1
|
Zhang L, Feng Q, Kong W. ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis. Physiology (Bethesda) 2024; 39:0. [PMID: 38984789 DOI: 10.1152/physiol.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024] Open
Abstract
Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
2
|
Park JE, JebaMercy G, Pazhanchamy K, Guo X, Ngan SC, Liou KCK, Lynn SE, Ng SS, Meng W, Lim SC, Leow MKS, Richards AM, Pennington DJ, de Kleijn DPV, Sorokin V, Ho HH, McCarthy NE, Sze SK. Aging-induced isoDGR-modified fibronectin activates monocytic and endothelial cells to promote atherosclerosis. Atherosclerosis 2021; 324:58-68. [PMID: 33831670 DOI: 10.1016/j.atherosclerosis.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Aging is the primary risk factor for cardiovascular disease (CVD), but the mechanisms underlying age-linked atherosclerosis remain unclear. We previously observed that long-lived vascular matrix proteins can acquire 'gain-of-function' isoDGR motifs that might play a role in atherosclerotic pathology. METHODS IsoDGR-specific mAb were generated and used for ELISA-based measurement of motif levels in plasma samples from patients with coronary artery diseases (CAD) and non-CAD controls. Functional consequences of isoDGR accumulation in age-damaged fibronectin were determined by bioassay for capacity to activate monocytes, macrophages, and endothelial cells (signalling activity, pro-inflammatory cytokine expression, and recruitment/adhesion potential). Mice deficient in the isoDGR repair enzyme PCMT1 were used to assess motif distribution and macrophage localisation in vivo. RESULTS IsoDGR-modified fibronectin and fibrinogen levels in patient plasma were significantly enhanced in CAD and further associated with smoking status. Functional assays demonstrated that isoDGR-modified fibronectin activated both monocytes and macrophages via integrin receptor 'outside in' signalling, triggering an ERK:AP-1 cascade and expression of pro-inflammatory cytokines MCP-1 and TNFα to drive additional recruitment of circulating leukocytes. IsoDGR-modified fibronectin also induced endothelial cell expression of integrin β1 to further enhance cellular adhesion and matrix deposition. Analysis of murine aortic tissues confirmed accumulation of isoDGR-modified proteins co-localised with CD68+ macrophages in vivo. CONCLUSIONS Age-damaged fibronectin features isoDGR motifs that increase binding to integrins on the surface of monocytes, macrophages, and endothelial cells. Subsequent activation of 'outside-in' signalling elicits a range of potent cytokines and chemokines that drive additional leukocyte recruitment to the developing atherosclerotic matrix.
Collapse
Affiliation(s)
- Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Kalailingam Pazhanchamy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Xue Guo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ken Cheng Kang Liou
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Soe EinSi Lynn
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ser Sue Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Su Chi Lim
- Diabetes Center, Khoo Teck Puat Hospital, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, NTU, Singapore; Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, 119228; Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, 8140, New Zealand
| | - Daniel J Pennington
- Centre for Immunobiology, The Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore, 119228
| | - Hee Hwa Ho
- Department of Cardiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551.
