/14651858.cd006961.pub5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Antibiotic therapy for acute pulmonary exacerbations in people with cystic fibrosis is usually chosen based on the results of antimicrobial susceptibility testing of individual drugs. Combination antimicrobial susceptibility testing assesses the efficacy of drug combinations including two or three antibiotics in vitro and can often demonstrate antimicrobial efficacy against bacterial isolates even when individual antibiotics have little or no effect. Therefore, choosing antibiotics based on combination antimicrobial susceptibility testing could potentially improve response to treatment in people with cystic fibrosis with acute exacerbations. This is an updated version of a previously published review. OBJECTIVES To compare antibiotic therapy based on conventional antimicrobial susceptibility testing to antibiotic therapy based on combination antimicrobial susceptibility testing in the treatment of acute pulmonary exacerbations in people with cystic fibrosis and chronic infection with Pseudomonas aeruginosa. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Cystic Fibrosis Trials Register which comprises of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Date of latest search: 19 March 2020. We also searched ongoing trials registries. Date of latest search: 07 April 2020. SELECTION CRITERIA Randomised and quasi-randomised controlled studies of antibiotic therapy based on conventional antimicrobial susceptibility testing compared to antibiotic therapy based on combination antimicrobial susceptibility testing in the treatment of acute pulmonary exacerbations in cystic fibrosis due to chronic infection with Pseudomonas aeruginosa. DATA COLLECTION AND ANALYSIS Both authors independently selected studies, assessed their quality and extracted data from eligible studies. Additionally, the authors contacted the study investigators to obtain further information. MAIN RESULTS The search identified one multicentre study eligible for inclusion in the review. This study prospectively assessed whether the use of multiple combination bactericidal antibiotic testing improved clinical outcomes in participants with acute pulmonary exacerbations of cystic fibrosis who were infected with multiresistant bacteria. A total of 132 participants were randomised in the study. The study investigators provided data specific to the 82 participants who were only infected with Pseudomonas aeruginosa for their primary outcome of time until next pulmonary exacerbation. For participants specifically infected with only Pseudomonas aeruginosa, the hazard ratio of a subsequent exacerbation was 0.82, favouring the control group (95% confidence interval 0.44 to 1.51) (P = 0.52). No further data for any of this review's outcomes specific to participants infected with Pseudomonas aeruginosa were available. The risk of bias for the included study was deemed to be low. The quality of the evidence was moderate for the only outcome providing data solely for individuals with infection due to Pseudomonas aeruginosa. For other outcomes, we were unable to judge the quality of the evidence as no data were available for the relevant subset of participants. AUTHORS' CONCLUSIONS The current evidence, limited to one study, shows that there is insufficient evidence to determine effect of choosing antibiotics based on combination antimicrobial susceptibility testing compared to choosing antibiotics based on conventional antimicrobial susceptibility testing in the treatment of acute pulmonary exacerbations in people with cystic fibrosis with chronic Pseudomonas aeruginosa infection. A large international and multicentre study is needed to further investigate this issue. The only study included in the review was published in 2005, and we have not identified any further relevant studies up to March 2017. We therefore do not plan to update this review until new studies are published.
Collapse
Affiliation(s)
- Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| | - Felix Ratjen
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Tracey Remmington
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Valerie Waters
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
22
|
Addy C, Caskey S, Downey D. Gram negative infections in cystic fibrosis: a review of preventative and treatment options. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1713748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Charlotte Addy
- Centre for Medical Education, Queen’s University Belfast, Belfast, UK
- Northern Ireland Regional Adult CF Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Steven Caskey
- Northern Ireland Regional Adult CF Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Damian Downey
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
23
|
Abstract
Infections with Pseudomonas aeruginosa have been marked with the highest priority for surveillance and epidemiological research on the basis of parameters such as incidence, case fatality rates, chronicity of illness, available options for prevention and treatment, health-care utilization, and societal impact. P. aeruginosa is one of the six ESKAPE pathogens that are the major cause of nosocomial infections and are a global threat because of their capacity to become increasingly resistant to all available antibiotics. This review reports on current pre-clinical and clinical advances of anti-pseudomonal therapies in the fields of drug development, antimicrobial chemotherapy, vaccines, phage therapy, non-bactericidal pathoblockers, outer membrane sensitizers, and host defense reinforcement.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis' and 'Pseudomonas Genomics', Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center of Lung Disease, Hannover, 30625, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
24
|
Elson EC, Mermis J, Polineni D, Oermann CM. Aztreonam Lysine Inhalation Solution in Cystic Fibrosis. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2019; 13:1179548419842822. [PMID: 31019373 PMCID: PMC6463232 DOI: 10.1177/1179548419842822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/13/2019] [Indexed: 01/03/2023]
Abstract
Patients with cystic fibrosis (CF) develop pulmonary disease secondary to airway infection and dysregulated inflammation. Therapeutic innovations such as nebulized antimicrobial therapy targeting specific pathogens have resulted in improvements in quality of life and life expectancy. Aztreonam lysine for inhalation (AZLI) solution was initially approved to improve respiratory symptoms in CF patients with Pseudomonas aeruginosa (PA) in 2010 by the Food and Drug Administration. Since then, research broadening labeling and clinical application has been developed. In this review, we analyze published and ongoing research regarding AZLI therapy in CF. A search of the Cochrane Database of Systematic Reviews and the PubMed and ClinicalTrials.gov databases was conducted to identify publications about AZLI. Three pre-approval studies were identified and assessed. Two are Phase 3, placebo-controlled trials, assessing a variety of safety and efficacy endpoints, leading to FDA approval. The third is an open-label extension of the two previous trials. An additional seven post-approval, completed trials were identified and are included in this review. They represent a variety of study designs including safety and efficacy in patients with mild lung disease and young patients, an active comparator trial vs inhaled tobramycin, an eradication study, a study among patients with Burkholderia cepacia, and a study assessing continuous alternating antibiotic therapy. Finally, five ongoing clinical trials are discussed. Overall, studies demonstrated that inhaled aztreonam is a safe and effective antimicrobial treatment for the eradication of newly acquired P. aeruginosa and long-term suppressive therapy of chronic endobronchial infection among people with cystic fibrosis.
Collapse
Affiliation(s)
| | - Joel Mermis
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Deepika Polineni
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
25
|
Heirali AA, Acosta N, Storey DG, Workentine ML, Somayaji R, Laforest-Lapointe I, Leung W, Quon BS, Berthiaume Y, Rabin HR, Waddell BJ, Rossi L, Surette MG, Parkins MD. The effects of cycled inhaled aztreonam on the cystic fibrosis (CF) lung microbiome. J Cyst Fibros 2019; 18:829-837. [PMID: 30857926 DOI: 10.1016/j.jcf.2019.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND To improve clinical outcomes, cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa infections are prescribed inhaled anti-pseudomonal antibiotics. Although, a diverse microbial community exists within CF airways, little is known about how the CF microbiota influences patient outcomes. We hypothesized that organisms within the CF microbiota are affected by inhaled-antibiotics and baseline microbiome may be used to predict therapeutic response. METHODS Adults with chronic P. aeruginosa infection from four clinics were observed during a single 28-day on/off inhaled-aztreonam cycle. Patients performed serial sputum collection, CF-respiratory infection symptom scores (CRISS), and spirometry. Patients achieving a decrease of ≥2 CRISS by day 28 were categorized as subjective responders (SR). The airway microbiome was defined by Illumina MiSeq analysis of the 16S rRNA gene. RESULTS Thirty-seven patients (median 37.4 years and FEV1 44% predicted) were enrolled. No significant cohort-wide changes in the microbiome were observed between on/off AZLI cycles in either alpha- or beta-diversity metrics. However, at an individual level shifts were apparent. Twenty-one patients (57%) were SR and fourteen patients did not subjectively respond. While alpha-diversity metrics did not associate with response, patients who did not subjectively respond had a higher abundance of Staphylococcus and Streptococcus, and lower abundance of Haemophilus. CONCLUSIONS The CF microbiome is relatively resilient to AZLI perturbations. However, associated changes were observed at the individual patient level. The relative abundance of key "off-target" organisms associated with subjective improvements suggesting that the microbiome may be used as a tool to predict patient response - potentially improving outcomes.
