1
|
Kentgens AC, Wyler F, Oestreich MA, Latzin P, Yammine S. Sulfur hexafluoride multiple breath washin and washout outcomes in infants are not interchangeable. Physiol Meas 2024; 45:115003. [PMID: 39481237 DOI: 10.1088/1361-6579/ad8da4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
Objective.Sulfur hexafluoride (SF6) multiple-breath washout (MBW) assesses ventilation inhomogeneity, as an early marker of obstructive respiratory diseases. Primary outcomes are customarily washout-derived, and it is unclear whether the preceding SF6-washin can provide similar estimates. We aimed to assess comparability of primary SF6-MBW outcomes between washin and washout phases of infant SF6-MBW data measured with the WBreath (ndd Medizintechnik AG, Zurich, Switzerland) and Spiroware (Eco Medics AG, Duernten, Switzerland) MBW-setups, respectively.Approach.We assessed mean relative differences in lung clearance index (LCI) and functional residual capacity (FRC) between the washin and washout of existing SF6-MBW data from healthy infants and infants with cystic fibrosis (CF). We assessed whether these differences exceeded the mean relative within-test between-trial differences of washout-derived outcomes, which can be attributed to natural variability. We also explored non-physiological factors using a pediatric lung simulator.Main results.LCI and FRC from washin and washout were not comparable, for both setups. The mean difference (SD) in LCI between washin and washout was 2.3(10.8)% for WBreath and -9.7(8.0)% for Spiroware, while in FRC it was -4.7(8.4)% for WBreath and -2.3(9.7)% for Spiroware. These differences exceeded the within-test between-trial differences in washout-derived outcomes. Outcomes from washin and washout were also not comparable in a pediatric lung simulator.Significance.Outcomes of the washin and washout were not comparable due to an interplay of physiological and non-physiological factors, and cannot be used interchangeably.
Collapse
Affiliation(s)
- Anne-Christianne Kentgens
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Florian Wyler
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marc-Alexander Oestreich
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Frauchiger BS, Willers C, Cotting J, Kieninger E, Korten I, Casaulta C, Salem Y, Stranzinger E, Brabandt B, Usemann J, Regamey N, Kuhn A, Blanchon S, Rochat I, Bauman G, Müller-Suter D, Moeller A, Latzin P, Ramsey KA. Lung structural and functional impairments in young children with cystic fibrosis diagnosed following newborn screening - A nationwide observational study. J Cyst Fibros 2024; 23:910-917. [PMID: 38926017 DOI: 10.1016/j.jcf.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Non-invasive and sensitive clinical endpoints are needed to monitor onset and progression of early lung disease in children with cystic fibrosis (CF). We compared lung clearance index (LCI), FEV1, functional and structural lung magnetic resonance imaging (MRI) outcomes in Swiss children with CF diagnosed following newborn screening. METHODS Lung function (LCI, FEV1) and unsedated functional and structural lung MRI was performed in 79 clinically stable children with CF (3 - 8 years) and 75 age-matched healthy controls. Clinical information was collected throughout childhood. RESULTS LCI, ventilation and perfusion defects, and structural MRI scores were significantly higher in children with CF compared with controls, but FEV1 was not different between groups. Lung MRI outcomes correlated significantly with LCI (morphology score (r = 0.56, p < 0.001); ventilation defects (r = 0.43, p = 0.001); perfusion defects (r = 0.64, p < 0.001), but not with FEV1. Lung MRI outcomes were more sensitive to detect impairments in children with CF (abnormal ventilation and perfusion outcomes in 47 %, morphology score in 30 %) compared with lung function (abnormal LCI in 21 % and FEV1 in 4.8 %). Pulmonary exacerbations, respiratory hospitalizations, and increase in patient-reported cough was associated with higher LCI and higher structural and functional MRI outcomes. CONCLUSIONS The LCI and lung MRI outcomes non-invasively detect even mild early lung disease in young children with CF diagnosed following newborn screening. Pulmonary exacerbations and early respiratory symptoms were risk factors for structural and functional impairment in childhood.
Collapse
Affiliation(s)
- Bettina S Frauchiger
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Corin Willers
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Paediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | - Jasna Cotting
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasmin Salem
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Enno Stranzinger
- Diagnostic, interventional and pediatric radiology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ben Brabandt
- Diagnostic, interventional and pediatric radiology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- Division of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Nicolas Regamey
- Department of Respiratory Medicine, Children's Hospital Luzern, Luzern, Switzerland
| | - Alena Kuhn
- Department of Paediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | | | | | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | | | - Alexander Moeller
- Division of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Philipp Latzin
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathryn A Ramsey
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth WA Australia.
