1
|
Bindi G, Pagani L, Ceku J, de Oliveira GS, Porto NS, Monza N, Denti V, Mescia F, Chinello C, Fraggetta F, Magni F, Pagni F, Alberici F, L'Imperio V, Smith A. Feasibility of MALDI-MSI-Based Proteomics Using Bouin-Fixed Pathology Samples: Untapping the Goldmine of Nephropathology Archives. J Proteome Res 2024; 23:2542-2551. [PMID: 38869849 DOI: 10.1021/acs.jproteome.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The application of innovative spatial proteomics techniques, such as those based upon matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technology, has the potential to impact research in the field of nephropathology. Notwithstanding, the possibility to apply this technology in more routine diagnostic contexts remains limited by the alternative fixatives employed by this ultraspecialized diagnostic field, where most nephropathology laboratories worldwide use bouin-fixed paraffin-embedded (BFPE) samples. Here, the feasibility of performing MALDI-MSI on BFPE renal tissue is explored, evaluating variability within the trypsin-digested proteome as a result of different preanalytical conditions and comparing them with the more standardized formalin-fixed paraffin-embedded (FFPE) counterparts. A large proportion of the features (270, 68.9%) was detected in both BFPE and FFPE renal samples, demonstrating only limited variability in signal intensity (10.22-10.06%). Samples processed with either fixative were able to discriminate the principal parenchyma regions along with diverse renal substructures, such as glomeruli, tubules, and vessels. This was observed when performing an additional "stress test", showing comparable results in both BFPE and FFPE samples when the distribution of several amyloid fingerprint proteins was mapped. These results suggest the utility of BFPE tissue specimens in MSI-based nephropathology research, further widening their application in this field.
Collapse
Affiliation(s)
- Greta Bindi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| | - Lisa Pagani
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| | - Joranda Ceku
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza 20900, MB, Italy
| | - Glenda Santos de Oliveira
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| | - Natalia Shelly Porto
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| | - Nicole Monza
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| | - Federica Mescia
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Brescia 25123, BS, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, BS, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| | - Filippo Fraggetta
- Pathology Unit, Gravina Hospital Caltagirone, ASP Catania, Caltagirone 95041, CT, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza 20900, MB, Italy
| | - Federico Alberici
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Brescia 25123, BS, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, BS, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza 20900, MB, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro 20854, MB, Italy
| |
Collapse
|
2
|
Pan Y, Wong CYP, Ma H, Tse RTH, Cheng CKL, Tan M, Chiu PKF, Teoh JYC, Wang X, Ng CF, Zhang L. Quantitative comparison of the renal pelvic urine and bladder urine to examine modifications of the urine proteome by the lower urinary tract. Proteomics Clin Appl 2024; 18:e2300004. [PMID: 37574260 DOI: 10.1002/prca.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE Urine proteome is a valuable reservoir of biomarkers for disease diagnosis and monitoring. Following formation as the plasma filtrate in the kidney, urine is progressively modified by the active reabsorption and secretion of the urinary tract. However, little is known about how the urine proteome changes as it passes along the urinary tract. EXPERIMENTAL DESIGN To investigate this, we compared the proteome composition of the renal pelvis urine (RPU) and individually self-voided bladder urine (BU) collected from seven unilateral urinary tract obstruction male patients by LC-MS/MS screening. To our knowledge, this is the first proteomic comparison of RPU and BU samples from the same individual. RESULTS Overall, RPU and BU proteomes did not exhibit proteins that were exclusively present in all samples of one urine type while in none of the other type. Nonetheless, BU had more overrepresented proteins that were observed at a higher frequency than RPU. Label-free quantitative analyses revealed BU-RPU differential proteins that are enriched in exosomes and extracellular proteins. However, the differences were not significant after corrections for multiple testing. Interestingly, we observed a significant increase of collagen peptides with hydroxyproline modifications in the BU samples, suggesting differences in protein modifications. CONCLUSIONS AND CLINICAL RELEVANCE Our study revealed no substantial differences at the protein level between the BU and RPU samples. Future investigations with expanded cohorts would provide more insights about the urothelial-urinary interactions.