Collapse
Affiliation(s)
- Alya A Heirali
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Douglas G Storey
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Isabelle Laforest-Lapointe
- Departments of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Alberta, Canada
| | - Winnie Leung
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Bradley S Quon
- Department of Medicine and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montreal and Department of Medicine, Universite de Montreal, QB, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barbara J Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Laura Rossi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Department of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
26
|
Abstract
BACKGROUND Cystic fibrosis is a genetic disorder in which abnormal mucus in the lungs is associated with susceptibility to persistent infection. Pulmonary exacerbations are when symptoms of infection become more severe. Antibiotics are an essential part of treatment for exacerbations and inhaled antibiotics may be used alone or in conjunction with oral antibiotics for milder exacerbations or with intravenous antibiotics for more severe infections. Inhaled antibiotics do not cause the same adverse effects as intravenous antibiotics and may prove an alternative in people with poor access to their veins. This is an update of a previously published review. OBJECTIVES To determine if treatment of pulmonary exacerbations with inhaled antibiotics in people with cystic fibrosis improves their quality of life, reduces time off school or work and improves their long-term survival. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Group's Cystic Fibrosis Trials Register. Date of the last search: 03 October 2018.We searched ClinicalTrials.gov, the Australia and New Zealand Clinical Trials Registry and WHO ICTRP for relevant trials. Date of last search: 09 October 2018. SELECTION CRITERIA Randomised controlled trials in people with cystic fibrosis with a pulmonary exacerbation in whom treatment with inhaled antibiotics was compared to placebo, standard treatment or another inhaled antibiotic for between one and four weeks. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible trials, assessed the risk of bias in each trial and extracted data. They assessed the quality of the evidence using the GRADE criteria. Authors of the included trials were contacted for more information. MAIN RESULTS Four trials with 167 participants are included in the review. Two trials (77 participants) compared inhaled antibiotics alone to intravenous antibiotics alone and two trials (90 participants) compared a combination of inhaled and intravenous antibiotics to intravenous antibiotics alone. Trials were heterogenous in design and two were only available in abstract form. Risk of bias was difficult to assess in most trials, but for all trials we judged there to be a high risk from lack of blinding and an unclear risk with regards to randomisation. Results were not fully reported and only limited data were available for analysis.Inhaled antibiotics alone versus intravenous antibiotics aloneOnly one trial (n = 18) reported a perceived improvement in lifestyle (quality of life) in both groups (very low-quality of evidence). Neither trial reported on time off work or school. Both trials measured lung function, but there was no difference reported between treatment groups (very low-quality evidence). With regards to our secondary outcomes, one trial (n = 18) reported no difference in the need for additional antibiotics and the second trial (n = 59) reported on the time to next exacerbation. In neither case was a difference between treatments identified (both very low-quality evidence). The single trial (n = 18) measuring adverse events and sputum microbiology did not observe any in either treatment group for either outcome (very low-quality evidence).Inhaled antibiotics plus intravenous antibiotics versus intravenous antibiotics aloneNeither trial reported on quality of life or time off work or school. Both trials measured lung function, but found no difference between groups in forced expiratory volume in one second (one trial, n = 28, very low-quality evidence) or vital capacity (one trial, n = 62). Neither trial reported on the need for additional antibiotics or the time to the next exacerbation; however, one trial (n = 28) reported on hospital admissions and found no difference between groups. Both trials reported no difference between groups in adverse events (very low-quality evidence) and one trial (n = 62) reported no difference in the emergence of antibiotic-resistant organisms (very low-quality evidence). AUTHORS' CONCLUSIONS There is little useful high-level evidence to judge the effectiveness of inhaled antibiotics for the treatment of pulmonary exacerbations in people with cystic fibrosis. The included trials were not sufficiently powered to achieve their goals. Hence, we are unable to demonstrate whether one treatment was superior to the other or not. Further research is needed to establish whether inhaled tobramycin may be used as an alternative to intravenous tobramycin for some pulmonary exacerbations.
Collapse
Affiliation(s)
- Sherie Smith
- The University of NottinghamDivision of Child Health, Obstetrics & Gynaecology, School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Nicola J Rowbotham
- The University of NottinghamDivision of Child Health, Obstetrics & Gynaecology, School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Edward Charbek
- St Louis University School of MedicineDivision of Pulmonary, Critical Care and Sleep Medicine1402 S. Grand Ave, 7‐S‐FDTSt LouisMOUSA63104‐1004
| | | |
Collapse
|
27
|
Regan KH, Hill AT. Risk of Development of Resistance in Patients with Non-Cystic Fibrosis Bronchiectasis Treated with Inhaled Antibiotics. CURRENT PULMONOLOGY REPORTS 2018; 7:63-71. [PMID: 30148049 PMCID: PMC6096916 DOI: 10.1007/s13665-018-0202-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of Review Bronchiectasis is a debilitating chronic lung disease characterised by recurrent bacterial infection and colonisation with significant associated morbidity and mortality. To date, there are few licenced treatments, and the mainstay of clinical management is prompt antibiotic therapy for exacerbations and regular airway clearance. Inhaled antibiotics are a potential long-term treatment for those with recurrent exacerbations, and represent an obvious advantage over other routes of administration as they achieve high concentrations at the site of infection whilst minimising systemic side effects. The main caveat to such treatment is the development of antimicrobial resistance due to altered selection pressures. Recent Findings Numerous studies of various inhaled antimicrobials have demonstrated favourable safety and efficacy profiles for bronchiectasis patients with chronic infection, which are supportive of their use in clinical practice. Summary There is no convincing evidence of treatment-emergent pathogens or pathogens developing resistance to the inhaled antibiotic therapy.
Collapse
Affiliation(s)
- Kate H. Regan
- The Queen’s Medical Research Institute, University of Edinburgh/MRC Centre for Inflammation Research, Edinburgh, UK
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Adam T. Hill
- The Queen’s Medical Research Institute, University of Edinburgh/MRC Centre for Inflammation Research, Edinburgh, UK
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Castellani C, Duff AJA, Bell SC, Heijerman HGM, Munck A, Ratjen F, Sermet-Gaudelus I, Southern KW, Barben J, Flume PA, Hodková P, Kashirskaya N, Kirszenbaum MN, Madge S, Oxley H, Plant B, Schwarzenberg SJ, Smyth AR, Taccetti G, Wagner TOF, Wolfe SP, Drevinek P. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros 2018; 17:153-178. [PMID: 29506920 DOI: 10.1016/j.jcf.2018.02.006] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
Developments in managing CF continue to drive dramatic improvements in survival. As newborn screening rolls-out across Europe, CF centres are increasingly caring for cohorts of patients who have minimal lung disease on diagnosis. With the introduction of mutation-specific therapies and the prospect of truly personalised medicine, patients have the potential to enjoy good quality of life in adulthood with ever-increasing life expectancy. The landmark Standards of Care published in 2005 set out what high quality CF care is and how it can be delivered throughout Europe. This underwent a fundamental re-write in 2014, resulting in three documents; center framework, quality management and best practice guidelines. This document is a revision of the latter, updating standards for best practice in key aspects of CF care, in the context of a fast-moving and dynamic field. In continuing to give a broad overview of the standards expected for newborn screening, diagnosis, preventative treatment of lung disease, nutrition, complications, transplant/end of life care and psychological support, this consensus on best practice is expected to prove useful to clinical teams both in countries where CF care is developing and those with established CF centres. The document is an ECFS product and endorsed by the CF Network in ERN LUNG and CF Europe.
