1
|
Shekari F, Baharvand H, Salekdeh GH. Organellar proteomics of embryonic stem cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:215-30. [PMID: 24985774 DOI: 10.1016/b978-0-12-800453-1.00007-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryonic stem cells (ESCs) are undifferentiated cells with two common remarkable features known as self-renewal and differentiation. Proteomics plays an increasingly important role in understanding molecular mechanisms underlying self-renewal and pluripotency of ESCs and their applications in cell therapy and developmental biology studies. As the function of a protein is strongly associated with its localization in cell, a complete and accurate picture of the proteome of ESCs cannot be achieved without knowing the subcellular locations of proteins. Subcellular fractionation allows enrichment of low abundant proteins and signaling complexes and reduces the complexity of the sample. It also provided insight into tracking proteins that shuttle between different compartments. Despite the substantial interest and efforts in ESC subcellular proteomics area, progress has been relatively limited. In this review, we present an overview on current status of ESCs organelle proteomics research and discuss challenges in subcellular proteomics.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
| |
Collapse
|
2
|
Sarkar P, Mischler A, Randall SM, Collier TS, Dorman KF, Boggess KA, Muddiman DC, Rao BM. Identification of Epigenetic Factor Proteins Expressed in Human Embryonic Stem Cell-Derived Trophoblasts and in Human Placental Trophoblasts. J Proteome Res 2016; 15:2433-44. [PMID: 27378238 DOI: 10.1021/acs.jproteome.5b01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human embryonic stem cells (hESCs) have been used to derive trophoblasts through differentiation in vitro. Intriguingly, mouse ESCs are prevented from differentiation to trophoblasts by certain epigenetic factor proteins such as Dnmt1, thus necessitating the study of epigenetic factor proteins during hESC differentiation to trophoblasts. We used stable isotope labeling by amino acids in cell culture and quantitative proteomics to study changes in the nuclear proteome during hESC differentiation to trophoblasts and identified changes in the expression of 30 epigenetic factor proteins. Importantly, the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B were downregulated. Additionally, we hypothesized that nuclear proteomics of hESC-derived trophoblasts may be used for screening epigenetic factor proteins expressed by primary trophoblasts in human placental tissue. Accordingly, we conducted immunohistochemistry analysis of six epigenetic factor proteins identified from hESC-derived trophoblasts-DNMT1, DNMT3B, BAF155, BAF60A, BAF57, and ING5-in 6-9 week human placentas. Indeed, expression of these proteins was largely, though not fully, consistent with that observed in 6-9 week placental trophoblasts. Our results support the use of hESC-derived trophoblasts as a model for placental trophoblasts, which will enable further investigation of epigenetic factors involved in human trophoblast development.
Collapse
Affiliation(s)
| | | | | | | | - Karen F Dorman
- Department of Obstetrics and Gynecology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Kim A Boggess
- Department of Obstetrics and Gynecology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | |
Collapse
|
3
|
Alajem A, Biran A, Harikumar A, Sailaja BS, Aaronson Y, Livyatan I, Nissim-Rafinia M, Sommer AG, Mostoslavsky G, Gerbasi VR, Golden DE, Datta A, Sze SK, Meshorer E. Differential association of chromatin proteins identifies BAF60a/SMARCD1 as a regulator of embryonic stem cell differentiation. Cell Rep 2015; 10:2019-31. [PMID: 25818293 DOI: 10.1016/j.celrep.2015.02.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Embryonic stem cells (ESCs) possess a distinct chromatin conformation maintained by specialized chromatin proteins. To identify chromatin regulators in ESCs, we developed a simple biochemical assay named D-CAP (differential chromatin-associated proteins), using brief micrococcal nuclease digestion of chromatin, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Using D-CAP, we identified several differentially chromatin-associated proteins between undifferentiated and differentiated ESCs, including the chromatin remodeling protein SMARCD1. SMARCD1 depletion in ESCs led to altered chromatin and enhanced endodermal differentiation. Gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggested that SMARCD1 is both an activator and a repressor and is enriched at developmental regulators and that its chromatin binding coincides with H3K27me3. SMARCD1 knockdown caused H3K27me3 redistribution and increased H3K4me3 around the transcription start site (TSS). One of the identified SMARCD1 targets was Klf4. In SMARCD1-knockdown clones, KLF4, as well as H3K4me3 at the Klf4 locus, remained high and H3K27me3 was abolished. These results propose a role for SMARCD1 in restricting pluripotency and activating lineage pathways by regulating H3K27 methylation.