| |
Collapse
|
3
|
Plasma protein expression profiles, cardiovascular disease, and religious struggles among South Asians in the MASALA study. Sci Rep 2021; 11:961. [PMID: 33441605 PMCID: PMC7806901 DOI: 10.1038/s41598-020-79429-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/07/2020] [Indexed: 11/12/2022] Open
Abstract
Blood protein concentrations are clinically useful, predictive biomarkers of cardiovascular disease (CVD). Despite a higher burden of CVD among U.S. South Asians, no CVD-related proteomics study has been conducted in this sub-population. The aim of this study is to investigate the associations between plasma protein levels and CVD incidence, and to assess the potential influence of religiosity/spirituality (R/S) on significant protein-CVD associations, in South Asians from the MASALA Study. We used a nested case–control design of 50 participants with incident CVD and 50 sex- and age-matched controls. Plasma samples were analyzed by SOMAscan for expression of 1305 proteins. Multivariable logistic regression models and model selection using Akaike Information Criteria were performed on the proteins and clinical covariates, with further effect modification analyses conducted to assess the influence of R/S measures on significant associations between proteins and incident CVD events. We identified 36 proteins that were significantly expressed differentially among CVD cases compared to matched controls. These proteins are involved in immune cell recruitment, atherosclerosis, endothelial cell differentiation, and vascularization. A final multivariable model found three proteins (Contactin-5 [CNTN5], Low affinity immunoglobulin gamma Fc region receptor II-a [FCGR2A], and Complement factor B [CFB]) associated with incident CVD after adjustment for diabetes (AUC = 0.82). Religious struggles that exacerbate the adverse impact of stressful life events, significantly modified the effect of Contactin-5 and Complement factor B on risk of CVD. Our research is this first assessment of the relationship between protein concentrations and risk of CVD in a South Asian sample. Further research is needed to understand patterns of proteomic profiles across diverse ethnic communities, and the influence of resources for resiliency on proteomic signatures and ultimately, risk of CVD.
Collapse
|
4
|
MicroRNAs as sentinels and protagonists of carotid artery thromboembolism. Clin Sci (Lond) 2020; 134:169-192. [PMID: 31971230 DOI: 10.1042/cs20190651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Stroke is the leading cause of serious disability in the world and a large number of ischemic strokes are due to thromboembolism from unstable carotid artery atherosclerotic plaque. As it is difficult to predict plaque rupture and surgical treatment of asymptomatic disease carries a risk of stroke, carotid disease continues to present major challenges with regard to clinical decision-making and revascularization. There is therefore an imminent need to better understand the molecular mechanisms governing plaque instability and rupture, as this would allow for the development of biomarkers to identify at-risk asymptomatic carotid plaque prior to disease progression and stroke. Further, it would aid in creation of therapeutics to stabilize carotid plaque. MicroRNAs (miRNAs) have been implicated as key protagonists in various stages of atherosclerotic plaque initiation, development and rupture. Notably, they appear to play a crucial role in carotid artery thromboembolism. As the molecular pathways governing the role of miRNAs are being uncovered, we are learning that their involvement is complex, tissue- and stage-specific, and highly selective. Notably, miRNAs can be packaged and secreted in extracellular vesicles (EVs), where they participate in cell-cell communication. The measurement of EV-encapsulated miRNAs in the circulation may inform disease mechanisms occurring in the plaque itself, and therefore may serve as sentinels of unstable plaque as well as therapeutic targets.
Collapse
|
5
|
Eslava-Alcon S, Extremera-García MJ, González-Rovira A, Rosal-Vela A, Rojas-Torres M, Beltran-Camacho L, Sanchez-Gomar I, Jiménez-Palomares M, Alonso-Piñero JA, Conejero R, Doiz E, Olarte J, Foncubierta-Fernández A, Lozano E, García-Cozar FJ, Rodríguez-Piñero M, Alvarez-Llamas G, Duran-Ruiz MC. Molecular signatures of atherosclerotic plaques: An up-dated panel of protein related markers. J Proteomics 2020; 221:103757. [PMID: 32247173 DOI: 10.1016/j.jprot.2020.103757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis remains the leading cause of ischemic syndromes such as myocardial infarction or brain stroke, mainly promoted by plaque rupture and subsequent arterial blockade. Identification of vulnerable or high-risk plaques constitutes a major challenge, being necessary to identify patients at risk of occlusive events in order to provide them with appropriate therapies. Clinical imaging tools have allowed the identification of certain structural indicators of prone-rupture plaques, including a necrotic lipidic core, intimal and adventitial inflammation, extracellular matrix dysregulation, and smooth muscle cell depletion and micro-calcification. Additionally, alternative approaches focused on identifying molecular biomarkers of atherosclerosis have also been applied. Among them, proteomics has provided numerous protein markers currently investigated in clinical practice. In this regard, it is quite uncertain that a single molecule can describe plaque rupture, due to the complexity of the process itself. Therefore, it should be more accurate to consider a set of markers to define plaques at risk. Herein, we propose a selection of 76 proteins, from classical inflammatory to recently related markers, all of them identified in at least two proteomic studies analyzing unstable atherosclerotic plaques. Such panel could be used as a prognostic signature of plaque instability.