Collapse
Affiliation(s)
- Carlo Castellani
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Italy; Cystic Fibrosis Centre, Gaslini Institute, Genoa, Italy
| | - Alistair J A Duff
- Regional Paediatric CF Unit, Leeds General Infirmary Leeds, UK; Department of Clinical & Health Psychology, St James' University Hospital, Leeds, UK.
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Harry G M Heijerman
- Dept of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne Munck
- Hopital Robert Debré Assistante publique-Hôpitaux de Paris, Université Paris 7, Pediatric CF Centre, Paris, France
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Canada
| | - Isabelle Sermet-Gaudelus
- Service de Pneumologie et Allergologie Pédiatriques, Centre de Ressources et de Compétence de la Mucoviscidose, Institut Necker Enfants Malades/INSERM U1151 Hôpital Necker Enfants Malades, P, France
| | - Kevin W Southern
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jurg Barben
- Ostschweizer Kinderspital Sankt Gallen, Claudiusstrasse 6, 9006 St. Gallen, Switzerland
| | - Patrick A Flume
- Division of Pulmonary and Critical Care, Medical University of South Carolina, USA
| | - Pavla Hodková
- Department of Clinical Psychology, University Hospital, Prague, Czech Republic
| | - Nataliya Kashirskaya
- Department of Genetic Epidemiology (Cystic Fibrosis Group), Federal State Budgetary Institution, Research Centre for Medical Genetics, Moscow, Russia
| | - Maya N Kirszenbaum
- Department of Pediatric Pulmunology, CRCM, Hôpital Necker-Enfants Malades, Paris, France
| | - Sue Madge
- Cystic Fibrosis Centre, Royal Brompton Hospital, London, UK
| | - Helen Oxley
- Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | - Barry Plant
- Cork Adult CF Centre, Cork University Hospital, University College, Cork, Republic of Ireland
| | - Sarah Jane Schwarzenberg
- Divison of Pediatric Gastroenterology Hepatology and Nutrition, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology (COG), University of Nottingham, Nottingham, UK
| | - Giovanni Taccetti
- Cystic Fibrosis Centre, Department of Paediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Thomas O F Wagner
- Frankfurter Referenzzentrum für Seltene Erkrankungen (FRZSE), Universitätsklinikum Frankfurt am Main, Wolfgang von Goethe-Universität, Frankfurt am Main, Germany
| | - Susan P Wolfe
- Regional Paediatric CF Unit, The Leeds Children's Hospital, Leeds Teaching Hospitals, Belmont Grove, Leeds, UK
| | - Pavel Drevinek
- Department of Medical Microbiology, Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
29
|
Antimicrobial molecules in the lung: formulation challenges and future directions for innovation. Future Med Chem 2018; 10:575-604. [PMID: 29473765 DOI: 10.4155/fmc-2017-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhaled antimicrobials have been extremely beneficial in treating respiratory infections, particularly chronic infections in a lung with cystic fibrosis. The pulmonary delivery of antibiotics has been demonstrated to improve treatment efficacy, reduce systemic side effects and, critically, reduce drug exposure to commensal bacteria compared with systemic administration, reducing selective pressure for antimicrobial resistance. This review will explore the specific challenges of pulmonary delivery of a number of differing antimicrobial molecules, and the formulation and technological approaches that have been used to overcome these difficulties. It will also explore the future challenges being faced in the development of inhaled products and respiratory infection treatment, and identify future directions of innovation, with a particular focus on respiratory infections caused by multiple drug-resistant pathogens.
Collapse
|
30
|
How to Manage Antibiotic Allergy in Cystic Fibrosis? Epidemiologic, Diagnostic, and Therapeutic Aspects. CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Plant BJ, Downey DG, Eustace JA, Gunaratnam C, Haworth CS, Jones AM, McKone EF, Peckham DG, Ketchell RI, Bilton D. A treatment evaluator tool to monitor the real-world effectiveness of inhaled aztreonam lysine in cystic fibrosis. J Cyst Fibros 2017; 16:695-701. [DOI: 10.1016/j.jcf.2017.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 10/19/2022]
|
32
|
In vitro evaluation of aerosol delivery of aztreonam lysine (AZLI): an adult mechanical ventilation model. Expert Opin Drug Deliv 2017; 14:1447-1453. [PMID: 29041861 DOI: 10.1080/17425247.2017.1393411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The delivery profile of Aztreonam lysine (AZLI) during mechanical ventilation (MV) is unknown. We evaluated the amount of AZLI drug delivered using an in vitro model of adult MV. METHODS An adult lung model designed to mimic current clinical practice was used. Both nebulizers were placed before a Y-piece and 4 settings were tested: A) Aeroneb solo® [AS] with a t-piece; B) AS with the spacer; C) M-Neb® [MN] with a t-piece and D) MN with the spacer. Performance was evaluated in terms of: 1) Mass median aerodynamic diameter (MMAD); 2) Geometric standard deviation (GSD), 3) Fine particle dose (FPD), 4) Fine particle fraction (FPF), 5) Inhalable mass (IM), and 6) Recovery rate (RR). RESULTS Both devices showed an adequate delivery of AZLI during MV, with MMAD between 2.4-2.5 µm and 87% of FPF. The FPD (38.8 and 31.7), IM (44.8 and 36.1) and RR (30 and 24) were similar for AS and MN respectively. Nebulizer aerosol delivery increased (50 and 70% respectively) for both nebulizers when using the spacer. CONCLUSION Both AS and MN showed a good aerosol delivery profile for AZLI during in vitro mechanical ventilation. Better aerosol delivery performance was obtained using the spacer.
Collapse
|
33
|
Waters V, Ratjen F. Standard versus biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis. Cochrane Database Syst Rev 2017; 10:CD009528. [PMID: 28981972 PMCID: PMC6485918 DOI: 10.1002/14651858.cd009528.pub4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The antibiotics used to treat pulmonary infections in people with cystic fibrosis are typically chosen based on the results of antimicrobial susceptibility testing performed on bacteria traditionally grown in a planktonic mode (grown in a liquid). However, there is considerable evidence to suggest that Pseudomonas aeruginosa actually grows in a biofilm (or slime layer) in the airways of people with cystic fibrosis with chronic pulmonary infections. Therefore, choosing antibiotics based on biofilm rather than conventional antimicrobial susceptibility testing could potentially improve response to treatment of Pseudomonas aeruginosa in people with cystic fibrosis. This is an update of a previously published Cochrane Review. OBJECTIVES To compare biofilm antimicrobial susceptibility testing-driven therapy to conventional antimicrobial susceptibility testing-driven therapy in the treatment of Pseudomonas aeruginosa infection in people with cystic fibrosis. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Most recent search: 19 June 2017.We also searched two ongoing trials registries and the reference lists of relevant articles and reviews. Most recent searches: 24 August 2017 and 05 September 2017. SELECTION CRITERIA Randomized controlled trials of antibiotic therapy based on biofilm antimicrobial susceptibility testing compared to antibiotic therapy based on conventional antimicrobial susceptibility testing in the treatment of Pseudomonas aeruginosa pulmonary infection in people with cystic fibrosis. DATA COLLECTION AND ANALYSIS Both authors independently selected trials, assessed their risk of bias and extracted data from eligible trials. Additionally, the review authors contacted the trial investigators to obtain further information. The quality of the evidence was assessed using the GRADE criteria. MAIN RESULTS The searches identified two multicentre, randomized, double-blind controlled clinical trials eligible for inclusion in the review with a total of 78 participants (adults and children); one trial was done in people who were clinically stable, the other in people experiencing pulmonary exacerbations. These trials prospectively assessed whether the use of biofilm antimicrobial susceptibility testing improved microbiological and clinical outcomes in participants with cystic fibrosis who were infected with Pseudomonas aeruginosa. The primary outcome was the change in sputum Pseudomonas aeruginosa density from the beginning to the end of antibiotic therapy.Although the intervention was shown to be safe, the data from these two trials did not provide evidence that biofilm susceptibility testing was superior to conventional susceptibility testing either in terms of microbiological or lung function outcomes. One of the trials also measured risk and time to subsequent exacerbation as well as quality of life measures and did not demonstrate any difference between groups in these outcomes. Both trials had an overall low risk of bias and the quality of the evidence using GRADE criteria was deemed to be moderate to high for the outcomes selected. AUTHORS' CONCLUSIONS The current evidence is insufficient to recommend choosing antibiotics based on biofilm antimicrobial susceptibility testing rather than conventional antimicrobial susceptibility testing in the treatment of Pseudomonas aeruginosa pulmonary infections in people with cystic fibrosis. Biofilm antimicrobial susceptibility testing may be more appropriate in the development of newer, more effective formulations of drugs which can then be tested in clinical trials.