| |
Collapse
|
3
|
Oestreich MA, Doswald I, Salem Y, Künstle N, Wyler F, Frauchiger BS, Kentgens AC, Latzin P, Yammine S. A computerized tool for the systematic visual quality assessment of infant multiple-breath washout measurements. Front Pediatr 2024; 12:1393291. [PMID: 38910962 PMCID: PMC11191423 DOI: 10.3389/fped.2024.1393291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Multiple-breath washout (MBW) is a sensitive method for assessing lung volumes and ventilation inhomogeneity in infants, but remains prone to artefacts (e.g., sighs). There is a lack of tools for systematic retrospective analysis of existing datasets, and unlike N2-MBW in older children, there are few specific quality control (QC) criteria for artefacts in infant SF6-MBW. Aim We aimed to develop a computer-based tool for systematic evaluation of visual QC criteria of SF6-MBW measurements and to investigate interrater agreement and effects on MBW outcomes among three independent examiners. Methods We developed a software package for visualization of raw Spiroware (Eco Medics AG, Switzerland) and signal processed WBreath (ndd Medizintechnik AG, Switzerland) SF6-MBW signal traces. Interrater agreement among three independent examiners (two experienced, one novice) who systematically reviewed 400 MBW trials for visual artefacts and the decision to accept/reject the washin and washout were assessed. Results Our tool visualizes MBW signals and provides the user with (i) display options (e.g., zoom), (ii) options for a systematic QC assessment [e.g., decision to accept or reject, identification of artefacts (leak, sigh, irregular breathing pattern, breath hold), and comments], and (iii) additional information (e.g., automatic identification of sighs). Reviewer agreement was good using pre-defined QC criteria (κ 0.637-0.725). Differences in the decision to accept/reject had no substantial effect on MBW outcomes. Conclusion Our visual quality control tool supports a systematic retrospective analysis of existing data sets. Based on predefined QC criteria, even inexperienced users can achieve comparable MBW results.
Collapse
Affiliation(s)
- Marc-Alexander Oestreich
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Isabelle Doswald
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasmin Salem
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Noëmi Künstle
- University Children’s Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Florian Wyler
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bettina S. Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anne-Christianne Kentgens
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Streibel C, Willers CC, Bauman G, Pusterla O, Bieri O, Curdy M, Horn M, Casaulta C, Berger S, Dekany GM, Kieninger E, Bartenstein A, Latzin P. Long-term pulmonary outcome of children with congenital diaphragmatic hernia: functional lung MRI using matrix-pencil decomposition enables side-specific assessment of lung function. Eur Radiol 2024; 34:3773-3785. [PMID: 37982833 PMCID: PMC11166819 DOI: 10.1007/s00330-023-10395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES In patients with congenital diaphragmatic hernia (CDH) the exact functional outcome of the affected lung side is still unknown, mainly due to the lack of spatially resolved diagnostic tools. Functional matrix-pencil decomposition (MP-) lung MRI fills this gap as it measures side-specific ventilation and perfusion. We aimed to assess the overall and side-specific pulmonary long-term outcomes of patients with CDH using lung function tests and MP-MRI. METHODS Thirteen school-aged children with CDH (seven with small and six with large defect-sized CDH, defined as > 50% of the chest wall circumference being devoid of diaphragm tissue) and thirteen healthy matched controls underwent spirometry, multiple-breath washout, and MP-MRI. The main outcomes were forced expiratory volume in 1 second (FEV1), lung clearance index (LCI2.5), ventilation defect percentage (VDP), and perfusion defect percentage (QDP). RESULTS Patients with a large CDH showed significantly reduced overall lung function compared to healthy controls (mean difference [95%-CIadjusted]: FEV1 (z-score) -4.26 [-5.61, -2.92], FVC (z-score) -3.97 [-5.68, -2.26], LCI2.5 (TO) 1.12 [0.47, 1.76], VDP (%) 8.59 [3.58, 13.60], QDP (%) 17.22 [13.16, 21.27]) and to patients with a small CDH. Side-specific examination by MP-MRI revealed particularly reduced ipsilateral ventilation and perfusion in patients with a large CDH (mean difference to contralateral side [95%-CIadjusted]: VDP (%) 14.80 [10.50, 19.00], QDP (%) 23.50 [1.75, 45.20]). CONCLUSIONS Data indicate impaired overall lung function with particular limitation of the ipsilateral side in patients with a large CDH. MP-MRI is a promising tool to provide valuable side-specific functional information in the follow-up of patients with CDH. CLINICAL RELEVANCE STATEMENT In patients with congenital diaphragmatic hernia, easily applicable MP-MRI allows specific examination of the lung side affected by the hernia and provides valuable information on ventilation and perfusion with implications for clinical practice, making it a promising tool for routine follow-up. KEY POINTS • Functional matrix pencil decomposition (MP) MRI data from a small sample indicate reduced ipsilateral pulmonary ventilation and perfusion in children with large congenital diaphragmatic hernia (CDH). • Easily applicable pencil decomposition MRI provides valuable side-specific diagnostic information on lung ventilation and perfusion. This is a clear advantage over conventional lung function tests, helping to comprehensively follow up patients with congenital diaphragmatic hernia and monitor therapy effects.
Collapse
Affiliation(s)
- Carmen Streibel
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - C Corin Willers
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Department of Paediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | - Grzegorz Bauman
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Orso Pusterla
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Marion Curdy
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Horn
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Steffen Berger
- Department of Paediatric Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Gabriela Marta Dekany
- Department of Paediatric Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Bartenstein
- Department of Paediatric Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Bhakta NR, McGowan A, Ramsey KA, Borg B, Kivastik J, Knight SL, Sylvester K, Burgos F, Swenson ER, McCarthy K, Cooper BG, García-Río F, Skloot G, McCormack M, Mottram C, Irvin CG, Steenbruggen I, Coates AL, Kaminsky DA. European Respiratory Society/American Thoracic Society technical statement: standardisation of the measurement of lung volumes, 2023 update. Eur Respir J 2023; 62:2201519. [PMID: 37500112 DOI: 10.1183/13993003.01519-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/16/2023] [Indexed: 07/29/2023]
Abstract
This document updates the 2005 European Respiratory Society (ERS) and American Thoracic Society (ATS) technical standard for the measurement of lung volumes. The 2005 document integrated the recommendations of an ATS/ERS task force with those from an earlier National Heart, Lung, and Blood Institute workshop that led to the publication of background papers between 1995 and 1999 and a consensus workshop report with more in-depth descriptions and discussion. Advancements in hardware and software, new research and emerging approaches have necessitated an update to the 2005 technical standard to guide laboratory directors, physiologists, operators, pulmonologists and manufacturers. Key updates include standardisation of linked spirometry, new equipment quality control and validation recommendations, generalisation of the multiple breath washout concept beyond nitrogen, a new acceptability and grading system with addition of example tracings, and a brief review of imaging and other new techniques to measure lung volumes. Future directions and key research questions are also noted.