Collapse
Affiliation(s)
- Yilin Pan
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Christine Yim-Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Haiying Ma
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ryan Tsz-Hei Tse
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Carol Ka-Lo Cheng
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Miaomiao Tan
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Cazzaniga G, Rossi M, Eccher A, Girolami I, L'Imperio V, Van Nguyen H, Becker JU, Bueno García MG, Sbaraglia M, Dei Tos AP, Gambaro G, Pagni F. Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions. J Nephrol 2024; 37:65-76. [PMID: 37768550 PMCID: PMC10920416 DOI: 10.1007/s40620-023-01775-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) integration in nephropathology has been growing rapidly in recent years, facing several challenges including the wide range of histological techniques used, the low occurrence of certain diseases, and the need for data sharing. This narrative review retraces the history of AI in nephropathology and provides insights into potential future developments. METHODS Electronic searches in PubMed-MEDLINE and Embase were made to extract pertinent articles from the literature. Works about automated image analysis or the application of an AI algorithm on non-neoplastic kidney histological samples were included and analyzed to extract information such as publication year, AI task, and learning type. Prepublication servers and reviews were not included. RESULTS Seventy-six (76) original research articles were selected. Most of the studies were conducted in the United States in the last 7 years. To date, research has been mainly conducted on relatively easy tasks, like single-stain glomerular segmentation. However, there is a trend towards developing more complex tasks such as glomerular multi-stain classification. CONCLUSION Deep learning has been used to identify patterns in complex histopathology data and looks promising for the comprehensive assessment of renal biopsy, through the use of multiple stains and virtual staining techniques. Hybrid and collaborative learning approaches have also been explored to utilize large amounts of unlabeled data. A diverse team of experts, including nephropathologists, computer scientists, and clinicians, is crucial for the development of AI systems for nephropathology. Collaborative efforts among multidisciplinary experts result in clinically relevant and effective AI tools.
Collapse
Affiliation(s)
- Giorgio Cazzaniga
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy.
| | - Mattia Rossi
- Division of Nephrology, Department of Medicine, University of Verona, Piazzale Aristide Stefani, 1, 37126, Verona, Italy
| | - Albino Eccher
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, P.le Stefani n. 1, 37126, Verona, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Ilaria Girolami
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, P.le Stefani n. 1, 37126, Verona, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Hien Van Nguyen
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77004, USA
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - María Gloria Bueno García
- VISILAB Research Group, E.T.S. Ingenieros Industriales, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Marta Sbaraglia
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
- Department of Medicine, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
- Department of Medicine, University of Padua School of Medicine, Padua, Italy
| | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Piazzale Aristide Stefani, 1, 37126, Verona, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| |
Collapse
|
4
|
Cazzaniga G, Bolognesi MM, Stefania MD, Mascadri F, Eccher A, Alberici F, Mescia F, Smith A, Fraggetta F, Rossi M, Gambaro G, Pagni F, L'Imperio V. Congo Red Staining in Digital Pathology: The Streamlined Pipeline for Amyloid Detection Through Congo Red Fluorescence Digital Analysis. J Transl Med 2023; 103:100243. [PMID: 37634845 DOI: 10.1016/j.labinv.2023.100243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023] Open
Abstract
Renal amyloidosis is a rare condition caused by the progressive accumulation of misfolded proteins within glomeruli, vessels, and interstitium, causing functional decline and requiring prompt treatment due to its significant morbidity and mortality. Congo red (CR) stain on renal biopsy samples is the gold standard for diagnosis, but the need for polarized light is limiting the digitization of this nephropathology field. This study explores the feasibility and reliability of CR fluorescence on virtual slides (CRFvs) in evaluating the diagnostic accuracy and proposing an automated digital pipeline for its assessment. Whole-slide images from 154 renal biopsies with CR were scanned through a Texas red fluorescence filter (NanoZoomer S60, Hamamatsu) at the digital Nephropathology Center of the Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo, Monza, Italy, and evaluated double-blinded for the detection and quantification through the amyloid score and a custom ImageJ pipeline was built to automatically detect amyloid-containing regions. Interobserver agreement for CRFvs was optimal (k = 0.90; 95% CI, 0.81-0.98), with even better concordance when consensus-based CRFvs evaluation was compared to the standard CR birefringence (BR) (k = 0.98; 95% CI, 0.93-1). Excellent performance was achieved in the assessment of amyloid score overall by CRFvs (weighted k = 0.70; 95% CI, 0.08-1), especially within the interstitium (weighted k = 0.60; 95% CI, 0.35-0.84), overcoming the misinterpretation of interstitial and capsular collagen BR. The application of an automated digital pathology pipeline (Streamlined Pipeline for Amyloid detection through CR fluorescence Digital Analysis, SPADA) further increased the performance of pathologists, leading to a complete concordance with the standard BR. This study represents an initial step in the validation of CRFvs, demonstrating its general reliability in a digital nephropathology center. The computational method used in this study has the potential to facilitate the integration of spatial omics and artificial intelligence tools for the diagnosis of amyloidosis, streamlining its detection process.