Collapse
Affiliation(s)
- Valerie Waters
- Hospital for Sick ChildrenDepartment of Pediatrics, Division of Infectious Diseases555 University AvenueTorontoONCanadaM5G 1X8
| | - Felix Ratjen
- The Hospital for Sick ChildrenDepartment of Pediatrics555 University AvenueTorontoONCanadaM5G 1XB
| | | |
Collapse
|
34
|
Athanazio RA, Silva Filho LVRFD, Vergara AA, Ribeiro AF, Riedi CA, Procianoy EDFA, Adde FV, Reis FJC, Ribeiro JD, Torres LA, Fuccio MBD, Epifanio M, Firmida MDC, Damaceno N, Ludwig-Neto N, Maróstica PJC, Rached SZ, Melo SFDO. Brazilian guidelines for the diagnosis and treatment of cystic fibrosis. ACTA ACUST UNITED AC 2017; 43:219-245. [PMID: 28746534 PMCID: PMC5687954 DOI: 10.1590/s1806-37562017000000065] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by dysfunction of the CFTR gene. It is a multisystem disease that most often affects White individuals. In recent decades, various advances in the diagnosis and treatment of CF have drastically changed the scenario, resulting in a significant increase in survival and quality of life. In Brazil, the current neonatal screening program for CF has broad coverage, and most of the Brazilian states have referral centers for the follow-up of individuals with the disease. Previously, CF was limited to the pediatric age group. However, an increase in the number of adult CF patients has been observed, because of the greater number of individuals being diagnosed with atypical forms (with milder phenotypic expression) and because of the increase in life expectancy provided by the new treatments. However, there is still great heterogeneity among the different regions of Brazil in terms of the access of CF patients to diagnostic and therapeutic methods. The objective of these guidelines was to aggregate the main scientific evidence to guide the management of these patients. A group of 18 CF specialists devised 82 relevant clinical questions, divided into five categories: characteristics of a referral center; diagnosis; treatment of respiratory disease; gastrointestinal and nutritional treatment; and other aspects. Various professionals working in the area of CF in Brazil were invited to answer the questions devised by the coordinators. We used the PubMed database to search the available literature based on keywords, in order to find the best answers to these questions.
Collapse
Affiliation(s)
- Rodrigo Abensur Athanazio
- . Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - Alberto Andrade Vergara
- . Hospital Infantil João Paulo II, Rede Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | | | | | | | - Fabíola Villac Adde
- . Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Francisco José Caldeira Reis
- . Hospital Infantil João Paulo II, Rede Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | - José Dirceu Ribeiro
- . Hospital de Clínicas, Universidade Estadual de Campinas, Campinas (SP) Brasil
| | - Lídia Alice Torres
- . Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (SP) Brasil
| | - Marcelo Bicalho de Fuccio
- . Hospital Júlia Kubitschek, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | - Matias Epifanio
- . Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre (RS) Brasil
| | | | - Neiva Damaceno
- . Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo (SP) Brasil
| | - Norberto Ludwig-Neto
- . Hospital Infantil Joana de Gusmão, Florianópolis (SC) Brasil.,. Serviço de Fibrose Cística e Triagem Neonatal para Fibrose Cística, Secretaria Estadual de Saúde de Santa Catarina, Florianópolis (SC) Brasil
| | - Paulo José Cauduro Maróstica
- . Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil.,. Universidade Federal do Rio Grande do Sul Porto Alegre (RS) Brasil
| | - Samia Zahi Rached
- . Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | | |
Collapse
|
35
|
Strategies for the etiological therapy of cystic fibrosis. Cell Death Differ 2017; 24:1825-1844. [PMID: 28937684 PMCID: PMC5635223 DOI: 10.1038/cdd.2017.126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Etiological therapies aim at repairing the underlying cause of cystic fibrosis (CF), which is the functional defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein owing to mutations in the CFTR gene. Among these, the F508del CFTR mutation accounts for more than two thirds of CF cases worldwide. Two somehow antinomic schools of thought conceive CFTR repair in a different manner. According to one vision, drugs should directly target the mutated CFTR protein to increase its plasma membrane expression (correctors) or improve its ion transport function (potentiators). An alternative strategy consists in modulating the cellular environment and proteostasis networks in which the mutated CFTR protein is synthesized, traffics to its final destination, the plasma membrane, and is turned over. We will analyze distinctive advantages and drawbacks of these strategies in terms of their scientific and clinical dimensions, and we will propose a global strategy for CF research and development based on a reconciliatory approach. Moreover, we will discuss the utility of preclinical biomarkers that may guide the personalized, patient-specific implementation of CF therapies.
Collapse
|
36
|
Stefani S, Campana S, Cariani L, Carnovale V, Colombo C, Lleo MM, Iula VD, Minicucci L, Morelli P, Pizzamiglio G, Taccetti G. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol 2017; 307:353-362. [PMID: 28754426 DOI: 10.1016/j.ijmm.2017.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is an important issue for physicians who take care of patients with cystic fibrosis (CF). Here, we review the latest research on how P. aeruginosa infection causes lung function to decline and how several factors contribute to the emergence of antibiotic resistance in P. aeruginosa strains and influence the course of the infection course. However, many aspects of the practical management of patients with CF infected with MDR P. aeruginosa are still to be established. Less is known about the exact role of susceptibility testing in clinical strategies for dealing with resistant infections, and there is an urgent need to find a tool to assist in choosing the best therapeutic strategy for MDR P. aeruginosa infection. One current perception is that the selection of antibiotic therapy according to antibiogram results is an important component of the decision-making process, but other patient factors, such as previous infection history and antibiotic courses, also need to be evaluated. On the basis of the known issues and the best current data on respiratory infections caused by MDR P. aeruginosa, this review provides practical suggestions to optimize the diagnostic and therapeutic management of patients with CF who are infected with these pathogens.