Collapse
Affiliation(s)
- Nirav R Bhakta
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aisling McGowan
- Department of Respiratory and Sleep Diagnostics, Connolly Hospital, Dublin, Ireland
| | - Kathryn A Ramsey
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Brigitte Borg
- Respiratory Medicine, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jana Kivastik
- Department of Physiology, University of Tartu, Tartu, Estonia
| | - Shandra Lee Knight
- Strauss Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karl Sylvester
- Cambridge Respiratory Physiology, Cambridge University Hospital, Cambridge, UK
- Respiratory Physiology, Royal Papworth Hospital, Cambridge, UK
| | - Felip Burgos
- Department of Pulmonary Medicine, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, CIBERES, Barcelona, Spain
| | - Erik R Swenson
- VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Kevin McCarthy
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Gwen Skloot
- Department of Respiratory Diseases, La Paz University Hospital IdiPAZ, Autonomous University of Madrid, CIBERES, Madrid, Spain
| | | | - Carl Mottram
- Pulmonary Function Laboratory, Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Irene Steenbruggen
- Department of Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Allan L Coates
- Pulmonary Function Department, Isala Hospital, Zwolle, The Netherlands
| | - David A Kaminsky
- Division of Respiratory Medicine, Dept of Pediatrics, Translational Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Sandvik RM, Schmidt MN, Voldby CM, Buchvald FF, Olesen HV, Olsen J, Kragh MV, Rubak SL, Pressler T, Robinson PD, Gustafsson PM, Skov M, Nielsen KG. Nationwide lung function monitoring from infancy in newborn-screened children with cystic fibrosis. ERJ Open Res 2023; 9:00317-2023. [PMID: 37908398 PMCID: PMC10613974 DOI: 10.1183/23120541.00317-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/01/2023] [Indexed: 11/02/2023] Open
Abstract
Background Cystic fibrosis (CF) lung disease starts in infancy and can be assessed for structural lung abnormalities using computed tomography or magnetic resonance scans, or for lung function impairment using multiple breath washout (MBW). However, in infancy these two methods are not well correlated. Trajectories of CF lung disease assessed by MBW in infants and toddlers remain poorly described, which is why we aimed to 1) describe the trajectory of lung function, 2) explore risk factors for progression and 3) explore the real-life effect of lumacaftor/ivacaftor. Methods This was a nationwide observational cohort study (2018-2021) using data collected as part of the routine clinical surveillance programme (including MBW and monthly endo-laryngeal suction sampling for bacterial pathogens) in children born after implementation of newborn screening for CF (May 2016). Lumacaftor/ivacaftor commenced from age 2 years in children homozygous for F508del. Ventilation distribution efficiency (VDE), recently described to have advantages over lung clearance index (LCI), was reported as the primary MBW outcome after z-score calculations based on published reference data. Mixed effect linear regression models were the main statistical analyses performed in this study. Results 59 children, aged 2-45 months, contributed with 211 MBW occasions (median (interquartile range (IQR)) 3 (2-5) MBW occasions per child) with a median (IQR) follow-up time of 10.8 (5.2-22.3) months. An overall mean annual deterioration rate of -0.50 (95% CI -0.78- -0.22) z-VDE was observed, starting from an estimated mean z-VDE of -1.68 (95% CI -2.15- -1.22) at age 0.0 years (intercept). Pseudomonas aeruginosa "ever" (n=14, MBWs 50) had a significantly worse z-VDE trajectory versus P. aeruginosa "never" (mean difference 0.53 (95% CI 0.16-0.89) per year; p=0.0047) and lumacaftor/ivacaftor treatment (n=22, MBWs 46) significantly improved the trajectory of z-VDE (mean difference 1.72 (95% CI 0.79-2.66) per year; p=0.0004), leading to a stable mean z-VDE trajectory after start of treatment. Conclusions Infants and toddlers with CF demonstrated progressive deterioration in z-VDE over the first years of life. P. aeruginosa isolation "ever" was associated with an accelerated deterioration in lung function, while lumacaftor/ivacaftor therapy significantly improved and stabilised the trajectory.