Collapse
Affiliation(s)
- S Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain
| | - M J Extremera-García
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain
| | - A González-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain
| | - A Rosal-Vela
- Institute of Biomedical Research Cadiz (INIBICA), Spain
| | - M Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain
| | - L Beltran-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain
| | | | - M Jiménez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain
| | - J A Alonso-Piñero
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain
| | - R Conejero
- Angiology & Vascular Surgery Unit, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - E Doiz
- Angiology & Vascular Surgery Unit, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - J Olarte
- Angiology & Vascular Surgery Unit, Virgen Macarena Hospital, Seville, Spain
| | - A Foncubierta-Fernández
- Institute of Biomedical Research Cadiz (INIBICA), Spain; UGC Joaquín Pece, Distrito Sanitario Bahía de Cádiz-La Janda, Cádiz, Spain
| | - E Lozano
- Institute of Biomedical Research Cadiz (INIBICA), Spain; Internal Medicine Unit, Hospital de Jerez, Jerez, Spain
| | - F J García-Cozar
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain
| | - M Rodríguez-Piñero
- Angiology & Vascular Surgery Unit, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - G Alvarez-Llamas
- Immunology Department, IIS-Fundación Jimenez Diaz-UAM, Madrid, Spain; REDINREN, Madrid, Spain
| | - M C Duran-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cadiz University, Spain; Institute of Biomedical Research Cadiz (INIBICA), Spain.
| |
Collapse
|
6
|
Vinaiphat A, Sze SK. Clinical implications of extracellular vesicles in neurodegenerative diseases. Expert Rev Mol Diagn 2019; 19:813-824. [PMID: 31429341 DOI: 10.1080/14737159.2019.1657407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Extracellular vesicles (EVs) released by neural cells play a crucial role in intracellular communication in both physiological and pathological states. Recent studies have shown that the neuropathogenic manifestation of many progressive nervous system diseases including Parkinson's disease (PD), Alzheimer's diseases (AD), and amyotrophic lateral sclerosis (ALS). These diseases are frequently found to be associated with the accumulation of misfolded proteins, exploit EVs for the spread of aggregates to naive cells in a prion-like mechanism. Therefore, characterization of EVs and understanding their mechanism of action could open a window of opportunity to discover biomarkers and therapeutic targets in a disease-specific manner. Areas covered: In this review, we discuss the role of neural cells-derived EVs in normal and disease states. We also highlight their biomedical potential in modern medicine, including the use of circulating EVs as biomarkers for diagnosis with a special focus on newly-identified potential biomarkers in neurodegenerative disease, and novel methodologies in EVs isolation. Expert opinion: Systematic and comprehensive analysis of EVs in different biofluid sources is needed. Considering the potential for tremendous clinical benefits of EVs research in neurodegenerative disease, there is also an urgent need to standardize neural cells-derived EV enrichment protocols for consensus results.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University , Singapore Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University , Singapore Singapore
| |
Collapse
|
7
|
On the origin of proteins in human drusen: The meet, greet and stick hypothesis. Prog Retin Eye Res 2018; 70:55-84. [PMID: 30572124 DOI: 10.1016/j.preteyeres.2018.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Retinal drusen formation is not only a clinical hallmark for the development of age-related macular degeneration (AMD) but also for other disorders, such as Alzheimer's disease and renal diseases. The initiation and growth of drusen is poorly understood. Attention has focused on lipids and minerals, but relatively little is known about the origin of drusen-associated proteins and how they are retained in the space between the basal lamina of the retinal pigment epithelium and the inner collagenous layer space (sub-RPE-BL space). While some authors suggested that drusen proteins are mainly derived from cellular debris from processed photoreceptor outer segments and the RPE, others suggest a choroidal cell or blood origin. Here, we reviewed and supplemented the existing literature on the molecular composition of the retina/choroid complex, to gain a more complete understanding of the sources of proteins in drusen. These "drusenomics" studies showed that a considerable proportion of currently identified drusen proteins is uniquely originating from the blood. A smaller, but still large fraction of drusen proteins comes from both blood and/or RPE. Only a small proportion of drusen proteins is uniquely derived from the photoreceptors or choroid. We next evaluated how drusen components may "meet, greet and stick" to each other and/or to structures like hydroxyapatite spherules to form macroscopic deposits in the sub-RPE-BL space. Finally, we discuss implications of our findings with respect to the previously proposed homology between drusenogenesis in AMD and plaque formation in atherosclerosis.