Collapse
Affiliation(s)
- S Stefani
- Department of Biomedical and Biotechnological Sciences, Division of Microbiology, University of Catania, Catania, Italy.
| | - S Campana
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| | - L Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - V Carnovale
- Department of Translational Medical Sciences, Cystic Fibrosis Center, University "Federico II", Naples, Italy
| | - C Colombo
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - V D Iula
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - L Minicucci
- Microbiology Laboratory, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - P Morelli
- Department of Paediatric, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - G Pizzamiglio
- Respiratory Disease Department, Cystic Fibrosis Center Adult Section, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - G Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
37
|
Waters V, Ratjen F. Combination antimicrobial susceptibility testing for acute exacerbations in chronic infection of Pseudomonas aeruginosa in cystic fibrosis. Cochrane Database Syst Rev 2017. [PMID: 28628280 PMCID: PMC6481487 DOI: 10.1002/14651858.cd006961.pub4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Antibiotic therapy for acute pulmonary exacerbations in people with cystic fibrosis is usually chosen based on the results of antimicrobial susceptibility testing of individual drugs. Combination antimicrobial susceptibility testing assesses the efficacy of drug combinations including two or three antibiotics in vitro and can often demonstrate antimicrobial efficacy against bacterial isolates even when individual antibiotics have little or no effect. Therefore, choosing antibiotics based on combination antimicrobial susceptibility testing could potentially improve response to treatment in people with cystic fibrosis with acute exacerbations. This is an updated version of a previously published review. OBJECTIVES To compare antibiotic therapy based on conventional antimicrobial susceptibility testing to antibiotic therapy based on combination antimicrobial susceptibility testing in the treatment of acute pulmonary exacerbations in people with cystic fibrosis and chronic infection with Pseudomonas aeruginosa. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Cystic Fibrosis Trials Register which comprises of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Date of latest search: 19 December 2016.We also searched ongoing trials registries. Date of latest search: 08 March 2017. SELECTION CRITERIA Randomised and quasi-randomised controlled studies of antibiotic therapy based on conventional antimicrobial susceptibility testing compared to antibiotic therapy based on combination antimicrobial susceptibility testing in the treatment of acute pulmonary exacerbations in cystic fibrosis due to chronic infection with Pseudomonas aeruginosa. DATA COLLECTION AND ANALYSIS Both authors independently selected studies, assessed their quality and extracted data from eligible studies. Additionally, the authors contacted the study investigators to obtain further information. MAIN RESULTS The search identified one multicentre study eligible for inclusion in the review. This study prospectively assessed whether the use of multiple combination bactericidal antibiotic testing improved clinical outcomes in participants with acute pulmonary exacerbations of cystic fibrosis who were infected with multiresistant bacteria. A total of 132 participants were randomised in the study. The study investigators provided data specific to the 82 participants who were only infected with Pseudomonas aeruginosa for their primary outcome of time until next pulmonary exacerbation. For participants specifically infected with only Pseudomonas aeruginosa, the hazard ratio of a subsequent exacerbation was 0.82, favouring the control group (95% confidence interval 0.44 to 1.51) (P = 0.52). No further data for any of this review's outcomes specific to participants infected with Pseudomonas aeruginosa were available. The risk of bias for the included study was deemed to be low. The quality of the evidence was moderate for the only outcome providing data solely for individuals with infection due to Pseudomonas aeruginosa. For other outcomes, we were unable to judge the quality of the evidence as no data were available for the relevant subset of participants. AUTHORS' CONCLUSIONS The current evidence, limited to one study, shows that there is insufficient evidence to determine effect of choosing antibiotics based on combination antimicrobial susceptibility testing compared to choosing antibiotics based on conventional antimicrobial susceptibility testing in the treatment of acute pulmonary exacerbations in people with cystic fibrosis with chronic Pseudomonas aeruginosa infection. A large international and multicentre study is needed to further investigate this issue.The only study included in the review was published in 2005, and we have not identified any further relevant studies up to March 2017. We therefore do not plan to update this review until new studies are published.
Collapse
Affiliation(s)
- Valerie Waters
- Hospital for Sick ChildrenDepartment of Pediatrics, Division of Infectious Diseases555 University AvenueTorontoONCanadaM5G 1X8
| | - Felix Ratjen
- The Hospital for Sick ChildrenDepartment of Pediatrics555 University AvenueTorontoONCanadaM5G 1XB
| | | |
Collapse
|
38
|
Chin M, Aaron SD, Bell SC. The treatment of the pulmonary and extrapulmonary manifestations of cystic fibrosis. Presse Med 2017; 46:e139-e164. [PMID: 28576636 DOI: 10.1016/j.lpm.2016.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/12/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is a complex multisystem disease with considerable between patient variability in its manifestations and severity. In the past several decades, the range of treatments and the evidence to support their use for the pulmonary and extrapulmonary manifestations of CF have increased dramatically, contributing to the improved median survival of patients. As therapy for CF has evolved, new challenges including treatment adherence, medication intolerance and allergy, medical complications and coping with the burden of disease in the context of having a family and managing employment have arisen. While the majority of current therapy focuses primarily on improving symptoms, new therapies (CFTR modulators) target the underlying genetic defect.
Collapse
Affiliation(s)
- Melanie Chin
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia
| | - Shawn D Aaron
- The Ottawa Hospital Research Institute, University of Ottawa, 501, Smyth Road, K1H 8L6 Ottawa, Canada
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia; QIMR Berghofer Medical Research Institute, 300, Herston Road, Herston, QLD 4006, Australia; School of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia.
| |
Collapse
|
39
|
Inhaled Antibiotic Therapy in Chronic Respiratory Diseases. Int J Mol Sci 2017; 18:ijms18051062. [PMID: 28509852 PMCID: PMC5454974 DOI: 10.3390/ijms18051062] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022] Open
Abstract
The management of patients with chronic respiratory diseases affected by difficult to treat infections has become a challenge in clinical practice. Conditions such as cystic fibrosis (CF) and non-CF bronchiectasis require extensive treatment strategies to deal with multidrug resistant pathogens that include Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Burkholderia species and non-tuberculous Mycobacteria (NTM). These challenges prompted scientists to deliver antimicrobial agents through the pulmonary system by using inhaled, aerosolized or nebulized antibiotics. Subsequent research advances focused on the development of antibiotic agents able to achieve high tissue concentrations capable of reducing the bacterial load of difficult-to-treat organisms in hosts with chronic respiratory conditions. In this review, we focus on the evidence regarding the use of antibiotic therapies administered through the respiratory system via inhalation, nebulization or aerosolization, specifically in patients with chronic respiratory diseases that include CF, non-CF bronchiectasis and NTM. However, further research is required to address the potential benefits, mechanisms of action and applications of inhaled antibiotics for the management of difficult-to-treat infections in patients with chronic respiratory diseases.
Collapse
|
40
|
Heirali AA, Workentine ML, Acosta N, Poonja A, Storey DG, Somayaji R, Rabin HR, Whelan FJ, Surette MG, Parkins MD. The effects of inhaled aztreonam on the cystic fibrosis lung microbiome. MICROBIOME 2017; 5:51. [PMID: 28476135 PMCID: PMC5420135 DOI: 10.1186/s40168-017-0265-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/12/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Aztreonam lysine for inhalation (AZLI) is an inhaled antibiotic used to treat chronic Pseudomonas aeruginosa infection in CF. AZLI improves lung function and quality of life, and reduces exacerbations-improvements attributed to its antipseudomonal activity. Given the extremely high aztreonam concentrations achieved in the lower airways by nebulization, we speculate this may extend its spectrum of activity to other organisms. As such, we sought to determine if AZLI affects the CF lung microbiome and whether community constituents can be used to predict treatment responsiveness. METHODS Patients were included if they had chronic P. aeruginosa infection and repeated sputum samples collected before and after AZLI. Sputum DNA was extracted, and the V3-hypervariable region of the 16S ribosomal RNA (rRNA) gene amplified and sequenced. RESULTS Twenty-four patients naïve to AZLI contributed 162 samples. The cohort had a median age of 37.1 years, and a median FEV1 of 44% predicted. Fourteen patients were a priori defined as responders for achieving ≥3% FEV1 improvement following initiation. No significant changes in alpha diversity were noted following AZLI. Furthermore, beta diversity demonstrated clustering with respect to patients, but had no association with AZLI use. However, we did observe a decline in the relative abundance of several individual operational taxonomic units (OTUs) following AZLI initiation suggesting that specific sub-populations of organisms may be impacted. Patients with higher abundance of Staphylococcus and anaerobic organisms including Prevotella and Fusobacterium were less likely to respond to therapy. CONCLUSIONS Results from our study suggest potential alternate/additional mechanisms by which AZLI functions. Moreover, our study suggests that the CF microbiota may be used as a biomarker to predict patient responsiveness to therapy suggesting the microbiome may be harnessed for the personalization of therapies.