Collapse
Affiliation(s)
- Giorgio Cazzaniga
- Department of Medicine and Surgery, Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Maddalena Maria Bolognesi
- Department of Medicine and Surgery, Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Matteo Davide Stefania
- Department of Medicine and Surgery, Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Francesco Mascadri
- Department of Medicine and Surgery, Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Albino Eccher
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Federico Alberici
- Nephrology Unit, Spedali Civili Hospital, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Federica Mescia
- Nephrology Unit, Spedali Civili Hospital, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Monza, Italy
| | - Filippo Fraggetta
- Pathology Unit, Azienda Sanitaria Provinciale (ASP) Catania, "Gravina" Hospital, Caltagirone, Italy
| | - Mattia Rossi
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
5
|
Rroji M, Figurek A, Spasovski G. Proteomic Approaches and Potential Applications in Autosomal Dominant Polycystic Kidney Disease and Fabry Disease. Diagnostics (Basel) 2023; 13:1152. [PMID: 36980460 PMCID: PMC10047122 DOI: 10.3390/diagnostics13061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Although rare, hereditary diseases, such as autosomal dominant polycystic kidney disease (ADPKD) and Fabry disease (FD) may significantly progress towards severe nephropathy. It is crucial to characterize it accurately, predict the course of the illness and estimate treatment effectiveness. A huge effort has been undertaken to find reliable biomarkers that might be useful for an early prevention of the disease progression and/or any invasive diagnostic procedures. The study of proteomics, or the small peptide composition of a sample, is a field of study under continuous development. Over the past years, several strategies have been created to study and define the proteome of samples from widely varying origins. However, urinary proteomics has become essential for discovering novel biomarkers in kidney disease. Here, the extracellular vesicles in human urine that contain cell-specific marker proteins from every segment of the nephron, offer a source of potentially valuable urinary biomarkers, and may play an essential role in kidney development and kidney disease. This review summarizes the relevant literature investigating the proteomic approaches and potential applications in the regular studies of ADPKD and FD.
Collapse
Affiliation(s)
- Merita Rroji
- Department of Nephrology, Faculty of Medicine, University of Medicine Tirana, 1001 Tirana, Albania
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Goce Spasovski
- University Clinic for Nephrology, Medical Faculty, University St. Cyril and Methodius, 1000 Skopje, North Macedonia
| |
Collapse
|
6
|
The evolving landscape of Anatomic Pathology. Crit Rev Oncol Hematol 2022; 178:103776. [DOI: 10.1016/j.critrevonc.2022.103776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/11/2022] Open
|
7
|
Soomro S, Stanley S, Lei R, Saxena R, Petri M, Mohan C. Comprehensive Urinomic Identification of Protein Alternatives to Creatinine Normalization for Diagnostic Assessment of Lupus Nephritis. Front Immunol 2022; 13:853778. [PMID: 35774777 PMCID: PMC9237323 DOI: 10.3389/fimmu.2022.853778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction The current gold standard used for urine biomarker normalization, creatinine, poses a challenge to translate to the point of care because antibodies to creatinine are difficult to develop and currently available ligands to creatinine are sub-optimal for this purpose. Hence, protein alternatives to creatinine are clearly needed. To address this need, lupus nephritis was selected as a model disease where urine protein assessment is required for diagnosis. Methods A comprehensive proteomic screen of 1129 proteins in healthy and lupus nephritis urine was executed to identify protein alternatives to creatinine for the normalization of urine biomarkers. Urinary proteins that correlated well with creatinine but did not vary with disease were further validated by ELISA in an independent cohort of lupus nephritis subjects. Results The comprehensive proteomic screen identified 14 urine proteins that correlated significantly with urine creatinine but did not differ significantly between SLE and controls. Of the top five proteins selected for ELISA validation, urine HVEM and RELT once again showed significant correlation with urine creatinine in independent cohorts. Normalizing a lupus nephritis biomarker candidate ALCAM using urinary HVEM demonstrated comparable diagnostic ability to creatinine normalization when distinguishing active lupus nephritis from inactive SLE patients. Conclusions The discovery of urine HVEM as a protein alternative to creatinine for biomarker normalization has applications in the engineering of antibody-based point of care diagnostics for monitoring lupus nephritis progression.
