1
|
Khoo A, Liu LY, Nyalwidhe JO, Semmes OJ, Vesprini D, Downes MR, Boutros PC, Liu SK, Kislinger T. Proteomic discovery of non-invasive biomarkers of localized prostate cancer using mass spectrometry. Nat Rev Urol 2021; 18:707-724. [PMID: 34453155 PMCID: PMC8639658 DOI: 10.1038/s41585-021-00500-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Prostate cancer is the second most frequently diagnosed non-skin cancer in men worldwide. Patient outcomes are remarkably heterogeneous and the best existing clinical prognostic tools such as International Society of Urological Pathology Grade Group, pretreatment serum PSA concentration and T-category, do not accurately predict disease outcome for individual patients. Thus, patients newly diagnosed with prostate cancer are often overtreated or undertreated, reducing quality of life and increasing disease-specific mortality. Biomarkers that can improve the risk stratification of these patients are, therefore, urgently needed. The ideal biomarker in this setting will be non-invasive and affordable, enabling longitudinal evaluation of disease status. Prostatic secretions, urine and blood can be sources of biomarker discovery, validation and clinical implementation, and mass spectrometry can be used to detect and quantify proteins in these fluids. Protein biomarkers currently in use for diagnosis, prognosis and relapse-monitoring of localized prostate cancer in fluids remain centred around PSA and its variants, and opportunities exist for clinically validating novel and complimentary candidate protein biomarkers and deploying them into the clinic.
Collapse
Affiliation(s)
- Amanda Khoo
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lydia Y Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - O John Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Danny Vesprini
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Odette Cancer Research Program, Sunnybrook Research Institute, Toronto, Canada
| | - Michelle R Downes
- Division of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Vector Institute for Artificial Intelligence, Toronto, Canada.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
- Odette Cancer Research Program, Sunnybrook Research Institute, Toronto, Canada.
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| |
Collapse
|
2
|
Green S, Dam MS, Svendsen MN. Mouse avatars of human cancers: the temporality of translation in precision oncology. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:27. [PMID: 33620596 DOI: 10.1007/s40656-021-00383-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Patient-derived xenografts (PDXs) are currently promoted as new translational models in precision oncology. PDXs are immunodeficient mice with human tumors that are used as surrogate models to represent specific types of cancer. By accounting for the genetic heterogeneity of cancer tumors, PDXs are hoped to provide more clinically relevant results in preclinical research. Further, in the function of so-called "mouse avatars", PDXs are hoped to allow for patient-specific drug testing in real-time (in parallel to treatment of the corresponding cancer patient). This paper examines the circulation of knowledge and bodily material across the species boundary of human and personalized mouse model, historically as well as in contemporary practices. PDXs raise interesting questions about the relation between animal model and human patient, and about the capacity of hybrid or interspecies models to close existing translational gaps. We highlight that the translational potential of PDXs not only depends on representational matching of model and target, but also on temporal alignment between model development and practical uses. Aside from the importance of ensuring temporal stability of human tumors in a murine body, the mouse avatar concept rests on the possibility of aligning the temporal horizons of the clinic and the lab. We examine strategies to address temporal challenges, including cryopreservation and biobanking, as well as attempts to speed up translation through modification and use of faster developing organisms. We discuss how featured model virtues change with precision oncology, and contend that temporality is a model feature that deserves more philosophical attention.
Collapse
Affiliation(s)
- Sara Green
- Section for History and Philosophy of Science, Department of Science Education, University of Copenhagen, Niels Bohr Building (NBB), Universitetsparken 5, 2100, Copenhagen Ø, Denmark.
- Department of Public Health, Centre for Medical Science and Technology Studies, University of Copenhagen, Oester Farimagsgade 5, opg. B, Postboks 2099, 1014, Copenhagen, Denmark.
| | - Mie S Dam
- Department of Public Health, Centre for Medical Science and Technology Studies, University of Copenhagen, Oester Farimagsgade 5, opg. B, Postboks 2099, 1014, Copenhagen, Denmark
| | - Mette N Svendsen
- Department of Public Health, Centre for Medical Science and Technology Studies, University of Copenhagen, Oester Farimagsgade 5, opg. B, Postboks 2099, 1014, Copenhagen, Denmark
| |
Collapse
|
3
|
He Y, Mohamedali A, Huang C, Baker MS, Nice EC. Oncoproteomics: Current status and future opportunities. Clin Chim Acta 2019; 495:611-624. [PMID: 31176645 DOI: 10.1016/j.cca.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Oncoproteomics is the systematic study of cancer samples using omics technologies to detect changes implicated in tumorigenesis. Recent progress in oncoproteomics is already opening new avenues for the identification of novel biomarkers for early clinical stage cancer detection, targeted molecular therapies, disease monitoring, and drug development. Such information will lead to new understandings of cancer biology and impact dramatically on the future care of cancer patients. In this review, we will summarize the advantages and limitations of the key technologies used in (onco)proteogenomics, (the Omics Pipeline), explain how they can assist us in understanding the biology behind the overarching "Hallmarks of Cancer", discuss how they can advance the development of precision/personalised medicine and the future directions in the field.