Collapse
|
8
|
Baetta R, Pontremoli M, Fernandez AM, Spickett CM, Banfi C. Reprint of: Proteomics in cardiovascular diseases: Unveiling sex and gender differences in the era of precision medicine. J Proteomics 2018; 178:57-72. [PMID: 29622522 DOI: 10.1016/j.jprot.2018.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 01/19/2023]
Abstract
Cardiovascular diseases (CVDs) represent the most important cause of mortality in women and in men. Contrary to the long-standing notion that the effects of the major risk factors on CVD outcomes are the same in both sexes, recent evidence recognizes new, potentially independent, sex/gender-related risk factors for CVDs, and sex/gender-differences in the clinical presentation of CVDs have been demonstrated. Furthermore, some therapeutic options may not be equally effective and safe in men and women. In this context, proteomics offers an extremely useful and versatile analytical platform for biomedical researches that expand from the screening of early diagnostic and prognostic biomarkers to the investigation of the molecular mechanisms underlying CDVs. In this review, we summarized the current applications of proteomics in the cardiovascular field, with emphasis on sex and gender-related differences in CVDs. SIGNIFICANCE Increasing evidence supports the profound effect of sex and gender on cardiovascular physio-pathology and the response to drugs. A clear understanding of the mechanisms underlying sexual dimorphisms in CVDs would not only improve our knowledge of the etiology of these diseases, but could also inform health policy makers and guideline committees in tailoring specific interventions for the prevention, treatment and management of CVDs in both men and women.
Collapse
|
9
|
Hansmeier N, Buttigieg J, Kumar P, Pelle S, Choi KY, Kopriva D, Chao TC. Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2017; 17:164-176. [DOI: 10.1021/acs.jproteome.7b00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nicole Hansmeier
- Department
of Biology/Chemistry, Division of Microbiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Josef Buttigieg
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Pankaj Kumar
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Shaneen Pelle
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Kyoo Yoon Choi
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - David Kopriva
- Regina Qu’Appelle Health Region and University of Saskatchewan, 1440-14th Avenue, Regina, Saskatchewan S4P 0W5, Canada
| | - Tzu-Chiao Chao
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
10
|
Baetta R, Pontremoli M, Martinez Fernandez A, Spickett CM, Banfi C. Proteomics in cardiovascular diseases: Unveiling sex and gender differences in the era of precision medicine. J Proteomics 2017; 173:62-76. [PMID: 29180046 DOI: 10.1016/j.jprot.2017.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) represent the most important cause of mortality in women and in men. Contrary to the long-standing notion that the effects of the major risk factors on CVD outcomes are the same in both sexes, recent evidence recognizes new, potentially independent, sex/gender-related risk factors for CVDs, and sex/gender-differences in the clinical presentation of CVDs have been demonstrated. Furthermore, some therapeutic options may not be equally effective and safe in men and women. In this context, proteomics offers an extremely useful and versatile analytical platform for biomedical researches that expand from the screening of early diagnostic and prognostic biomarkers to the investigation of the molecular mechanisms underlying CDVs. In this review, we summarized the current applications of proteomics in the cardiovascular field, with emphasis on sex and gender-related differences in CVDs. SIGNIFICANCE Increasing evidence supports the profound effect of sex and gender on cardiovascular physio-pathology and the response to drugs. A clear understanding of the mechanisms underlying sexual dimorphisms in CVDs would not only improve our knowledge of the etiology of these diseases, but could also inform health policy makers and guideline committees in tailoring specific interventions for the prevention, treatment and management of CVDs in both men and women.