Collapse
Affiliation(s)
- Sanam Soomro
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Samantha Stanley
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Rongwei Lei
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ramesh Saxena
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michelle Petri
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Chandra Mohan,
| |
Collapse
|
8
|
Rossi F, L'Imperio V, Marti HP, Svarstad E, Smith A, Bolognesi MM, Magni F, Pagni F, Pieruzzi F. Proteomics for the study of new biomarkers in Fabry disease: State of the art. Mol Genet Metab 2021; 132:86-93. [PMID: 33077353 DOI: 10.1016/j.ymgme.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
Nephropathy represents a major complication of Fabry Disease and its accurate characterization is of paramount importance in predicting the disease progression and assessing the therapeutic responses. The diagnostic process still relies on performing renal biopsy, nevertheless many efforts have been made to discover early reliable biomarkers allowing us to avoid invasive procedures. In this field, proteomics offers a sensitive and fast method leading to an accurate detection of specific pathological proteins and the discovery of diagnostic and prognostic biomarkers that reflect disease progression and facilitate the evaluation of therapeutic responses. Here, we report a review of selected literature focusing on the investigation of several proteomic techniques highlighting their advantages, limitations and future perspectives in their application in the routine study of Fabry Nephropathy.
Collapse
Affiliation(s)
- Federica Rossi
- Department of Medicine and Surgery, University of Milano-Bicocca, Nephrology and Dialysis Unit, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy.
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, University of Milano-Bicocca, Pathology, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy.
| | - Hans-Peter Marti
- Department of Medicine, Haukeland University Hospital, Jonas Lies Vei 65, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Jonas Lies Vei 87, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Jonas Lies Vei 87, Bergen, Norway
| | - Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Via Raoul Follereau 3, Vedano al Lambro, Italy
| | - Maddalena Maria Bolognesi
- Department of Medicine and Surgery, University of Milano-Bicocca, Pathology, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Via Raoul Follereau 3, Vedano al Lambro, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Pathology, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy
| | - Federico Pieruzzi
- Department of Medicine and Surgery, University of Milano-Bicocca, Nephrology and Dialysis Unit, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy
| |
Collapse
|
9
|
Zhang T, Duran V, Vanarsa K, Mohan C. Targeted urine proteomics in lupus nephritis - a meta-analysis. Expert Rev Proteomics 2021; 17:767-776. [PMID: 33423575 DOI: 10.1080/14789450.2020.1874356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Proteomic approaches are central in biomarker discovery. While mass-spectrometry-based techniques are widely used, novel targeted proteomic platforms have enabled the high-throughput detection of low-abundance proteins in an affinity-based manner. Urine has gained growing attention as an ideal biofluid for monitoring renal disease including lupus nephritis (LN). METHODS Pubmed was screened for targeted proteomic studies of LN urine interrogating ≥1000 proteins. Data from the primary studies were combined and a meta-analysis was performed. Shared proteins elevated in active LN across studies were identified, and relevant pathways were elucidated using ingenuity pathway and gene ontology analysis. Urine proteomic data was cross-referenced against renal single-cell RNAseq data from LN kidneys. RESULTS Two high-throughput targeted proteomic platforms with capacity to interrogate ≥1000 proteins have been used to investigate LN urine. Twenty-three urine proteins were significantly elevated in both studies, including 10 chemokines, and proteins implicated in angiogenesis, and extracellular matrix turnover. Of these, Cathepsin S, CXCL10, FasL, ferritin, macrophage migration inhibitory factor (MIF), and resistin were also significantly elevated within LN kidneys. CONCLUSION Targeted urinary proteomics have uncovered multiple novel biomarkers for LN. Further validation in prospective cohorts and mechanistic studies are warranted to establish their clinical utility.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Valeria Duran