Collapse
Affiliation(s)
- Rikke M. Sandvik
- Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Danish PCD and chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen, Denmark
| | - Marika N. Schmidt
- Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Danish PCD and chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen, Denmark
| | - Christian M. Voldby
- Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Danish PCD and chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen, Denmark
| | - Frederik F. Buchvald
- Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Danish PCD and chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen, Denmark
| | - Hanne V. Olesen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, CF Centre Aarhus, Danish Centre of Paediatric Pulmonology and Allergology, Aarhus, Denmark
| | - Jørgen Olsen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, CF Centre Aarhus, Danish Centre of Paediatric Pulmonology and Allergology, Aarhus, Denmark
| | - Maja V. Kragh
- Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Danish PCD and chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen, Denmark
| | - Sune L.M. Rubak
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, CF Centre Aarhus, Danish Centre of Paediatric Pulmonology and Allergology, Aarhus, Denmark
| | - Tacjana Pressler
- Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Danish PCD and chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen, Denmark
| | - Paul D. Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, Australia
- Airway Physiology and Imaging Group, The Woolcock Medical Research Institute, Sydney, Australia
| | - Per M. Gustafsson
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Children and Young Persons – Medical Clinic, Skaraborg Hospital, Skövde, Sweden
| | - Marianne Skov
- Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Danish PCD and chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen, Denmark
| | - Kim G. Nielsen
- Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Danish PCD and chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Nitsche C, Frauchiger BS, Thiele D, Oestreich MA, Husstedt BL, Grychtol RM, Maison N, Foth S, Meyer M, Jakobs N, Bahmer T, Hansen G, von Mutius E, Kopp M. Quality Control of Nitrogen Multiple Breath Washout in a Multicenter Pediatric Asthma Study. KLINISCHE PADIATRIE 2023; 235:66-74. [PMID: 36657454 DOI: 10.1055/a-1976-9232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Nitrogen multiple breath washout (N2MBW) is a lung function test increasingly used in small airway diseases. Quality criteria have not yet been globally implemented and time-consuming retrospective overreading is necessary. Little data has been published on children with recurrent wheeze or asthma from multicentered studies. METHODS Children with wheeze or asthma and healthy controls were included in the longitudinal All Age Asthma Cohort (ALLIANCE). To assess ventilation inhomogeneity, N2MBW tests were performed in five centers from 2013 until 2020. All N2MBW tests were centrally overread by one center. Multiple washout procedures (trials) at the visit concluded to one test occasion. Tests were accepted if trials were technically sound (started correctly, terminated correctly, no leak, regular breathing pattern) and repeatable within one test occasion. Signal misalignment was retrospectively corrected. Factors that may impact test quality were analyzed, such as experience level. RESULTS N2MBW tests of n=561 participants were analyzed leading to n=949 (68.3%) valid tests of n=1,390 in total. Inter-center test acceptability ranged from 27.6% to 77.8%. End-of-test criterion and leak were identified to be the most common reasons for rejection. Data loss and uncorrectable signal misalignment led to rejection of 58% of trials in one center. In preschool children, significant improvement of test acceptability was found longitudinally (χ2(8)=18.6; p=0.02). CONCLUSION N2MBW is feasible in a multicenter asthma study in children. However, the quality of this time-consuming procedure is dependent on experience level of staff in preschool children and still requires retrospective overreading for all age groups.
Collapse
Affiliation(s)
- Catharina Nitsche
- University Children's Hospital, Division of Paediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein Campus Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Bettina Sarah Frauchiger
- Department of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominik Thiele
- Institute for Medical Biometry and Statistics, University of Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Marc-Alexander Oestreich
- Department of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Berrit Liselotte Husstedt
- University Children's Hospital, Division of Paediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein Campus Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Ruth Margarethe Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL), Germany
| | - Nicole Maison
- Institute for Asthma- and Allergy Prevention (IAP), Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany.,Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Comprehensive Pneumology Center - Munich (CPC-M); Member of the German Center for Lung Research (DZL), Germany
| | - Svenja Foth
- University Children's Hospital Marburg, University of Marburg, Marburg, Germany.,Member of the German Center for Lung Research (DZL) , Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
| | - Meike Meyer
- Department of Paediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nikolas Jakobs
- University Children's Hospital, Division of Paediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein Campus Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Thomas Bahmer
- Internal Medicine Department I, Pneumology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany.,LungenClinic Grosshansdorf GmbH, Grosshansdorf, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL), Germany
| | - Erika von Mutius
- Institute for Asthma- and Allergy Prevention (IAP), Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany.,Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Comprehensive Pneumology Center - Munich (CPC-M); Member of the German Center for Lung Research (DZL), Germany
| | - Matthias Kopp
- Department of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Children's Hospital, Division of Paediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein Campus Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
8
|
Kentgens AC, Pusterla O, Bauman G, Santini F, Wyler F, Curdy MS, Willers CC, Bieri O, Latzin P, Ramsey KA. SIMULTANEOUS MULTIPLE BREATH WASHOUT AND OXYGEN-ENHANCED MAGNETIC RESONANCE IMAGING IN HEALTHY ADULTS. Respir Med Res 2023; 83:100993. [PMID: 37058881 DOI: 10.1016/j.resmer.2023.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Lung function testing and lung imaging are commonly used techniques to monitor respiratory diseases, such as cystic fibrosis (CF). The nitrogen (N2) multiple-breath washout technique (MBW) has been shown to detect ventilation inhomogeneity in CF, but the underlying pathophysiological processes that are altered are often unclear. Dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) could potentially be performed simultaneously with MBW because both techniques require breathing of 100% oxygen (O2) and may allow for visualisation of alterations underlying impaired MBW outcomes. However, simultaneous MBW and OE-MRI has never been assessed, potentially as it requires a magnetic resonance (MR) compatible MBW equipment. In this pilot study, we assessed whether MBW and OE-MRI can be performed simultaneously using a commercial MBW device that has been modified to be MR-compatible. We performed simultaneous measurements in five healthy volunteers aged 25-35 years. We obtained O2 and N2 concentrations from both techniques, and generated O2 wash-in time constant and N2 washout maps from OE-MRI data. We obtained good quality simultaneous measurements in two healthy volunteers due to technical challenges related to the MBW equipment and poor tolerance. Oxygen and N2 concentrations from both techniques, as well as O2 wash-in time constant maps and N2 washout maps could be obtained, suggesting that simultaneous measurements may have the potential to allow for comparison and visualization of regional differences in ventilation underlying impaired MBW outcomes. Simultaneous MBW and OE-MRI measurements can be performed with a modified MBW device and may help to understand MBW outcomes, but the measurements are challenging and have poor feasibility.