Collapse
Affiliation(s)
- Alya A Heirali
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
| | | | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
| | - Ali Poonja
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
| | - Douglas G Storey
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, The University of Calgary, Calgary, AB, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
- Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
- Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada
| | - Fiona J Whelan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada.
- Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada.
| |
Collapse
|
41
|
Langton Hewer SC, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2017; 4:CD004197. [PMID: 28440853 PMCID: PMC6478104 DOI: 10.1002/14651858.cd004197.pub5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Respiratory tract infection with Pseudomonas aeruginosa occurs in most people with cystic fibrosis. Once chronic infection is established, Pseudomonas aeruginosa is virtually impossible to eradicate and is associated with increased mortality and morbidity. Early infection may be easier to eradicate.This is an update of a Cochrane review first published in 2003, and previously updated in 2006, 2009 and 2014. OBJECTIVES To determine whether antibiotic treatment of early Pseudomonas aeruginosa infection in children and adults with cystic fibrosis eradicates the organism, delays the onset of chronic infection, and results in clinical improvement. To evaluate whether there is evidence that a particular antibiotic strategy is superior to or more cost-effective than other strategies and to compare the adverse effects of different antibiotic strategies (including respiratory infection with other micro-organisms). SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Most recent search: 10 October 2016. SELECTION CRITERIA We included randomised controlled trials of people with cystic fibrosis, in whom Pseudomonas aeruginosa had recently been isolated from respiratory secretions. We compared combinations of inhaled, oral or intravenous antibiotics with placebo, usual treatment or other combinations of inhaled, oral or intravenous antibiotics. We excluded non-randomised trials, cross-over trials, and those utilising historical controls. DATA COLLECTION AND ANALYSIS Both authors independently selected trials, assessed risk of bias and extracted data. MAIN RESULTS The search identified 60 trials; seven trials (744 participants) with a duration between 28 days and 27 months were eligible for inclusion. Three of the trials are over 10 years old and their results may be less applicable today given the changes in standard treatment. Some of the trials had low numbers of participants and most had relatively short follow-up periods; however, there was generally a low risk of bias from missing data. In most trials it was difficult to blind participants and clinicians to treatment given the interventions and comparators used. Two trials were supported by the manufacturers of the antibiotic used.Evidence from two trials (38 participants) at the two-month time-point showed treatment of early Pseudomonas aeruginosa infection with inhaled tobramycin results in microbiological eradication of the organism from respiratory secretions more often than placebo, odds ratio 0.15 (95% confidence interval (CI) 0.03 to 0.65) and data from one of these trials, with longer follow up, suggested that this effect may persist for up to 12 months.One randomised controlled trial (26 participants) compared oral ciprofloxacin and nebulised colistin versus usual treatment. Results after two years suggested treatment of early infection results in microbiological eradication of Pseudomonas aeruginosa more often than no anti-pseudomonal treatment, odds ratio 0.12 (95% CI 0.02 to 0.79).One trial comparing 28 days to 56 days treatment with nebulised tobramycin solution for inhalation in 88 participants showed that both treatments were effective and well-tolerated, with no notable additional improvement with longer over shorter duration of therapy. However, this trial was not powered to detect non-inferiority or equivalence .A trial of oral ciprofloxacin with inhaled colistin versus nebulised tobramycin solution for inhalation alone (223 participants) failed to show a difference between the two strategies, although it was underpowered to show this. A further trial of inhaled colistin with oral ciprofloxacin versus nebulised tobramycin solution for inhalation with oral ciprofloxacin also showed no superiority of the former, with increased isolation of Stenotrophomonas maltophilia in both groups.A recent, large trial in 306 children aged between one and 12 years compared cycled nebulised tobramycin solution for inhalation to culture-based therapy and also ciprofloxacin to placebo. The primary analysis showed no difference in time to pulmonary exacerbation or proportion of Pseudomonas aeruginosa positive cultures. An analysis performed in this review (not adjusted for age) showed fewer participants in the cycled therapy group with one or more isolates of Pseudomonas aeruginosa, odds ratio 0.51 (95% CI 0.31 to 0.28). Using GRADE, the quality of evidence for outcomes was downgraded to moderate to very low. Downgrading decisions for Pseudomonas aeruginosa eradication and lung function were based on applicability (participants mostly children) and limitations in study design, with imprecision an additional limitation for lung function, growth parameters and adverse effects. AUTHORS' CONCLUSIONS We found that nebulised antibiotics, alone or in combination with oral antibiotics, were better than no treatment for early infection with Pseudomonas aeruginosa. Eradication may be sustained for up to two years. There is insufficient evidence to determine whether antibiotic strategies for the eradication of early Pseudomonas aeruginosa decrease mortality or morbidity, improve quality of life, or are associated with adverse effects compared to placebo or standard treatment. Four trials comparing two active treatments have failed to show differences in rates of eradication of Pseudomonas aeruginosa. There have been no published randomised controlled trials that investigate the efficacy of intravenous antibiotics to eradicate Pseudomonas aeruginosa in cystic fibrosis. Overall, there is still insufficient evidence from this review to state which antibiotic strategy should be used for the eradication of early Pseudomonas aeruginosa infection in cystic fibrosis.
Collapse
Affiliation(s)
- Simon C Langton Hewer
- Bristol Royal Hospital for ChildrenPaediatric Respiratory MedicineUpper Maudlin StreetBristolAvonUKBS2 8BJ
| | - Alan R Smyth
- School of Medicine, University of NottinghamDivision of Child Health, Obstetrics & Gynaecology (COG)Queens Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | |
Collapse
|
42
|
Continuous alternating inhaled antibiotics for chronic pseudomonal infection in cystic fibrosis. J Cyst Fibros 2016; 15:809-815. [DOI: 10.1016/j.jcf.2016.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 01/07/2023]
|
43
|
Sommerwerck U, Virella-Lowell I, Angyalosi G, Viegas A, Cao W, Debonnett L. Long-term safety of tobramycin inhalation powder in patients with cystic fibrosis: phase IV (ETOILES) study. Curr Med Res Opin 2016; 32:1789-1795. [PMID: 27435882 DOI: 10.1080/03007995.2016.1211516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Long-term treatment with inhaled antibiotics is recommended for chronic Pseudomonas aeruginosa (Pa) infection in cystic fibrosis (CF) patients. The ETOILES study (Clinicaltrials.gov identifier: NCT01519661) evaluated the safety of tobramycin inhalation powder (TIP) for 1 year. RESEARCH DESIGN AND METHODS This single-arm, open-label, multicenter, phase IV trial, enrolled CF patients aged ≥6 years, with baseline FEV1 ≥25%-≤75% predicted and Pa infection, and assessed the safety of TIP over six cycles in terms of the incidence of treatment-emergent adverse events (AEs) and serious AEs (SAEs). Secondary endpoints included presence of airway reactivity, relative change in FEV1% predicted, and change in sputum Pa density (log10 colony forming units/g sputum). RESULTS A total of 157 patients were enrolled, and 96 patients (61.1%) completed the study. The most commonly reported AE was infective pulmonary exacerbation of CF (55.4%). Cough was reported as an AE in 23.6% of patients; a majority were mild or moderate and two were severe (1.3%). SAEs were reported by 31.2% of patients. No deaths were reported during the study. There were no clinically meaningful changes reported in airway reactivity. Most frequently reported post-inhalation event was cough at all time points; however, it was of short duration (<4 minutes) and decreased over the course of the study, possibly due to patients becoming more experienced with the administration of TIP. The post-inhalation events resolved without intervention in most cases. FEV1% predicted remained stable from Cycles 1 to 4 and tended to decrease thereafter, although it was not statistically significant (change from baseline to study end mean [SD] = -1.9% [14.55]; P = 0.199). CONCLUSIONS This was one of the largest studies with long-term TIP exposure. The majority of patients enrolled were adults with more advanced CF lung disease than those in previous TIP studies. No new emerging safety signals were seen and efficacy was sustained during the year.