Collapse
|
11
|
Monocyte adhesion to atherosclerotic matrix proteins is enhanced by Asn-Gly-Arg deamidation. Sci Rep 2017; 7:5765. [PMID: 28720870 PMCID: PMC5515959 DOI: 10.1038/s41598-017-06202-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/09/2017] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis arises from leukocyte infiltration and thickening of the artery walls and constitutes a major component of vascular disease pathology, but the molecular events underpinning this process are not fully understood. Proteins containing an Asn-Gly-Arg (NGR) motif readily undergo deamidation of asparagine to generate isoDGR structures that bind to integrin αvβ3 on circulating leukocytes. Here we report the identification of isoDGR motifs in human atherosclerotic plaque components including extracellular matrix (ECM) proteins fibronectin and tenascin C, which have been strongly implicated in human atherosclerosis. We further demonstrate that deamidation of NGR motifs in fibronectin and tenascin C leads to increased adhesion of the monocytic cell line U937 and enhanced binding of primary human monocytes, except in the presence of a αvβ3-blocking antibody or the αv-selective inhibitor cilengitide. In contrast, under the same deamidating conditions monocyte-macrophages displayed only weak binding to the alternative ECM component vitronectin which lacks NGR motifs. Together, these findings confirm a critical role for isoDGR motifs in mediating leukocyte adhesion to the ECM via integrin αvβ3 and suggest that protein deamidation may promote the pathological progression of human atherosclerosis by enhancing monocyte recruitment to developing plaques.
Collapse
|
12
|
Langley SR, Willeit K, Didangelos A, Matic LP, Skroblin P, Barallobre-Barreiro J, Lengquist M, Rungger G, Kapustin A, Kedenko L, Molenaar C, Lu R, Barwari T, Suna G, Yin X, Iglseder B, Paulweber B, Willeit P, Shalhoub J, Pasterkamp G, Davies AH, Monaco C, Hedin U, Shanahan CM, Willeit J, Kiechl S, Mayr M. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest 2017; 127:1546-1560. [PMID: 28319050 PMCID: PMC5373893 DOI: 10.1172/jci86924] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 01/19/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND. The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the “vulnerable plaque,” necessitating an improved approach for predicting onset of symptoms. METHODS. We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS. Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION. The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING. UK: British Heart Foundation (BHF); King’s BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London in partnership with King’s College Hospital. Austria: Federal Ministry for Transport, Innovation and Technology (BMVIT); Federal Ministry of Science, Research and Economy (BMWFW); Wirtschaftsagentur Wien; and Standortagentur Tirol.
Collapse
Affiliation(s)
- Sarah R. Langley
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
- Duke-NUS Medical School, Singapore
| | - Karin Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Athanasios Didangelos
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Vascular Surgery, Karolinska Institute, Stockholm, Sweden
| | - Philipp Skroblin
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | | | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Vascular Surgery, Karolinska Institute, Stockholm, Sweden
| | - Gregor Rungger
- Department of Neurology, Bruneck Hospital, Bruneck, Italy
| | - Alexander Kapustin
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Ludmilla Kedenko
- First Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Chris Molenaar
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
- Nikon Imaging Centre, King’s College London, London, United Kingdom
| | - Ruifang Lu
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Temo Barwari
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Gonca Suna
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Xiaoke Yin
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Bernhard Iglseder
- Department of Geriatric Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Peter Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Joseph Shalhoub
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alun H. Davies
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Claudia Monaco
- Kennedy Institute, University of Oxford, Oxford, United Kingdom
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Vascular Surgery, Karolinska Institute, Stockholm, Sweden
| | - Catherine M. Shanahan
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| | - Johann Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovás JM, Rimm EB, Wang TJ, Bennett BJ. Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment: A Scientific Statement From the American Heart Association. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:291-313. [PMID: 27095829 PMCID: PMC7829062 DOI: 10.1161/hcg.0000000000000030] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases are the leading cause of death worldwide and are strongly linked to both genetic and nutritional factors. The field of nutrigenomics encompasses multiple approaches aimed at understanding the effects of diet on health or disease development, including nutrigenetic studies investigating the relationship between genetic variants and diet in modulating cardiometabolic risk, as well as the effects of dietary components on multiple "omic" measures, including transcriptomics, metabolomics, proteomics, lipidomics, epigenetic modifications, and the microbiome. Here, we describe the current state of the field of nutrigenomics with respect to cardiometabolic disease research and outline a direction for the integration of multiple omics techniques in future nutrigenomic studies aimed at understanding mechanisms and developing new therapeutic options for cardiometabolic disease treatment and prevention.