Collapse
|
9
|
Frauchiger BS, Ramsey KA, Usemann J, Kieninger E, Casaulta C, Sirtes D, Yammine S, Spycher B, Moeller A, Latzin P. Variability of clinically measured lung clearance index in children with cystic fibrosis. Pediatr Pulmonol 2023; 58:197-205. [PMID: 36251441 DOI: 10.1002/ppul.26180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
RATIONALE The lung clearance index (LCI) is increasingly being used in the clinical surveillance of patients with cystic fibrosis (CF). However, there are limited data on long-term variability and physiologically relevant changes in LCI during routine clinical surveillance. OBJECTIVES To evaluate the long-term variability of LCI and propose a threshold for a physiologically relevant change. METHODS In children aged 4-18 years with CF, LCI was measured every 3 months as part of routine clinical surveillance during 2011-2020 in two centers. The variability of LCI during periods of clinical stability was assessed using mixed-effects models and was used to identify thresholds for physiologically relevant changes. RESULTS Repeated LCI measurements of acceptable quality (N = 858) were available in 100 patients with CF; for 74 patients, 399 visits at clinical stability were available. The variability of repeated LCI measurements over time expressed as the coefficient of variation (CV%) was 7.4%. The upper limit of normal (ULN) for relative changes in LCI between visits was 19%. CONCLUSION We report the variability of LCI in children and adolescents with CF during routine clinical surveillance. According to our data, a change in LCI beyond 19% may be considered physiologically relevant. These findings will help guide clinical decisions according to LCI changes.
Collapse
Affiliation(s)
- Bettina S Frauchiger
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathryn A Ramsey
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- Division of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Elisabeth Kieninger
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Sirtes
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ben Spycher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Philipp Latzin
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Low Birth Weight and Impaired Later Lung Function: Results from a Monochorionic Twin Study. Ann Am Thorac Soc 2022; 19:1856-1864. [PMID: 35580242 DOI: 10.1513/annalsats.202112-1349oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: Fetal growth restriction (FGR) and resulting low birth weight are risk factors for impaired lung development. However, both are often correlated with other factors, especially prematurity. Therefore, the question whether lung function changes in individuals with FGR are driven by gestational age, fetal growth, or both often remains unanswered. Objectives: To examine the association of birth weight with lung function in monochorionic twins with selective FGR in one twin. Methods: We included 20 monochorionic twin pairs with selective FGR and subsequent discordant birth weight with a minimum age of 6 years. In this unique case-control design, the smaller twin represents the case and the cotwin the almost identical counterpart. They performed spirometry and underwent body plethysmography, multiple-breath washout, and magnetic resonance imaging (MRI). We compared lung function and MRI outcomes between the smaller twins and their cotwins by paired t tests, and we used mixed linear models to assess the association between birth weight and outcomes. Results: Mean study age was 18.4 years (range, 7.5-29.4), and mean difference in birth weight within the twin pairs was 575 g (range, 270-1,130). The mean difference of forced expiratory volume in 1 second z-score was -0.64 (95% confidence interval [CI], -0.98 to -0.30), and -0.55 (95% CI, -0.92 to -0.18) of forced vital capacity z-score between the smaller twins and their cotwins. Both were associated with birth weight: per 500 g of birth weight, forced expiratory volume in 1 second z-score increased by 0.50 (95% CI, 0.35-0.65; P < 0.001) and forced vital capacity z-score increased by 0.44 (95% CI, 0.31-0.57; P < 0.001). Sacin from multiple-breath washout, as a marker for ventilation inhomogeneity of acinar airways, was elevated in the smaller twins and was associated with low birth weight. There was no difference for MRI outcomes. The results remained similar after adjustment for study height. Conclusions: Low birth weight was associated with reduced large and small airway function independent of gestational age and body growth. Our findings suggest that intrauterine impairment of lung development induced by FGR has significant consequences on lung function until early adulthood.
Collapse
|
11
|
Oestreich MA, Wyler F, Frauchiger BS, Latzin P, Ramsey KA. Breath detection algorithms affect multiple-breath washout outcomes in pre-school and school age children. PLoS One 2022; 17:e0275866. [PMID: 36240198 PMCID: PMC9565421 DOI: 10.1371/journal.pone.0275866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Background Accurate breath detection is essential for the computation of outcomes in the multiple-breath washout (MBW) technique. This is particularly important in young children, where irregular breathing is common, and the designation of inspirations and expirations can be challenging. Aim To investigate differences between a commercial and a novel breath-detection algorithm and to characterize effects on MBW outcomes in children. Methods We replicated the signal processing and algorithms used in Spiroware software (v3.3.1, Eco Medics AG). We developed a novel breath detection algorithm (custom) and compared it to Spiroware using 2,455 nitrogen (N2) and 325 sulfur hexafluoride (SF6) trials collected in infants, children, and adolescents. Results In 83% of N2 and 32% of SF6 trials, the Spiroware breath detection algorithm rejected breaths and did not use them for the calculation of MBW outcomes. Our custom breath detection algorithm determines inspirations and expirations based on flow reversal and corresponding CO2 elevations, and uses all breaths for data analysis. In trials with regular tidal breathing, there were no differences in outcomes between algorithms. However, in 10% of pre-school children tests the number of breaths detected differed by more than 10% and the commercial algorithm underestimated the lung clearance index by up to 21%. Conclusion Accurate breath detection is challenging in young children. As the MBW technique relies on the cumulative analysis of all washout breaths, the rejection of breaths should be limited. We provide an improved algorithm that accurately detects breaths based on both flow reversal and CO2 concentration.