Collapse
Affiliation(s)
- Urte Sommerwerck
- a Department of Pneumology , Ruhrlandklinik, West German Lung Centre, University Hospital Essen , Essen , Germany
- b Christiane Herzog Center Ruhr , Essen/Bochum , Germany
| | - Isabel Virella-Lowell
- c Department of Pediatrics , Medical University of South Carolina, Pediatric Pulmonology and Sleep Medicine , Charleston , SC , USA
| | | | - Andrea Viegas
- e Novartis Pharmaceuticals Corporation , East Hanover , NJ , USA
| | - Weihua Cao
- e Novartis Pharmaceuticals Corporation , East Hanover , NJ , USA
| | - Laurie Debonnett
- e Novartis Pharmaceuticals Corporation , East Hanover , NJ , USA
| |
Collapse
|
44
|
Biomarkers for cystic fibrosis drug development. J Cyst Fibros 2016; 15:714-723. [PMID: 28215711 DOI: 10.1016/j.jcf.2016.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE To provide a review of the status of biomarkers in cystic fibrosis drug development, including regulatory definitions and considerations, a summary of biomarkers in current use with supportive data, current gaps, and future needs. METHODS Biomarkers are considered across several areas of CF drug development, including cystic fibrosis transmembrane conductance regulator modulation, infection, and inflammation. RESULTS Sweat chloride, nasal potential difference, and intestinal current measurements have been standardized and examined in the context of multicenter trials to quantify CFTR function. Detection and quantification of pathogenic bacteria in CF respiratory cultures (e.g.: Pseudomonas aeruginosa) are commonly used in early phase antimicrobial clinical trials, and to monitor safety of therapeutic interventions. Sputum (e.g.: neutrophil elastase, myeloperoxidase, calprotectin) and blood biomarkers (e.g.: C reactive protein, calprotectin, serum amyloid A) have had variable success in detecting response to inflammatory treatments. CONCLUSIONS Biomarkers are used throughout the drug development process in CF, and many have been used in early phase clinical trials to provide proof of concept, detect drug bioactivity, and inform dosing for later-phase studies. Advances in the precision of current biomarkers, and the identification of new biomarkers with 'omics-based technologies, are needed to accelerate CF drug development.
Collapse
|
45
|
Abstract
There is a high prevalence of Pseudomonas aeruginosa in patients with cystic fibrosis and clear epidemiologic links between chronic infection and morbidity and mortality exist. Prevention and early identification of infection are critical, and stand to improve with the advent of new vaccines and laboratory methods. Once the organism is identified, a variety of treatment options are available. Aggressive use of antipseudomonal antibiotics is the standard of care for acute pulmonary exacerbations in cystic fibrosis, and providers must take into account specific patient characteristics when making treatment decisions related to antibiotic selection, route and duration of administration, and site of care.
Collapse
Affiliation(s)
- Jaideep S Talwalkar
- Department of Internal Medicine, Yale School of Medicine, 333 Cedar Street, PO Box 208086, New Haven, CT 06520-8086, USA; Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, PO Box 208084, New Haven, CT 06520-8084, USA.
| | - Thomas S Murray
- Department of Medical Sciences, Frank H Netter MD School of Medicine, Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA; Division of Infectious Diseases and Immunology, Connecticut Children's Medical Center, 282 Washington Street, Suite 2L, Hartford, CT 06106, USA
| |
Collapse
|
46
|
Edmondson C, Davies JC. Current and future treatment options for cystic fibrosis lung disease: latest evidence and clinical implications. Ther Adv Chronic Dis 2016; 7:170-83. [PMID: 27347364 PMCID: PMC4907071 DOI: 10.1177/2040622316641352] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Treatment for cystic fibrosis (CF) has conventionally targeted downstream consequences of the defect such as mucus plugging and infection. More recently, significant advances have been made in treating the root cause of the disease, namely a defective CF transmembrane conductance regulator (CFTR) gene. This review summarizes current pulmonary treatment options and highlights advances in research and development of new therapies.
Collapse
Affiliation(s)
- Claire Edmondson
- Royal Brompton & Harefield NHS Foundation Trust, Paediatric Respiratory Medicine, London, UK
| | - Jane C. Davies
- Imperial College London, Paediatric Respirology and Experimental Medicine, London SW7 2AZ, UK
| |
Collapse
|
47
|
Sequential Treatment of Biofilms with Aztreonam and Tobramycin Is a Novel Strategy for Combating Pseudomonas aeruginosa Chronic Respiratory Infections. Antimicrob Agents Chemother 2016; 60:2912-22. [PMID: 26926631 DOI: 10.1128/aac.00196-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/24/2016] [Indexed: 11/20/2022] Open
Abstract
Traditional therapeutic strategies to control chronic colonization in cystic fibrosis (CF) patients are based on the use of a single nebulized antibiotic. In this study, we evaluated the therapeutic efficacy and dynamics of antibiotic resistance in Pseudomonas aeruginosa biofilms under sequential therapy with inhaled aztreonam (ATM) and tobramycin (TOB). Laboratory strains PAO1, PAOMS (hypermutable), PAOMA (mucoid), and PAOMSA (mucoid and hypermutable) and two hypermutable CF strains, 146-HSE (Liverpool epidemic strain [LES-1]) and 1089-HSE (ST1089), were used. Biofilms were developed using the flow cell system. Mature biofilms were challenged with peak and 1/10-peak concentrations of ATM (700 mg/liter and 70 mg/liter), TOB (1,000 mg/liter and 100 mg/liter), and their alternations (ATM/TOB/ATM and TOB/ATM/TOB) for 2 (t = 2), 4 (t = 4), and 6 days (t = 6). The numbers of viable cells (CFU) and resistant mutants were determined. Biofilm structural dynamics were monitored by confocal laser scanning microscopy and processed with COMSTAT and IMARIS software programs. TOB monotherapy produced an intense decrease in CFU that was not always correlated with a reduction in biomass and/or a bactericidal effect on biofilms, particularly for the CF strains. The ATM monotherapy bactericidal effect was lower, but effects on biofilm biomass and/or structure, including intense filamentation, were documented. The alternation of TOB and ATM led to an enhancement of the antibiofilm activity against laboratory and CF strains compared to that with the individual regimens, potentiating the bactericidal effect and/or the reduction in biomass, particularly at peak concentrations. Resistant mutants were not documented in any of the regimens at the peak concentrations and only anecdotally at the 1/10-peak concentrations. These results support the clinical evaluation of sequential regimens with inhaled antibiotics in CF, as opposed to the current maintenance treatments with just one antibiotic in monotherapy.
Collapse
|
48
|
Kilcoyne A, Lavelle LP, McCarthy CJ, McEvoy SH, Fleming H, Gallagher A, Loeve M, Tiddens H, McKone E, Gallagher CC, Dodd JD. Chest CT abnormalities and quality of life: relationship in adult cystic fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:87. [PMID: 27047946 DOI: 10.21037/atm.2016.03.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND To evaluate the relationship between lung parenchymal abnormalities on chest CT and health-related quality of life in adult cystic fibrosis (CF). METHODS The chest CT scans of 101 consecutive CF adults (mean age 27.8±7.9, 64 males) were prospectively scored by two blinded radiologists in consensus using a modified Bhalla score. Health-related quality of life was assessed using the revised Quittner Cystic Fibrosis Questionnaire (CFQ-R). Multiple regressions were performed with each of the CFQ-R domains and all clinical and imaging findings to assess independent correlations. RESULTS There were 18 inpatients and 83 outpatients. For the cohort of inpatients, CT abnormalities were significantly (P<0.005 for all) associated with Respiratory Symptoms (Air Trapping), and also with Social Functioning (Consolidation) and Role Functioning (Consolidation). For outpatients, CT abnormalities were significantly (P<0.005 for all) associated with Respiratory Symptoms (Consolidation) and also with Physical Functioning (Consolidation), Vitality (Consolidation, Severity of Bronchiectasis), Eating Problems (airway wall thickening), Treatment Burden (Total CT Score), Body Image (Severity of Bronchiectasis) and Role Functioning (Tree-in-bud nodules). Consolidation was the commonest independent CT predictor for both inpatients (predictor for 2 domains) and outpatients (predictor in 3 domains). Several chest CT abnormalities excluded traditional measures such as FEV1 and BMI from the majority of CFQ-R domains. CONCLUSIONS Chest CT abnormalities are significantly associated with quality of life measures in adult CF, independent of clinical or spirometric measurements.