Collapse
|
14
|
Site-Specific Secretome Map Evidences VSMC-Related Markers of Coronary Atherosclerosis Grade and Extent in the Hypercholesterolemic Swine. DISEASE MARKERS 2015; 2015:465242. [PMID: 26379359 PMCID: PMC4561865 DOI: 10.1155/2015/465242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/29/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022]
Abstract
A major drawback in coronary atherosclerosis (ATS) research is the difficulty of investigating early phase of plaque growth and related features in the clinical context. In this study, secreted proteins from atherosclerotic coronary arteries in a hypercholesterolemic swine model were characterized by a proteomics approach and their expression was correlated to site-specific ATS stage and extent. A wide coronary artery map of secreted proteins has been obtained in high fat (HF) diet induced ATS swine model and a significantly different expression of many proteins related to vascular smooth muscle cell (VSMC) activation/migration has been identified. Significant associations with ATS stage of HF coronary lesions were found for several VSMC-derived proteins and validated for chitinase 3 like protein 1 (CHI3L1) by tissue immunoexpression. A direct correlation (R(2) = 0.85) was evidenced with intima to media thickness ratio values and ELISA confirmed the higher blood concentrations of CHI3L1 in HF cases. These findings confirmed the pivotal role of VSMCs in coronary plaque development and demonstrated a strong site-specific relation between VSMC-secreted CHI3L1 and lesion grade, suggesting that this protein could be proposed as a useful biomarker for diagnosing and staging of atherosclerotic lesions in coronary artery disease.
Collapse
|
15
|
Cheng L, Pan GF, Zhang XD, Wang JL, Wang WD, Zhang JY, Wang H, Liang RX, Sun XB. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuates atherosclerosis progress. Sci Rep 2015; 5:12333. [PMID: 26196108 PMCID: PMC4508829 DOI: 10.1038/srep12333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/22/2015] [Indexed: 12/18/2022] Open
Abstract
Yindanxinnaotong (YD), a traditional Chinese medicine, has been introduced to clinical medicine for more than a decade, while its pharmacological properties are still not to be well addressed. This report aimed to explore the anti-atherosclerosis properties and underlying mechanisms of YD. We initially performed a computational prediction based on a network pharmacology simulation, which clued YD exerted synergistically anti-atherosclerosis properties by vascular endothelium protection, lipid-lowering, anti-inflammation, and anti-oxidation. These outcomes were then validated in atherosclerosis rats. The experiments provided evidences indicating YD's contribution in this study included, (1) significantly reduced the severity of atherosclerosis, inhibited reconstruction of the artery wall and regulated the lipid profile; (2) enhanced antioxidant power, strengthened the activity of antioxidant enzymes, and decreased malondialdhyde levels; (3) significantly increased the viability of umbilical vein endothelial cells exposed to oxidative stress due to pretreatment with YD; (4) significantly reduced the level of pro-inflammatory cytokines; (5) significantly down-regulated NF-kB/p65 and up-regulated IkB in the YD-treated groups. Overall, these results demonstrated that YD intervention relieves atherosclerosis through regulating lipids, reducing lipid particle deposition in the endothelial layer of artery, enhancing antioxidant power, and repressing inflammation activity by inhibiting the nuclear factor-kappa B signal pathway.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization
of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, 100193, P. R.