Collapse
Affiliation(s)
- Marc-Alexander Oestreich
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Florian Wyler
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bettina S. Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathryn A. Ramsey
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Frauchiger BS, Oestreich MA, Wyler F, Monney N, Willers C, Yammine S, Latzin P. Do clinimetric properties of LCI change after correction of signal processing? Pediatr Pulmonol 2022; 57:1180-1187. [PMID: 35182057 PMCID: PMC9314934 DOI: 10.1002/ppul.25865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The recently described sensor-crosstalk error in the multiple-breath washout (MBW) device Exhalyzer D (Eco Medics AG) could highly influence clinimetric properties and the current interpretation of MBW results. This study reanalyzes MBW data from clinical routine in the corrected software version Spiroware® 3.3.1 and evaluates the effect on outcomes. METHODS We included nitrogen-MBW data from healthy children and children with cystic fibrosis (CF) from previously published trials and ongoing cohort studies. We specifically compared lung clearance index (LCI) analyzed in Spiroware 3.2.1 and 3.3.1 with regard to (i) feasibility, (ii) repeatability, and (iii) validity as outcome parameters in children with CF. RESULTS (i) All previously collected measurements could be reanalyzed and resulted in unchanged feasibility in Spiroware 3.3.1. (ii) Short- and midterm repeatability of LCI was similar in both software versions. (iii) Clinical validity of LCI remained similar in Spiroware 3.3.1; however, this resulted in lower values. Discrimination between health and disease was comparable between both software versions. The increase in LCI over time was less pronounced with 0.16 LCI units/year (95% confidence interval [CI] 0.08; 0.24) versus 0.30 LCI units/year (95% CI 0.21; 0.38) in 3.2.1. Response to intervention in children receiving CF transmembrane conductance-modulator therapy resulted in a comparable improvement in LCI, in both Spiroware versions. CONCLUSION Our study confirms that clinimetric properties of LCI remain unaffected after correction for the cross-sensitivity error in Spiroware software.
Collapse
Affiliation(s)
- Bettina S Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marc-Alexander Oestreich
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Florian Wyler
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nathalie Monney
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Corin Willers
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Fouzas S, Kentgens AC, Lagiou O, Frauchiger BS, Wyler F, Theodorakopoulos I, Yammine S, Latzin P. Novel volumetric capnography indices measure ventilation inhomogeneity in cystic fibrosis. ERJ Open Res 2022; 8:00440-2021. [PMID: 35295235 PMCID: PMC8918935 DOI: 10.1183/23120541.00440-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022] Open
Abstract
BackgroundVolumetric capnography (VCap) is a simpler alternative of multiple-breath washout (MBW) to detect ventilation inhomogeneity (VI) in patients with cystic fibrosis (CF). However, its diagnostic performance is influenced by breathing dynamics. We introduce two novel VCap indices, the Capnographic Inhomogeneity Indices (CIIs) that may overcome this limitation and explore their diagnostic characteristics in a cohort of CF patients.MethodsWe analysed 320 N2-MBW trials from 50 CF patients and 65 controls (age 4-18 years) and calculated classical VCap indices, such as slope III (SIII) and the capnographic index (KPIv). We introduced novel CIIs based on a theoretical lung model, and assessed their diagnostic performance compared to classical VCap indices and the lung clearance index (LCI).ResultsBoth CIIs were significantly higher in CF patients compared with controls (mean±SD CII1 5.9±1.4% versus 5.1±1.0%, p=0.002; CII2 7.7±1.8% versus 6.8±1.4%, p=0.002) and presented strong correlation with LCI (CII1 R2=0.47 and CII2 R2=0.44 in CF patients). Classical VCap indices showed inferior discriminative ability (SIII 2.3±1.0%/L versus 1.9±0.7%/L, P=0.013; KPIv 3.9±1.3% versus 3.5±1.2%, P=0.071), while the correlation with LCI was weak (SIII R2=0.03; KPIv R2=0.08 in CF patients). CIIs showed lower intra-subject inter-trial variability, calculated as coefficient of variation for three and relative difference for two trials, than classical VCap indices, but higher than LCI (CII1 11.1±8.2% and CII2 11.0±8.0% versus SIII 16.3±13.5%; KPIv 15.9±12.8%; LCI 5.9%±4.2%).ConclusionCIIs detect VI better than classical VCap indices and correlate well with LCI. However, further studies on their diagnostic performance and clinical utility are required.
Collapse
|
14
|
Korten I, Kieninger E, Krueger L, Bullo M, Flück CE, Latzin P, Casaulta C, Boettcher C. Short-Term Effects of Elexacaftor/Tezacaftor/Ivacaftor Combination on Glucose Tolerance in Young People With Cystic Fibrosis-An Observational Pilot Study. Front Pediatr 2022; 10:852551. [PMID: 35529332 PMCID: PMC9070552 DOI: 10.3389/fped.2022.852551] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The effect of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) on glucose tolerance and/or cystic-fibrosis-related diabetes (CFRD) is not well understood. We performed an observational study on the short-term effects of ELX/TEZ/IVA on glucose tolerance. METHODS Sixteen adolescents with CF performed oral glucose tolerance tests (OGTT) before and 4-6 weeks after initiating ELX/TEZ/IVA therapy. A continuous glucose monitoring (CGM) system was used 3 days before until 7 days after starting ELX/TEZ/IVA treatment. RESULTS OGTT categories improved after initiating ELX/TEZ/IVA therapy (p = 0.02). Glucose levels of OGTT improved at 60, 90, and 120 min (p < 0.05), whereas fasting glucose and CGM measures did not change. CONCLUSION Shortly after initiating ELX/TEZ/IVA therapy, glucose tolerance measured by OGTT improved in people with CF. This pilot study indicates that ELX/TEZ/IVA treatment has beneficial effects on the endocrine pancreatic function and might prevent or at least postpone future CFRD.