Collapse
Affiliation(s)
- Yujia He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Abidali Mohamedali
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, New South Wales 2109, Australia
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia.
| | - Edouard C Nice
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| |
Collapse
|
4
|
Hadjidemetriou M, Al-Ahmady Z, Buggio M, Swift J, Kostarelos K. A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials 2019; 188:118-129. [PMID: 30343255 DOI: 10.1016/j.biomaterials.2018.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
The prominent discrepancy between the significant investment towards plasma biomarker discovery and the very low number of biomarkers currently in clinical use stresses the need for discovery technologies. The discovery of protein biomarkers present in human blood by proteomics is tremendously challenging, owing to the large dynamic concentration range of blood proteins. Here, we describe the use of blood-circulating lipid-based nanoparticles (NPs) as a scavenging tool to comprehensively analyse the blood proteome. We aimed to exploit the spontaneous interaction of NPs with plasma proteins once injected in the bloodstream, known as 'protein corona', in order to facilitate the capture of tumor-specific molecules. We employed two different tumor models, a subcutaneous melanoma model (B16-F10) and human lung carcinoma xenograft model (A549) and comprehensively compared by mass spectrometry the in vivo protein coronas formed onto clinically used liposomes, intravenously administered in healthy and tumor-bearing mice. The results obtained demonstrated that blood-circulating liposomes surface-capture and amplify a wide range of different proteins including low molecular weight (MW) and low abundant tumor specific proteins (intracellular products of tissue leakage) that could not be detected by plasma analysis, performed in comparison. Most strikingly, the NP (liposomal) corona formed in the xenograft model was found to consist of murine host response proteins, as well as human proteins released from the inoculated and growing human cancer cells. This study offers direct evidence that the in vivo NP protein corona could be deemed as a valuable tool to enrich the blood proteomic analysis and to allow the discovery of potential biomarkers in experimental disease models.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Maurizio Buggio
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Joe Swift
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, Biological, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
5
|
Liu CW, Atkinson MA, Zhang Q. Type 1 diabetes cadaveric human pancreata exhibit a unique exocrine tissue proteomic profile. Proteomics 2016; 16:1432-46. [PMID: 26935967 DOI: 10.1002/pmic.201500333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/26/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder resulting from a self-destruction of pancreatic islet beta cells. The complete proteome of the human pancreas, where both the dysfunctional beta cells and their proximal environment co-exist, remains unknown. Here, we used TMT10-based isobaric labeling and multidimensional LC-MS/MS to quantitatively profile the differences between pancreatic head region tissues from T1D (N = 5) and healthy subjects (N = 5). Among the 5357 (1% false discovery rate) confidently identified proteins, 145 showed statistically significant dysregulation between T1D and healthy subjects. The differentially expressed pancreatic proteome supports the growing notion of a potential role for exocrine pancreas involvement in T1D. This study also demonstrates the utility for this approach to analyze dysregulated proteins as a means to investigate islet biology, pancreatic pathology and T1D pathogenesis.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
6
|
Torres VM, Popovic L, Vaz F, Penque D. Proteomics in the Assessment of the Therapeutic Response of Antineoplastic Drugs: Strategies and Practical Applications. Methods Mol Biol 2016; 1395:281-298. [PMID: 26910080 DOI: 10.1007/978-1-4939-3347-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Uncovering unknown pathological mechanisms and body response to applied medication are the driving forces toward personalized medicine. In this post-genomic era, all eyes are turned to the proteomics field, searching for answers and explanations by investigating the gene end point functional units-proteins and their proteoforms. The development of cutting-edge mass spectrometric technologies and bioinformatics tools have allowed the life-science community to discover disease-specific proteins as biomarkers, which are often concealed by high sample complexity and dynamic range of abundance. Currently, there are several proteomics-based approaches to investigate the proteome. This chapter focuses on gold standard proteomics strategies and related issues toward candidate biomarker discovery, which may have diagnostic/prognostic as well as mechanistic utility in cancer drug resistance.
Collapse
Affiliation(s)
- Vukosava Milic Torres
- Laboratory of Proteomics, Human Genetics Departament, Instituto Nacional de Saúde Dr Ricardo Jorge, Av. Padre Cruz, Lisbon, 1649-016, Portugal
- ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Lazar Popovic
- Medical Oncology Department, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Fátima Vaz
- Laboratory of Proteomics, Human Genetics Departament, Instituto Nacional de Saúde Dr Ricardo Jorge, Av. Padre Cruz, Lisbon, 1649-016, Portugal
- ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Deborah Penque
- Laboratory of Proteomics, Human Genetics Departament, Instituto Nacional de Saúde Dr Ricardo Jorge, Av. Padre Cruz, Lisbon, 1649-016, Portugal.
- ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Kwasnik A, Tonry C, Ardle AM, Butt AQ, Inzitari R, Pennington SR. Proteomes, Their Compositions and Their Sources. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:3-21. [DOI: 10.1007/978-3-319-41448-5_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|