China
| | - Guo-feng Pan
- Department of Traditional Chinese Medicine, Beijing Shijitan
Hospital affiliated with Capital Medical University, Beijing,
100038, P. R. China
| | - Xiao-dong Zhang
- Center for Drug Evaluation, China Food and Drug
Administration, Beijing, 100038, P. R.
China
| | - Jian-lu Wang
- Institute of Medicia Materia, China Academy of Chinese Medical
Sciences, Beijing, 100700, P. R.
China
| | - Wan-dan Wang
- Institute of Medicia Materia, China Academy of Chinese Medical
Sciences, Beijing, 100700, P. R.
China
| | - Jian-yong Zhang
- Zunyi Medical University, Zunyi,
Guizhou
563003, P. R. China
| | - Hui Wang
- Guang’anmen Hospital, China Academy of Chinese
Medical Sciences, Beijing, 100053, P. R.
China
| | - Ri-xin Liang
- Institute of Medicia Materia, China Academy of Chinese Medical
Sciences, Beijing, 100700, P. R.
China
| | - Xiao-bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization
of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, 100193, P. R.
China
| |
Collapse
|
16
|
Looker HC, Colombo M, Agakov F, Zeller T, Groop L, Thorand B, Palmer CN, Hamsten A, de Faire U, Nogoceke E, Livingstone SJ, Salomaa V, Leander K, Barbarini N, Bellazzi R, van Zuydam N, McKeigue PM, Colhoun HM. Protein biomarkers for the prediction of cardiovascular disease in type 2 diabetes. Diabetologia 2015; 58:1363-71. [PMID: 25740695 DOI: 10.1007/s00125-015-3535-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/03/2015] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS We selected the most informative protein biomarkers for the prediction of incident cardiovascular disease (CVD) in people with type 2 diabetes. METHODS In this nested case-control study we measured 42 candidate CVD biomarkers in 1,123 incident CVD cases and 1,187 controls with type 2 diabetes selected from five European centres. Combinations of biomarkers were selected using cross-validated logistic regression models. Model prediction was assessed using the area under the receiver operating characteristic curve (AUROC). RESULTS Sixteen biomarkers showed univariate associations with incident CVD. The most predictive subset selected by forward selection methods contained six biomarkers: N-terminal pro-B-type natriuretic peptide (OR 1.69 per 1 SD, 95% CI 1.47, 1.95), high-sensitivity troponin T (OR 1.29, 95% CI 1.11, 1.51), IL-6 (OR 1.13, 95% CI 1.02, 1.25), IL-15 (OR 1.15, 95% CI 1.01, 1.31), apolipoprotein C-III (OR 0.79, 95% CI 0.70, 0.88) and soluble receptor for AGE (OR 0.84, 95% CI 0.76, 0.94). The prediction of CVD beyond clinical covariates improved from an AUROC of 0.66 to 0.72 (AUROC for Framingham Risk Score covariates 0.59). In addition to the biomarkers, the most important clinical covariates for improving prediction beyond the Framingham covariates were estimated GFR, insulin therapy and HbA1c. CONCLUSIONS/INTERPRETATION We identified six protein biomarkers that in combination with clinical covariates improved the prediction of our model beyond the Framingham Score covariates. Biomarkers can contribute to improved prediction of CVD in diabetes but clinical data including measures of renal function and diabetes-specific factors not included in the Framingham Risk Score are also needed.
Collapse
Affiliation(s)
- Helen C Looker
- Diabetes Epidemiology Unit, University of Dundee, Mackenzie Building, Kirsty Semple Way, Dundee, DD2 4BF, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cutler P, Voshol H. Proteomics in pharmaceutical research and development. Proteomics Clin Appl 2015; 9:643-50. [PMID: 25763573 DOI: 10.1002/prca.201400181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/10/2015] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
In the 20 years since its inception, the evolution of proteomics in pharmaceutical industry has mirrored the developments within academia and indeed other industries. From initial enthusiasm and subsequent disappointment in global protein expression profiling, pharma research saw the biggest impact when relating to more focused approaches, such as those exploring the interaction between proteins and drugs. Nowadays, proteomics technologies have been integrated in many areas of pharmaceutical R&D, ranging from the analysis of therapeutic proteins to the monitoring of clinical trials. Here, we review the development of proteomics in the drug discovery process, placing it in a historical context as well as reviewing the current status in light of the contributions to this special issue, which reflect some of the diverse demands of the drug and biomarker pipelines.