Collapse
Affiliation(s)
- Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Linn Krueger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marina Bullo
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christa E Flück
- Department of Paediatric Endocrinology, Diabetology and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudia Boettcher
- Department of Paediatric Endocrinology, Diabetology and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Kieninger E, Willers C, Röthlisberger K, Yammine S, Pusterla O, Bauman G, Stranzinger E, Bieri O, Latzin P, Casaulta C. Effect of Salbutamol on Lung Ventilation in Children with Cystic Fibrosis: Comprehensive Assessment Using Spirometry, Multiple-Breath Washout, and Functional Lung Magnetic Resonance Imaging. Respiration 2021; 101:281-290. [PMID: 34808631 DOI: 10.1159/000519751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inhalation therapy is one of the cornerstones of the daily treatment regimen in patients with cystic fibrosis (CF). Recommendations regarding the addition of bronchodilators, especially salbutamol are conflicting due to the lack of evidence. New diagnostic measures such as multiple-breath washout (<underline>MBW)</underline> and functional magnetic resonance imaging (MRI) have the potential to reveal new insights into bronchodilator effects in patients with CF. OBJECTIVE The objective of the study was to comprehensively assess the functional response to nebulized inhalation with salbutamol in children with CF. METHODS Thirty children aged 6-18 years with stable CF performed pulmonary function tests, MBW, and matrix pencil-MRI before and after standardized nebulized inhalation of salbutamol. RESULTS Lung clearance index decreased (improved) by -0.24 turnover (95% confidence interval [CI]: -0.53 to 0.06; p = 0.111). Percentage of the lung volume with impaired fractional ventilation and relative perfusion decreased (improved) by -0.79% (CI: -1.99 to 0.42; p = 0.194) and -1.31% (CI: -2.28 to -0.35; p = 0.009), respectively. Forced expiratory volume (FEV1) increased (improved) by 0.41 z-score (CI: 0.24-0.58; p < 0.0001). We could not identify specific clinical factors associated with a more pronounced effect of salbutamol. CONCLUSIONS There is a positive short-term effect of bronchodilator inhalation on FEV1 in patients with CF, which is independent of ventilation inhomogeneity. Heterogeneous response between patients suggests that for prediction of a therapeutic effect this should be tested by spirometry in every patient individually.
Collapse
Affiliation(s)
- Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Corin Willers
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,
| | - Katrin Röthlisberger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Physiotherapy, University Hospital of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Orso Pusterla
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Enno Stranzinger
- Department of Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Wyler F, Oestreich MAH, Frauchiger BS, Ramsey KA, Latzin PT. Correction of sensor crosstalk error in Exhalyzer D multiple-breath washout device significantly impacts outcomes in children with cystic fibrosis. J Appl Physiol (1985) 2021; 131:1148-1156. [PMID: 34351818 DOI: 10.1152/japplphysiol.00338.2021] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RATIONALE Nitrogen multiple-breath washout is an established technique to assess functional residual capacity and ventilation inhomogeneity in the lung. Accurate measurement of gas concentrations is essential for the appropriate calculation of clinical outcomes. OBJECTIVES We investigated the accuracy of oxygen and carbon dioxide gas sensor measurements used for the indirect calculation of nitrogen concentration in a commercial multiple-breath washout device (Exhalyzer D, Eco Medics AG, Duernten, Switzerland) and its impact on functional residual capacity and lung clearance index. METHODS High precision calibration gas mixtures and mass spectrometry were used to evaluate sensor output. We assessed the impact of corrected signal processing on multiple-breath washout outcomes in a dataset of healthy children and children with cystic fibrosis using custom analysis software. RESULTS We found inadequate correction for the cross sensitivity of the oxygen and carbon dioxide sensors in the Exhalyzer D device. This results in an overestimation of expired nitrogen concentration, and consequently multiple-breath washout outcomes. Breath-by-breath correction of this error reduced the mean (SD) cumulative expired volume by 19.6 (5.0)%, functional residual capacity by 8.9 (2.2)%, and lung clearance index by 11.9 (4.0)%. It also substantially reduced the level of the tissue nitrogen signal at the end of measurements. CONCLUSIONS Inadequate correction for cross sensitivity in the oxygen and carbon dioxide gas sensors of the Exhalyzer D device leads to an overestimation of functional residual capacity and lung clearance index. Correction of this error is possible and could be applied by re-analyzing the measurements in an updated software version.