Collapse
Affiliation(s)
- Adi Alajem
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alva Biran
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Arigela Harikumar
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Badi Sri Sailaja
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yair Aaronson
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ilana Livyatan
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Andreia Gianotti Sommer
- Section of Gastroenterology, Department of Medicine, Center for Regenerative Medicine (CReM), Boston University School of Medicine, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - Gustavo Mostoslavsky
- Section of Gastroenterology, Department of Medicine, Center for Regenerative Medicine (CReM), Boston University School of Medicine, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - Vincent R Gerbasi
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA; Naval Medical Research Center, Silver Spring, MD 20910, USA
| | | | - Arnab Datta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
4
|
Melo-Braga MN, Meyer M, Zeng X, Larsen MR. Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics--current state-of-the-art and challenges. Proteomics 2015; 15:656-674. [PMID: 25418965 DOI: 10.1002/pmic.201400388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2025]
Abstract
Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology, neurological disease as well as contributing to clinical research. The neural differentiation process is associated with changes at protein and their post-translational modifications (PTMs). PTMs are important regulators of proteins physicochemical properties, function, activity, and interaction with other proteins, DNA/RNA, and complexes. Moreover, the interplay between PTMs is essential to regulate a range of cellular processes that abnormalities in PTM signaling are associated with several diseases. Altogether, this makes PTMs very relevant to study in order to uncover disease pathogenesis and increase the understanding of molecular processes in cells. Substantial advances in PTM enrichment methods and mass spectrometry has allowed the characterization of a subset of PTMs in large-scale studies. This review focuses on the current state-of-the-art of proteomic, as well as PTMomic studies related to human neural differentiation from pluripotent stem cells. Moreover, some of the challenges in stem cell biology, differentiation, and proteomics/PTMomics that are not exclusive to neural development will be discussed.
Collapse
Affiliation(s)
- Marcella Nunes Melo-Braga
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Clinical Proteomics, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
5
|
Baumgarten P, Harter PN, Tönjes M, Capper D, Blank AE, Sahm F, von Deimling A, Kolluru V, Schwamb B, Rabenhorst U, Starzetz T, Kögel D, Rieker RJ, Plate KH, Ohgaki H, Radlwimmer B, Zörnig M, Mittelbronn M. Loss of FUBP1 expression in gliomas predicts FUBP1 mutation and is associated with oligodendroglial differentiation, IDH1 mutation and 1p/19q loss of heterozygosity. Neuropathol Appl Neurobiol 2014; 40:205-16. [PMID: 24117486 DOI: 10.1111/nan.12088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/02/2013] [Accepted: 10/03/2013] [Indexed: 01/15/2023]
Abstract
AIMS The Far Upstream Element [FUSE] Binding Protein 1 (FUBP1) regulates target genes, such as the cell cycle regulators MYC and p21. FUBP1 is up-regulated in many tumours and acts as an oncoprotein by stimulating proliferation and inhibiting apoptosis. Recently, FUBP1 mutations were identified in approximately 15% of oligodendrogliomas. To date, all reported FUBP1 mutations have been predicted to inactivate FUBP1, which suggests that in contrast to most other tumours FUBP1 may act as a tumour suppressor in oligodendrogliomas. METHODS As no data are currently available concerning FUBP1 protein levels in gliomas, we examined the FUBP1 expression profiles of human glial tumours by immunohistochemistry and immunofluorescence. We analysed FUBP1 expression related to morphological differentiation, IDH1 and FUBP1 mutation status, 1p/19q loss of heterozygosity (LOH) as well as proliferation rate. RESULTS Our findings demonstrate that FUBP1 expression levels are increased in all glioma subtypes as compared with normal central nervous system (CNS) control tissue and are associated with increased proliferation. In contrast, FUBP1 immunonegativity predicted FUBP1 mutation with a sensitivity of 100% and a specificity of 90% in our cohort and was associated with oligodendroglial differentiation, IDH1 mutation and 1p/19q loss of heterozygosity (LOH). Using this approach, we detected a to-date undescribed FUBP1 mutation in an oligodendroglioma. CONCLUSION In summary, our data indicate an association between of FUBP1 expression and proliferation in gliomas. Furthermore, our findings present FUBP1 immunohistochemical analysis as a helpful additional tool for neuropathological glioma diagnostics predicting FUBP1 mutation.
Collapse
Affiliation(s)
- P Baumgarten
- Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Finn RM, Ellard K, Eirín-López JM, Ausió J. Vertebrate nucleoplasmin and NASP: egg histone storage proteins with multiple chaperone activities. FASEB J 2012; 26:4788-804. [PMID: 22968912 DOI: 10.1096/fj.12-216663] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent reviews have focused on the structure and function of histone chaperones involved in different aspects of somatic cell chromatin metabolism. One of the most dramatic chromatin remodeling processes takes place immediately after fertilization and is mediated by egg histone storage chaperones. These include members of the nucleoplasmin (NPM2/NPM3), which are preferentially associated with histones H2A-H2B in the egg and the nuclear autoantigenic sperm protein (NASP) families. Interestingly, in addition to binding and providing storage to H3/H4 in the egg and in somatic cells, NASP has been shown to be a unique genuine chaperone for histone H1. This review revolves around the structural and functional roles of these two families of chaperones whose activity is modulated by their own post-translational modifications (PTMs), particularly phosphorylation. Beyond their important role in the remodeling of paternal chromatin in the early stages of embryogenesis, NPM and NASP members can interact with a plethora of proteins in addition to histones in somatic cells and play a critical role in processes of functional cell alteration, such as in cancer. Despite their common presence in the egg, these two histone chaperones appear to be evolutionarily unrelated. In contrast to members of the NPM family, which share a common monophyletic evolutionary origin, the different types of NASP appear to have evolved recurrently within different taxa.
