1
|
Uslu E, Rana VK, Guo Y, Stampoultzis T, Gorostidi F, Sandu K, Pioletti DP. Enhancing Robustness of Adhesive Hydrogels through PEG-NHS Incorporation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50095-50105. [PMID: 37871154 PMCID: PMC10623379 DOI: 10.1021/acsami.3c13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Tissue wounds are a significant challenge for the healthcare system, affecting millions globally. Current methods like suturing and stapling have limitations as they inadequately cover the wound, fail to prevent fluid leakage, and increase the risk of infection. Effective solutions for diverse wound conditions are still lacking. Adhesive hydrogels, on the other hand, can be a potential alternative for wound care. They offer benefits such as firm sealing without leakage, easy and rapid application, and the provision of mechanical support and flexibility. However, the in vivo durability of hydrogels is often compromised by excessive swelling and unforeseen degradation, which limits their widespread use. In this study, we addressed the durability issues of the adhesive hydrogels by incorporating acrylamide polyethylene glycol N-hydroxysuccinimide (PEG-NHS) moieties (max. 2 wt %) into hydrogels based on hydroxy ethyl acrylamide (HEAam). The results showed that the addition of PEG-NHS significantly enhanced the adhesion performance, achieving up to 2-fold improvement on various soft tissues including skin, trachea, heart, lung, liver, and kidney. We further observed that the addition of PEG-NHS into the adhesive hydrogel network improved their intrinsic mechanical properties. The tensile modulus of these hydrogels increased up to 5-fold, while the swelling ratio decreased up to 2-fold in various media. These hydrogels also exhibited improved durability under the enzymatic and oxidative biodegradation induced conditions without causing any toxicity to the cells. To evaluate its potential for clinical applications, we used PEG-NHS based hydrogels to address tracheomalacia, a condition characterized by inadequate mechanical support of the airway due to weak/malacic cartilage rings. Ex vivo study confirmed that the addition of PEG-NHS to the hydrogel network prevented approximately 90% of airway collapse compared to the case without PEG-NHS. Overall, this study offers a promising approach to enhance the durability of adhesive hydrogels by the addition of PEG-NHS, thereby improving their overall performances for various biomedical applications.
Collapse
Affiliation(s)
- Ece Uslu
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| | - Vijay Kumar Rana
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| | - Yanheng Guo
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| | - Theofanis Stampoultzis
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| | - François Gorostidi
- Airway
Sector, Médecine Hautement Spécialisée, Department
of Otorhinolaryngology, University Hospital
CHUV, Lausanne 1011, Switzerland
| | - Kishore Sandu
- Airway
Sector, Médecine Hautement Spécialisée, Department
of Otorhinolaryngology, University Hospital
CHUV, Lausanne 1011, Switzerland
| | - Dominique P. Pioletti
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Graczyk S, Pasławski R, Grzeczka A, Pasławska U, Świeczko-Żurek B, Malisz K, Popat K, Sionkowska A, Golińska P, Rai M. Antimicrobial and Antiproliferative Coatings for Stents in Veterinary Medicine-State of the Art and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6834. [PMID: 37959431 PMCID: PMC10649059 DOI: 10.3390/ma16216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Microbial colonization in veterinary stents poses a significant and concerning issue in veterinary medicine. Over time, these pathogens, particularly bacteria, can colonize the stent surfaces, leading to various complications. Two weeks following the stent insertion procedure, the colonization becomes observable, with the aggressiveness of bacterial growth directly correlating with the duration of stent placement. Such microbial colonization can result in infections and inflammations, compromising the stent's efficacy and, subsequently, the animal patient's overall well-being. Managing and mitigating the impact of these pathogens on veterinary stents is a crucial challenge that veterinarians and researchers are actively addressing to ensure the successful treatment and recovery of their animal patients. In addition, irritation of the tissue in the form of an inserted stent can lead to overgrowth of granulation tissue, leading to the closure of the stent lumen, as is most often the case in the trachea. Such serious complications after stent placement require improvements in the procedures used to date. In this review, antibacterial or antibiofilm strategies for several stents used in veterinary medicine have been discussed based on the current literature and the perspectives have been drawn. Various coating strategies such as coating with hydrogel, antibiotic, or other antimicrobial agents have been reviewed.