Collapse
Affiliation(s)
- Aoife Kilcoyne
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Lisa P Lavelle
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Colin J McCarthy
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sinead H McEvoy
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hannah Fleming
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Annika Gallagher
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Martine Loeve
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Harm Tiddens
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Edward McKone
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Charles C Gallagher
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jonathan D Dodd
- 1 Department of Radiology, 2 National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin, Ireland ; 3 Department of Pediatric Pulmonology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands ; 4 Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Lahiri T, Hempstead SE, Brady C, Cannon CL, Clark K, Condren ME, Guill MF, Guillerman RP, Leone CG, Maguiness K, Monchil L, Powers SW, Rosenfeld M, Schwarzenberg SJ, Tompkins CL, Zemanick ET, Davis SD. Clinical Practice Guidelines From the Cystic Fibrosis Foundation for Preschoolers With Cystic Fibrosis. Pediatrics 2016; 137:peds.2015-1784. [PMID: 27009033 DOI: 10.1542/peds.2015-1784] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) clinical care guidelines exist for the care of infants up to age 2 years and for individuals ≥6 years of age. An important gap exists for preschool children between the ages of 2 and 5 years. This period marks a time of growth and development that is critical to achieve optimal nutritional status and maintain lung health. Given that disease often progresses in a clinically silent manner, objective and sensitive tools that detect and track early disease are important in this age group. Several challenges exist that may impede the delivery of care for these children, including adherence to therapies. A multidisciplinary committee was convened by the CF Foundation to develop comprehensive evidence-based and consensus recommendations for the care of preschool children, ages 2 to 5 years, with CF. This document includes recommendations in the following areas: routine surveillance for pulmonary disease, therapeutics, and nutritional and gastrointestinal care.
Collapse
Affiliation(s)
- Thomas Lahiri
- Pediatric Pulmonology, University of Vermont Children's Hospital and Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont;
| | - Sarah E Hempstead
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, New Hampshire; Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Cynthia Brady
- Children's Respiratory and Critical Care Specialists and Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota
| | | | - Kelli Clark
- Department of Pediatrics, University of North Carolina, Charlotte, North Carolina
| | - Michelle E Condren
- University of Oklahoma College of Pharmacy and School of Community Medicine, Tulsa, Oklahoma
| | - Margaret F Guill
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; Allergy and Pediatric Pulmonology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - R Paul Guillerman
- Department of Radiology, Baylor College of Medicine and Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
| | - Christina G Leone
- Cystic Fibrosis Center, Children's Hospital Colorado, Aurora, Colorado
| | - Karen Maguiness
- Section of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa Monchil
- Armond V. Mascia, MD Cystic Fibrosis Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| | - Scott W Powers
- Department of Pediatrics and Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine and Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Margaret Rosenfeld
- Division of Pulmonary Medicine, Seattle Children's Hospital and Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Sarah Jane Schwarzenberg
- Pediatric Gastroenterology, Hepatology and Nutrition, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Connie L Tompkins
- Department of Rehabilitation and Movement Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, Vermont; and
| | - Edith T Zemanick
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephanie D Davis
- Section of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
50
|
Abdellatif S, Trifi A, Daly F, Mahjoub K, Nasri R, Ben Lakhal S. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: a prospective, randomised trial. Ann Intensive Care 2016; 6:26. [PMID: 27033711 PMCID: PMC4816935 DOI: 10.1186/s13613-016-0127-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
Background Cases of ventilator-associated pneumonia (VAP) due to multidrug-resistant (MDR) gram-negative bacilli (GNB) mainly Acinetobacter baumannii, Pseudomonas aeruginosa and enterobacteria are common in hospitalised patients of Tunisian intensive care units (ICUs). Parenteral colistin has been used for the therapy of VAP caused by MDR GNB at Tunisian hospitals over the past few years with a favourable clinical response. However, its use fell out of favour because of the reported drug-related nephrotoxicity and neurotoxicity. Objectives To determine whether aerosolised (AS) colistin was beneficial and safe in therapy of gram-negative VAP. Methods This was a randomised, single-blind study, in 149 critically ill adults who developed gram-negative VAP. Included patients were divided into two groups whether they received AS colistin (intervention group; n = 73) or intravenous (IV) colistin (control group; n = 76). AS colistin was given as 4 million units (MU) by nebulisation three times per 24 h. IV colistin was given as a loading dose of 9 MU followed by 4.5 MU two times per 24 h. Patients were followed during 28 days. Primary outcome was cure of VAP assessed at day 14 of therapy and defined as resolution of clinical signs of VAP and bacteriological eradication. Secondary outcomes were incidence of acute renal failure (ARF), mechanical ventilation length, ICU length of stay and 28-day mortality. Results were analysed based on intention-to-treat concept. Results The patient’s baseline characteristics and distribution of pathogens VAP in both groups were similar. The clinical cure rate was 67.1 % in AS group and 72 % in IV group (p = 0.59). When administered in monotherapy or in combination, the AS regimen was as effective as IV regimen. Patients in AS group had significantly lower incidence of ARF (17.8 vs 39.4 %, p = 0.004), more favourable improvement of P/F ratio (349 vs 316 at day 14, p = 0.012), shortened time to bacterial eradication (TBE) (9.89 vs 11.26 days, p = 0.023) and earlier weaning from ventilator in ICU survivors with a mean gain in ventilator-free days of 5 days. No difference was shown in the length of stay and the 28-day mortality. Conclusion Aerosolised colistin seems to be beneficial. It provided a therapeutic effectiveness non-inferior to parenteral colistin in therapy of MDR bacilli VAP with a lower nephrotoxicity, a better improvement of P/F ratio, a shortened bacterial eradication time and earlier weaning from ventilator in ICU survivors. Trial registration ClinicalTrials.gov Identifier: NCT02683603
Collapse
Affiliation(s)
- Sami Abdellatif
- Medical Intensive Care Unit, Tunis Faculty of Medicine, El Manar University, University Hospital Center La Rabta, Tunis, Tunisia
| | - Ahlem Trifi
- Medical Intensive Care Unit, Tunis Faculty of Medicine, El Manar University, University Hospital Center La Rabta, Tunis, Tunisia.
| | - Foued Daly
- Medical Intensive Care Unit, Tunis Faculty of Medicine, El Manar University, University Hospital Center La Rabta, Tunis, Tunisia
| | - Khaoula Mahjoub
- Medical Intensive Care Unit, Tunis Faculty of Medicine, El Manar University, University Hospital Center La Rabta, Tunis, Tunisia
| | - Rochdi Nasri
- Medical Intensive Care Unit, Tunis Faculty of Medicine, El Manar University, University Hospital Center La Rabta, Tunis, Tunisia
| | - Salah Ben Lakhal
- Medical Intensive Care Unit, Tunis Faculty of Medicine, El Manar University, University Hospital Center La Rabta, Tunis, Tunisia
| |
Collapse
|