Collapse
Affiliation(s)
- Ron M Finn
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | | | | | | |
Collapse
|
7
|
van Hoof D, Krijgsveld J, Mummery C. Proteomic analysis of stem cell differentiation and early development. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008177. [PMID: 22317846 DOI: 10.1101/cshperspect.a008177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genomics methodologies have advanced to the extent that it is now possible to interrogate the gene expression in a single cell but proteomics has traditionally lagged behind and required much greater cellular input and was not quantitative. Coupling protein with gene expression data is essential for understanding how cell behavior is regulated. Advances primarily in mass spectrometry have, however, greatly improved the sensitivity of proteomics methods over the last decade and the outcome of proteomic analyses can now also be quantified. Nevertheless, it is still difficult to obtain sufficient tissue from staged mammalian embryos to combine proteomic and genomic analyses. Recent developments in pluripotent stem cell biology have in part addressed this issue by providing surrogate scalable cell systems in which early developmental events can be modeled. Here we present an overview of current proteomics methodologies and the kind of information this can provide on the biology of human and mouse pluripotent stem cells.
Collapse
Affiliation(s)
- Dennis van Hoof
- Department of Anatomy and Embryology, Leiden University Medical Center, ZC Leiden
| | | | | |
Collapse
|
8
|
Colucci-D'Amato L, Farina A, Vissers JPC, Chambery A. Quantitative neuroproteomics: classical and novel tools for studying neural differentiation and function. Stem Cell Rev Rep 2011; 7:77-93. [PMID: 20352529 DOI: 10.1007/s12015-010-9136-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mechanisms underlying neural stem cell proliferation, differentiation and maturation play a critical role in the formation and wiring of neuronal connections. This process involves the activation of multiple serial events, which guide the undifferentiated cells to different lineages via distinctive developmental programs, forming neuronal circuits and thus shaping the adult nervous system. Furthermore, alterations within these strictly regulated pathways can lead to severe neurological and psychiatric diseases. In this framework, the investigation of the high dynamic protein expression changes and other factors affecting protein functions, for example post-translational modifications, the alterations of protein interaction networks, is of pivotal importance for the understanding of the molecular mechanisms responsible for cell differentiation. More recently, proteomic studies in neuroscience ("neuroproteomics") are receiving increased interest for the primary understanding of the regulatory networks underlying neuronal differentiation processes. Besides the classical two-dimensional-based proteomic strategies, the emerging platforms for LC-MS shotgun proteomic analysis hold great promise in unraveling the molecular basis of neural stem cell differentiation. In this review, recent advancements in label-free LC-MS quantitative neuroproteomics are highlighted as a new tool for the study of neural differentiation and functions, in comparison to mass spectrometry-based labeling approaches. The more commonly used protein profiling strategies and model systems for the analysis of neural differentiation are also discussed, along with the challenging proteomic approaches aimed to analyze the nervous system-specific organelles, the neural cells secretome and the specific protein interaction networks.
Collapse
Affiliation(s)
- Luca Colucci-D'Amato
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | |
Collapse
|
9
|
Lull ME, Freeman WM, VanGuilder HD, Vrana KE. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend 2010; 107:11-22. [PMID: 19926406 PMCID: PMC3947580 DOI: 10.1016/j.drugalcdep.2009.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 09/21/2009] [Accepted: 10/15/2009] [Indexed: 01/08/2023]
Abstract
The number of discovery proteomic studies of drug abuse has begun to increase in recent years, facilitated by the adoption of new techniques such as 2D-DIGE and iTRAQ. For these new tools to provide the greatest insight into the neurobiology of addiction, however, it is important that the addiction field has a clear understanding of the strengths, limitations, and drug abuse-specific research factors of neuroproteomic studies. This review outlines approaches for improving animal models, protein sample quality and stability, proteome fractionation, data analysis, and data sharing to maximize the insights gained from neuroproteomic studies of drug abuse. For both the behavioral researcher interested in what proteomic study results mean, and for biochemists joining the drug abuse research field, a careful consideration of these factors is needed. Similar to genomic, transcriptomic, and epigenetic methods, appropriate use of new proteomic technologies offers the potential to provide a novel and global view of the neurobiological changes underlying drug addiction. Proteomic tools may be an enabling technology to identify key proteins involved in drug abuse behaviors, with the ultimate goal of understanding the etiology of drug abuse and identifying targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Melinda E. Lull
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Willard M. Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA, Functional Genomics Facility, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA,Corresponding author at: Department of Pharmacology, R130, Penn State College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA. Tel.: +1 717 531 8285; fax: +1 717 531 0419. (K.E. Vrana)
| |
Collapse
|