1
|
Tan Z, Li F, Chen Q, Chen H, Xue Z, Zhang J, Gao Y, Liang L, Huang T, Zhang S, Li J, Shu Q, Yu L. Integrated bulk and single-cell RNA-sequencing reveals SPOCK2 as a novel biomarker gene in the development of congenital pulmonary airway malformation. Respir Res 2023; 24:127. [PMID: 37165378 PMCID: PMC10170809 DOI: 10.1186/s12931-023-02436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Congenital pulmonary airway malformation (CPAM) is the most frequent pulmonary developmental malformation and the pathophysiology remains poorly understood. This study aimed to identify the characteristic gene expression patterns and the marker genes essential to CPAM. METHODS Tissues from the cystic area displaying CPAM and the area of normal appearance were obtained during surgery. Bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) were performed for integrating analysis. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify specifically expressed genes to CPAM. RESULTS In total, 2074 genes were significantly differentially expressed between the CPAM and control areas. Of these differentially expressed genes (DEGs), 1675 genes were up-regulated and 399 genes were down-regulated. Gene ontology analysis revealed these DEGs were specifically enriched in ciliated epithelium and involved in immune response. We also identified several CPAM-related modules by iWGCNA, among them, P15_I4_M3 module was the most influential module for distinguishing CPAMs from controls. By combining the analysis of the expression dataset from RNA-seq and scRNA-seq, SPOCK2, STX11, and ZNF331 were highlighted in CPAM. CONCLUSIONS Through our analysis of expression datasets from both scRNA-seq and bulk RNA-seq of tissues obtained from patients with CPAM, we identified the characteristic gene expression patterns associated with the condition. Our findings suggest that SPOCK2 could be a potential biomarker gene for the diagnosis and therapeutic target in the development of CPAM, whereas STX11 and ZNF331 might serve as prognostic markers for this condition. Further investigations with larger samples and function studies are necessary to confirm the involvement of these genes in CPAM.
Collapse
Affiliation(s)
- Zheng Tan
- Department of Paediatric Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fengxia Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qiang Chen
- Department of Pediatrics, Jiangxi Provincial Children's Hospital, Jiangxi, China
| | - Hongyu Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Ziru Xue
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jian Zhang
- Department of Paediatric Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Paediatric Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Liang Liang
- Department of Paediatric Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Ting Huang
- Department of Paediatric Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Shouhua Zhang
- Department of Pediatrics, Jiangxi Provincial Children's Hospital, Jiangxi, China
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Jiangxi, China
| | - Jianhua Li
- Department of Paediatric Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qiang Shu
- Department of Paediatric Thoracic Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
BMSCs overexpressed ISL1 reduces the apoptosis of islet cells through ANLN carrying exosome, INHBA, and caffeine. Cell Mol Life Sci 2022; 79:538. [DOI: 10.1007/s00018-022-04571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
|
3
|
Silvestro S, Diomede F, Chiricosta L, Zingale VD, Marconi GD, Pizzicannella J, Valeri A, Avanzini MA, Calcaterra V, Pelizzo G, Mazzon E. The Role of Hypoxia in Improving the Therapeutic Potential of Mesenchymal Stromal Cells. A Comparative Study From Healthy Lung and Congenital Pulmonary Airway Malformations in Infants. Front Bioeng Biotechnol 2022; 10:868486. [PMID: 35774062 PMCID: PMC9237219 DOI: 10.3389/fbioe.2022.868486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) play an important role in the field of regenerative medicine thanks to their immunomodulatory properties and their ability to secrete paracrine factors. The use of MSCs has also been tested in children with congenital lung diseases inducing fibrosis and a decrease in lung function. Congenital malformations of the pulmonary airways (CPAM) are the most frequently encountered lung lesion that results from defects in early development of airways. Despite the beneficial properties of MSCs, interventions aimed at improving the outcome of cell therapy are needed. Hypoxia may be an approach aimed to ameliorate the therapeutic potential of MSCs. In this regard, we evaluated the transcriptomic profile of MSCs collected from pediatric patients with CPAM, analyzing similarities and differences between healthy tissue (MSCs-lung) and cystic tissue (MSCs-CPAM) both in normoxia and in cells preconditioned with hypoxia (0.2%) for 24 h. Study results showed that hypoxia induces cell cycle activation, increasing in such a way the cell proliferation ability, and enhancing cell anaerobic metabolism in both MSCs-lung and MSCs-CPAM-lung. Additionally, hypoxia downregulated several pro-apoptotic genes preserving MSCs from apoptosis and, at the same time, improving their viability in both comparisons. Finally, data obtained indicates that hypoxia leads to a greater expression of genes involved in the regulation of the cytoskeleton in MSCs-lung than MSCs-CPAM.