Collapse
Affiliation(s)
- Szymon Graczyk
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Robert Pasławski
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Arkadiusz Grzeczka
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Urszula Pasławska
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Beata Świeczko-Żurek
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Klaudia Malisz
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Ketul Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| | - Mahendra Rai
- Department of Chemistry, Federal University of Piaui (UFPI), Teresina 64049-550, Brazil;
| |
Collapse
|
3
|
Mondal A, Visner GA, Kaza AK, Dupont PE. A novel ex vivo tracheobronchomalacia model for airway stent testing and in vivo model refinement. J Thorac Cardiovasc Surg 2023; 166:679-687.e1. [PMID: 37156367 PMCID: PMC10524727 DOI: 10.1016/j.jtcvs.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES We sought to develop an ex vivo trachea model capable of producing mild, moderate, and severe tracheobronchomalacia for optimizing airway stent design. We also aimed to determine the amount of cartilage resection required for achieving different tracheobronchomalacia grades that can be used in animal models. METHODS We developed an ex vivo trachea test system that enabled video-based measurement of internal cross-sectional area as intratracheal pressure was cyclically varied for peak negative pressures of 20 to 80 cm H2O. Fresh ovine tracheas were induced with tracheobronchomalacia by single mid-anterior incision (n = 4), mid-anterior circumferential cartilage resection of 25% (n = 4), and 50% per cartilage ring (n = 4) along an approximately 3-cm length. Intact tracheas (n = 4) were used as control. All experimental tracheas were mounted and experimentally evaluated. In addition, helical stents of 2 different pitches (6 mm and 12 mm) and wire diameters (0.52 mm and 0.6 mm) were tested in tracheas with 25% (n = 3) and 50% (n = 3) circumferentially resected cartilage rings. The percentage collapse in tracheal cross-sectional area was calculated from the recorded video contours for each experiment. RESULTS Ex vivo tracheas compromised by single incision and 25% and 50% circumferential cartilage resection produce tracheal collapse corresponding to clinical grades of mild, moderate, and severe tracheobronchomalacia, respectively. A single anterior cartilage incision produces saber-sheath type tracheobronchomalacia, whereas 25% and 50% circumferential cartilage resection produce circumferential tracheobronchomalacia. Stent testing enabled the selection of stent design parameters such that airway collapse associated with moderate and severe tracheobronchomalacia could be reduced to conform to, but not exceed, that of intact tracheas (12-mm pitch, 0.6-mm wire diameter). CONCLUSIONS The ex vivo trachea model is a robust platform that enables systematic study and treatment of different grades and morphologies of airway collapse and tracheobronchomalacia. It is a novel tool for optimization of stent design before advancing to in vivo animal models.
Collapse
Affiliation(s)
- Abhijit Mondal
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass.
| | - Gary A Visner
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Aditya K Kaza
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass
| | - Pierre E Dupont
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass
| |
Collapse
|
4
|
Uslu E, Rana VK, Anagnostopoulos S, Karami P, Bergadano A, Courbon C, Gorostidi F, Sandu K, Stergiopulos N, Pioletti DP. Wet adhesive hydrogels to correct malacic trachea (tracheomalacia) A proof of concept. iScience 2023; 26:107168. [PMID: 37456833 PMCID: PMC10338288 DOI: 10.1016/j.isci.2023.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Tracheomalacia (TM) is a condition characterized by a weak tracheal cartilage and/or muscle, resulting in excessive collapse of the airway in the newborns. Current treatments including tracheal reconstruction, tracheoplasty, endo- and extra-luminal stents have limitations. To address these limitations, this work proposes a new strategy by wrapping an adhesive hydrogel patch around a malacic trachea. Through a numerical model, first it was demonstrated that a hydrogel patch with sufficient mechanical and adhesion strength can preserve the trachea's physiological shape. Accordingly, a new hydrogel providing robust adhesion on wet tracheal surfaces was synthesized employing the hydroxyethyl acrylamide (HEAam) and polyethylene glycol methacrylate (PEGDMA) as main polymer network and crosslinker, respectively. Ex vivo experiments revealed that the adhesive hydrogel patches can restrain the collapsing of malacic trachea under negative pressure. This study may open the possibility of using an adhesive hydrogel as a new approach in the difficult clinical situation of tracheomalacia.