Collapse
Affiliation(s)
- Paul Cutler
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Analytical Sciences and Imaging, Basel, Switzerland
| |
Collapse
|
18
|
Delporte C, Noyon C, Raynal P, Dufour D, Nève J, Abts F, Haex M, Zouaoui Boudjeltia K, Van Antwerpen P. Advancement in stationary phase for peptide separation helps in protein identification: Application to atheroma plaque proteomics using nano-chip liquid chromatography and mass spectrometry. J Chromatogr A 2015; 1385:116-23. [DOI: 10.1016/j.chroma.2015.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/01/2015] [Accepted: 01/14/2015] [Indexed: 12/14/2022]
|
19
|
Byrne MM, Murphy RT, Ryan AW. Epigenetic modulation in the treatment of atherosclerotic disease. Front Genet 2014; 5:364. [PMID: 25389432 PMCID: PMC4211541 DOI: 10.3389/fgene.2014.00364] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/29/2014] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is the single largest cause of death in the western world and its incidence is on the rise globally. Atherosclerosis, characterized by the development of atheromatus plaque, can trigger luminal narrowing and upon rupture result in myocardial infarction or ischemic stroke. Epigenetic phenomena are a focus of considerable research interest due to the role they play in gene regulation. Epigenetic mechanisms such as DNA methylation and histone acetylation have been identified as potential drug targets in the treatment of cardiovascular disease. miRNAs are known to play a role in gene silencing, which has been widely investigated in cancer. In comparison, the role they play in cardiovascular disease and plaque rupture is not well understood. Nutritional epigenetic modifiers from dietary components, for instance sulforaphane found in broccoli, have been shown to suppress the pro-inflammatory response through transcription factor activation. This review will discuss current and potential epigenetic therapeutics for the treatment of cardiovascular disease, focusing on the use of miRNAs and dietary supplements such as sulforaphane and protocatechuic aldehyde.
Collapse
Affiliation(s)
- Mikaela M. Byrne
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James’s HospitalDublin, Ireland
| | - Ross T. Murphy
- Department of Cardiology, St. James’s HospitalDublin, Ireland
| | - Anthony W. Ryan
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James’s HospitalDublin, Ireland
| |
Collapse
|
20
|
Condorelli G, Latronico MVG, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 2014; 63:2177-87. [PMID: 24583309 DOI: 10.1016/j.jacc.2014.01.050] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/15/2022]
Abstract
Over the last few years, the field of microribonucleic acid (miRNA) in cardiovascular biology and disease has expanded at an incredible pace. miRNAs are themselves part of a larger family, that of non-coding RNAs, the importance of which for biological processes is starting to emerge. miRNAs are ~22-nucleotide-long RNA sequences that can legate messenger (m)RNAs at partially complementary binding sites, and hence regulate the rate of protein synthesis by altering the stability of the targeted mRNAs. In the cardiovascular system, miRNAs have been shown to be critical regulators of development and physiology. They control basic functions in virtually all cell types relevant to the cardiovascular system (such as endothelial cells, cardiac muscle, smooth muscle, inflammatory cells, and fibroblasts) and, thus, are directly involved in the pathophysiology of many cardiovascular diseases. As a result of their role in disease, they are being studied for exploitation in diagnostics, prognostics, and therapeutics. However, there are still significant obstacles that need to be overcome before they enter the clinical arena. We present here a review of the literature and outline the directions toward their use in the clinic.
Collapse
Affiliation(s)
- Gianluigi Condorelli
- Cardiovascular Research Center, Humanitas Research Hospital, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Rozzano, Italy; Institute of Genetics and Biomedical Research, National Research Council of Italy, Rome, Italy.
| | | | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza", Latina, Italy
| |
Collapse
|