Collapse
Affiliation(s)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | - Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- Pediatric Department, Children’s Hospital “Vittore Buzzi”, Milano, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, Milan, Italy
| | | |
Collapse
|
4
|
SARS-CoV-2 Exposed Mesenchymal Stromal Cell from Congenital Pulmonary Airway Malformations: Transcriptomic Analysis and the Expression of Immunomodulatory Genes. Int J Mol Sci 2021; 22:ijms222111814. [PMID: 34769246 PMCID: PMC8584055 DOI: 10.3390/ijms222111814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
The inflammatory response plays a central role in the complications of congenital pulmonary airway malformations (CPAM) and severe coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the transcriptional changes induced by SARS-CoV-2 exposure in pediatric MSCs derived from pediatric lung (MSCs-lung) and CPAM tissues (MSCs-CPAM) in order to elucidate potential pathways involved in SARS-CoV-2 infection in a condition of exacerbated inflammatory response. MSCs-lung and MSCs-CPAM do not express angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TRMPSS2). SARS-CoV-2 appears to be unable to replicate in MSCs-CPAM and MSCs-lung. MSCs-lung and MSCs-CPAM maintained the expression of stemness markers MSCs-lung show an inflammatory response (IL6, IL1B, CXCL8, and CXCL10), and the activation of Notch3 non-canonical pathway; this route appears silent in MSCs-CPAM, and cytokine genes expression is reduced. Decreased value of p21 in MSCs-lung suggested no cell cycle block, and cells did not undergo apoptosis. MSCs-lung appears to increase genes associated with immunomodulatory function but could contribute to inflammation, while MSCs-CPAM keeps stable or reduce the immunomodulatory receptors expression, but they also reduce their cytokines expression. These data indicated that, independently from their perilesional or cystic origin, the MSCs populations already present in a patient affected with CPAM are not permissive for SARS-CoV-2 entry, and they will not spread the disease in case of infection. Moreover, these MSCs will not undergo apoptosis when they come in contact with SARS-CoV-2; on the contrary, they maintain their staminality profile.
Collapse
|
5
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, Pham VH, Ngoc VTN, Chu-Dinh T, Kushekhar K. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2020; 21:E708. [PMID: 31973182 PMCID: PMC7037097 DOI: 10.3390/ijms21030708] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BMSCs), which are known as multipotent cells, are widely used in the treatment of various diseases via their self-renewable, differentiation, and immunomodulatory properties. In-vitro and in-vivo studies have supported the understanding mechanisms, safety, and efficacy of BMSCs therapy in clinical applications. The number of clinical trials in phase I/II is accelerating; however, they are limited in the size of subjects, regulations, and standards for the preparation and transportation and administration of BMSCs, leading to inconsistency in the input and outcome of the therapy. Based on the International Society for Cellular Therapy guidelines, the characterization, isolation, cultivation, differentiation, and applications can be optimized and standardized, which are compliant with good manufacturing practice requirements to produce clinical-grade preparation of BMSCs. This review highlights and updates on the progress of production, as well as provides further challenges in the studies of BMSCs, for the approval of BMSCs widely in clinical application.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | | | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway;
| |
Collapse
|
6
|
Pelizzo G, Veschi V, Mantelli M, Croce S, Di Benedetto V, D'Angelo P, Maltese A, Catenacci L, Apuzzo T, Scavo E, Moretta A, Todaro M, Stassi G, Avanzini MA, Calcaterra V. Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells. BMC Cancer 2018; 18:1176. [PMID: 30482160 PMCID: PMC6260687 DOI: 10.1186/s12885-018-5082-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches. Electronic supplementary material The online version of this article (10.1186/s12885-018-5082-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Via dei Benedettini n.1, 90134, Palermo, Italy.
| | - Veronica Veschi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Vincenzo Di Benedetto
- Pediatric Surgery Unit and NICU Policlinico-Vittorio Emanuele Hospital, Catania, Italy
| | - Paolo D'Angelo
- Pediatric Hematology Oncology Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Alice Maltese
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Laura Catenacci
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Tiziana Apuzzo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Scavo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Antonia Moretta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Matilde Todaro
- Department of DIBIMIS, University of Palermo, 90127, Palermo, Italy
| | - Giorgio Stassi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
7
|
Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci 2017; 108:1939-1946. [PMID: 28756624 PMCID: PMC5623746 DOI: 10.1111/cas.13334] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from adipose tissue, bone marrow, cord blood, and other tissues, have recently attracted much attention as potential therapeutic agents in various diseases because of their trans‐differentiation capacity. However, recent studies have suggested that MSCs also appear to contribute to tumor pathogenesis by supporting tumor microenvironments, increasing tumor growth, and eliciting antitumor immune responses. Although some studies suggest that MSCs have inhibitory effects on tumor development, they are overwhelmed by a number of studies showing that MSCs exert stimulatory effects on tumor pathogenesis. In the present review, we summarize a number of findings to provide current information about the therapeutic potential of MSCs in various diseases. We then discuss the potential roles of MSCs in tumor progression.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- The Faculty of Liberal Arts, Jungwon University, Chungbuk, Korea
| | - In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|