Collapse
Affiliation(s)
- Ece Uslu
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Vijay Kumar Rana
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Sokratis Anagnostopoulos
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Peyman Karami
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | | | - Cecile Courbon
- Department of Anesthesiology, University Hospital, CHUV, Lausanne, Switzerland
| | - Francois Gorostidi
- Department of Otorhinolaryngology, Airway Sector, University Hospital, CHUV, Lausanne, Switzerland
| | - Kishore Sandu
- Department of Otorhinolaryngology, Airway Sector, University Hospital, CHUV, Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Dominique P. Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| |
Collapse
|
5
|
Graczyk S, Pasławski R, Grzeczka A, Litwińska L, Jagielski D, Pasławska U. Stents in Veterinary Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1480. [PMID: 36837110 PMCID: PMC9959717 DOI: 10.3390/ma16041480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Stenting in veterinary medicine has been a rapidly growing method of interventional surgery for several years. This procedure is usually performed in the respiratory and urinary tracts, but there are cases of stenting of blood vessels or gastrointestinal structures. It is based on maintaining the permeability of a given tubular structure, thus allowing the passage of gas or liquid. This procedure is often performed as a first-line treatment in situations where pharmacological agents do not work and as an alternative method, often cheaper than the classically performed ones. There are also cases where stenting is used as a palliative treatment, e.g., to enable defecation in colonic obstruction due to tumour infiltration of the colon wall. Stenting is often a life-saving or comfort-improving procedure for animals, but one should also be aware of possible postoperative complications and be prepared for any adversity. For this reason, this review provides an insight into the current knowledge in veterinary medicine about stenting and the consequences associated with this procedure.
Collapse
|
6
|
A New Removable Helical Metallic Stent for the Treatment of Tracheomalacia in Children: Study in Pathological Animal Model. J Clin Med 2022; 11:jcm11226757. [PMID: 36431234 PMCID: PMC9695607 DOI: 10.3390/jcm11226757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Congenital tracheomalacia is a pathology with no consensus of medical or surgical approach. The permanent nature and the major complications associated with metallic stents have limited their use over the years. The purpose of this study was to evaluate the feasibility of a helical stent design removal. METHODS Ten dogs diagnosed with tracheal collapse and treated with the helical stent were involved in the study. Animals were classified into three groups depending on stent indwelling time. Prior to the removal, endoscopic evaluation was performed to assess endothelization grade, mucous accumulation, and the presence of stenosis. During the removal, bleeding, fracture, or impossibility of removal were noted. After the removal, all macroscopic mucosal changes were recorded. RESULTS Technical success was 100%, without any complications. Complete epithelization of the stent was visualized in 7/10 animals. The removal procedure duration ranged from 2-12 min. At post-removal endoscopy, bleeding or epithelial damage, was visualized in any case. Stent fracture during removal occurred in one animal. CONCLUSIONS The removal of a metallic stent with spiral geometry is feasible, simple, and without complications, regardless of the degree of neo-epithelialization.