Collapse
Affiliation(s)
- Florian Wyler
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Marc-Alexander H Oestreich
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Switzerland
| | - Bettina Sarah Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Kathryn A Ramsey
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Philipp T Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
17
|
Horsley AR, Belcher J, Bayfield K, Bianco B, Cunningham S, Fullwood C, Jones A, Shawcross A, Smith JA, Maitra A, Gilchrist FJ. Longitudinal assessment of lung clearance index to monitor disease progression in children and adults with cystic fibrosis. Thorax 2021; 77:357-363. [PMID: 34301741 PMCID: PMC8938654 DOI: 10.1136/thoraxjnl-2021-216928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/05/2021] [Indexed: 12/02/2022]
Abstract
Background Lung clearance index (LCI) is a valuable research tool in cystic fibrosis (CF) but clinical application has been limited by technical challenges and uncertainty about how to interpret longitudinal change. In order to help inform clinical practice, this study aimed to assess feasibility, repeatability and longitudinal LCI change in children and adults with CF with predominantly mild baseline disease. Methods Prospective, 3-year, multicentre, observational study of repeated LCI measurement at time of clinical review in patients with CF >5 years, delivered using a rapid wash-in system. Results 112 patients completed at least one LCI assessment and 98 (90%) were still under follow-up at study end. The median (IQR) age was 14.7 (8.6–22.2) years and the mean (SD) FEV1 z-score was −1.2 (1.3). Of 81 subjects with normal FEV1 (>−2 z-scores), 63% had raised LCI (indicating worse lung function). For repeat stable measurements within 6 months, the mean (limits of agreement) change in LCI was 0.9% (−18.8% to 20.7%). A latent class growth model analysis identified four discrete clusters with high accuracy, differentiated by baseline LCI and FEV1. Baseline LCI was the strongest factor associated with longitudinal change. The median total test time was under 19 min. Conclusions Most patients with CF with well-preserved lung function show stable LCI over time. Cluster behaviours can be identified and baseline LCI is a risk factor for future progression. These results support the use of LCI in clinical practice in identifying patients at risk of lung function decline.
Collapse
Affiliation(s)
- Alex R Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Biology, Medicine and Health, Manchester, UK .,Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Katie Bayfield
- Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Brooke Bianco
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Steve Cunningham
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Catherine Fullwood
- Statistics, Research and Innovation, Manchester University NHS Foundation Trust, Manchester, UK.,MAHSC Centre for Biostatistics, University of Manchester, Manchester, UK
| | - Andrew Jones
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anna Shawcross
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jaclyn A Smith
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Biology, Medicine and Health, Manchester, UK
| | - Anirban Maitra
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Francis J Gilchrist
- Academic Department of Child Health, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK.,Institute of Applied Clinical Sciences, Keele University, Keele, UK
| |
Collapse
|
18
|
Frauchiger BS, Binggeli S, Yammine S, Spycher B, Krüger L, Ramsey KA, Latzin P. Longitudinal course of clinical lung clearance index in children with cystic fibrosis. Eur Respir J 2021; 58:13993003.02686-2020. [PMID: 33361098 DOI: 10.1183/13993003.02686-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Although the lung clearance index (LCI) is a sensitive marker of small airway disease in individuals with cystic fibrosis (CF), less is known about longitudinal changes in LCI during routine clinical surveillance. Here, our objectives were to describe the longitudinal course of LCI in children with CF during routine clinical surveillance and assess influencing factors. METHODS Children with CF aged 3-18 years performed LCI measurements every 3 months as part of routine clinical care between 2011 and 2018. We recorded clinical data at every visit. We used a multilevel mixed effect model to determine changes in LCI over time and identify clinical factors that influence LCI course. RESULTS We collected LCI measurements from 1204 visits (3603 trials) in 78 participants, of which 907 visits had acceptable LCI data. The average unadjusted increase in LCI for the entire population was 0.29 (95% CI 0.20-0.38) LCI units·year-1. The increase in LCI was more pronounced in adolescence (0.41 (95% CI 0.27-0.54) LCI units·year-1). Colonisation with either Pseudomonas aeruginosa or Aspergillus fumigatus, pulmonary exacerbations, CF-related diabetes and bronchopulmonary aspergillosis were associated with a higher increase in LCI over time. Adjusting for clinical risk factors reduced the increase in LCI over time to 0.24 (95% CI 0.16-0.33) LCI units·year-1. CONCLUSIONS LCI measured during routine clinical surveillance is associated with underlying disease progression in children with CF. An increased change in LCI over time should prompt further diagnostic intervention.
Collapse
Affiliation(s)
- Bettina S Frauchiger
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Severin Binggeli
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ben Spycher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Linn Krüger
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathryn A Ramsey
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,These authors contributed equally
| | - Philipp Latzin
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,These authors contributed equally
| |
Collapse
|
19
|
Constant C, Descalço A, Silva AM, Pereira L, Barreto C, Bandeira T. Implementing nitrogen multiple breath washout as a clinical tool - A feasibility study. Pulmonology 2021; 27:569-571. [PMID: 34092546 DOI: 10.1016/j.pulmoe.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carolina Constant
- Paediatric Lung Function Laboratory, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Portugal; Paediatric Pulmonology Unit, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Portugal; Lisbon Academic Medical Centre, Portugal.
| | - Andreia Descalço
- Paediatric Lung Function Laboratory, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Portugal
| | - Ana Margarida Silva
- Paediatric Lung Function Laboratory, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Portugal
| | - Luísa Pereira
- Paediatric Pulmonology Unit, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Portugal; Lisbon Academic Medical Centre, Portugal; Cystic Fibrosis Reference Centre, Centro Hospitalar Universitário de Lisboa Norte
| | - Celeste Barreto
- Lisbon Academic Medical Centre, Portugal; Cystic Fibrosis Reference Centre, Centro Hospitalar Universitário de Lisboa Norte
| | - Teresa Bandeira
- Paediatric Lung Function Laboratory, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Portugal; Paediatric Pulmonology Unit, Department of Paediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Portugal; Lisbon Academic Medical Centre, Portugal
| |
Collapse
|