Collapse
|
7
|
Johnson CM, Luke AS, Jacobsen C, Novak N, Dion GR. State of the Science in Tracheal Stents: A Scoping Review. Laryngoscope 2021; 132:2111-2123. [PMID: 34652817 DOI: 10.1002/lary.29904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Recent material science advancements are driving tracheal stent innovation. We sought to assess the state of the science regarding materials and preclinical/clinical outcomes for tracheal stents in adults with benign tracheal disease. METHODS A comprehensive literature search in April 2021 identified 556 articles related to tracheal stents. One-hundred and twenty-eight full-text articles were reviewed and 58 were included in the final analysis. Datapoints examined were stent materials, clinical applications and outcomes, and preclinical findings, including emerging technologies. RESULTS In the 58 included studies, stent materials were metals (n = 28), polymers (n = 19), coated stents (n = 19), and drug-eluting (n = 5). Metals included nitinol, steel, magnesium alloys, and elgiloy. Studies utilized 10 different polymers, the most popular included polydioxanone, poly-l-lactic acid, poly(d,l-lactide-co-glycolide), and polycaprolactone. Coated stents employed a metal or polymer framework and were coated with polyurethane, silicone, polytetrafluoroethylene, or polyester, with some polymer coatings designed specifically for drug elution. Drug-eluting stents utilized mitomycin C, arsenic trioxide, paclitaxel, rapamycin, and doxycycline. Of the 58 studies, 18 were human and 40 were animal studies (leporine = 21, canine = 9, swine = 4, rat = 3, ovine/feline/murine = 1). Noted complications included granulation tissue and/or stenosis, stent migration, death, infection, and fragmentation. CONCLUSION An increasing diversity of materials and coatings are employed for tracheal stents, growing more pronounced over the past decade. Though most studies are still preclinical, awareness of tracheal stent developments is important in contextualizing novel stent concepts and clinical trials. Laryngoscope, 2021.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Otolaryngology-Head and Neck Surgery, Naval Medical Center-San Diego, San Diego, California, U.S.A
| | - Alex S Luke
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | | | - Nicholas Novak
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Gregory R Dion
- Department of Otolaryngology-Head and Neck Surgery, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A.,Dental and Craniofacial Trauma Research Department, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| |
Collapse
|
8
|
Mencattelli M, Mondal A, Miale R, Van Story D, Peine J, Li Y, Artoni A, Kaza AK, Dupont PE. In Vivo Molding of Airway Stents. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010525. [PMID: 34335133 PMCID: PMC8323946 DOI: 10.1002/adfm.202010525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 06/13/2023]
Abstract
Like ready-to-wear clothing, medical devices come in a fixed set of sizes. While this may accommodate a large fraction of the patient population, others must either experience suboptimal results due to poor sizing or must do without the device. Although techniques have been proposed to fabricate patient-specific devices in advance of a procedure, this process is expensive and time consuming. An alternative solution that provides every patient with a tailored fit is to create devices that can be customized to the patient's anatomy as they are delivered. This paper reports an in vivo molding process in which a soft flexible photocurable stent is delivered into the trachea or bronchi over a UV-transparent balloon. The balloon is expanded such that the stent conforms to the varying cross-sectional shape of the airways. UV light is then delivered through the balloon curing the stent into its expanded conformal shape. The potential of this method is demonstrated using phantom, ex vivo and in vivo experiments. This approach can produce stents providing equivalent airway support to those made from standard materials while providing a customized fit.
Collapse
Affiliation(s)
- Margherita Mencattelli
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115 USA
| | - Abhijit Mondal
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115 USA
| | - Roberta Miale
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115 USA
| | - David Van Story
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115 USA; currently at Therapeutic Technology Design and Development Lab, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 USA
| | - Joseph Peine
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115 USA
| | - Yingtian Li
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115 USA; currently at Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Alessio Artoni
- Dipartimento di Ingegneria Civile e Industriale, Universita di Pisa, Largo Lucio Lazzarino 2, 56122 Pisa, Italy
| | - Aditya K Kaza
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 USA
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 USA
| |
Collapse
|