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| |
Collapse
|
10
|
Luimstra JJ, Koçer RG, Jerman A, Klein Gunnewiek J, Gijzen K, Jacobs LHJ, Demir AY. Current state of the morphological assessment of urinary erythrocytes in The Netherlands: a nation-wide questionnaire. Clin Chem Lab Med 2020; 58:1891-1900. [PMID: 32335538 DOI: 10.1515/cclm-2020-0236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
Background The morphological assessment of urinary erythrocytes (uRBC) is a convenient screening tool for the differentiation of nephrological (dysmorphic) and urological (isomorphic) causes of hematuria. Considering the morphological heterogeneity, this analysis is often perceived as difficult. There is no clear (inter)national consensus and there is a lack of external quality assessment programs. To gain insight into the heterogeneity within and between laboratories, we scrutinized the current state of this analysis in Dutch medical laboratories. Methods The laboratories, affiliated with the Dutch Foundation for Quality Assessment in Medical Laboratories, were invited to participate in a web-based survey, consisting of two questionnaires. The first one provided information about the institution and laboratory organization, and the second explored the variability in the morphological analysis of uRBC on the basis of categorization of 160 uRBC images. Statistical analysis was premised on binomial significance testing and principal component analysis. Results Nearly one third of the Dutch medical laboratories (65/191) with 167 staff members participated in the survey. Most of these laboratories (83%) were an integral part of secondary care. The statistical analysis of the evaluations of the participants in comparison to the consensus (three experts from two different medical laboratories) suggested a great degree of heterogeneity in the agreement. Nearly half of the participants consciously disagreed with the consensus, whereas one fifth demonstrated a random relationship with it. Conclusions In Dutch medical laboratories, results from morphological analysis of uRBC are heterogeneous, which point out the necessity for standardization and harmonization.
Collapse
Affiliation(s)
- Jolien J Luimstra
- Department of Clinical Chemistry and Hematology, Meander Medical Centre, Amersfoort, The Netherlands
| | - Rüya G Koçer
- Department of Clinical Chemistry and Hematology, Meander Medical Centre, Amersfoort, The Netherlands
| | - Alexander Jerman
- Department of Nephrology, University of Ljubljana, Ljubljana, Slovenia
| | - Jacqueline Klein Gunnewiek
- Section General Chemistry, Dutch Foundation for External Quality Assessment in Medical Laboratories (SKML), Nijmegen, The Netherlands
| | - Karlijn Gijzen
- Department of Clinical Chemistry and Hematology, Meander Medical Centre, Amersfoort, The Netherlands
| | - Leo H J Jacobs
- Department of Clinical Chemistry and Hematology, Meander Medical Centre, Amersfoort, The Netherlands
| | - Ayşe Y Demir
- Department of Clinical Chemistry and Hematology, Meander Medical Centre, Amersfoort, The Netherlands
| |
Collapse
|
11
|
L'Imperio V, Brambilla V, Cazzaniga G, Ferrario F, Nebuloni M, Pagni F. Digital pathology for the routine diagnosis of renal diseases: a standard model. J Nephrol 2020; 34:681-688. [PMID: 32683656 PMCID: PMC8192318 DOI: 10.1007/s40620-020-00805-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/10/2020] [Indexed: 11/03/2022]
Abstract
Whole-slide imaging and virtual microscopy are useful tools implemented in the routine pathology workflow in the last 10 years, allowing primary diagnosis or second-opinions (telepathology) and demonstrating a substantial role in multidisciplinary meetings and education. The regulatory approval of this technology led to the progressive digitalization of routine pathological practice. Previous experiences on renal biopsies stressed the need to create integrate networks to share cases for diagnostic and research purposes. In the current paper, we described a virtual lab studying the routine renal biopsies that have been collected from 14 different Italian Nephrology centers between January 2014 and December 2019. For each case, light microscopy (LM) and immunofluorescence (IF) have been processed, analysed and scanned. Additional pictures (eg. electron micrographs) along with the final encrypted report were uploaded on the web-based platform. The number and type of specimens processed for every technique, the provisional and final diagnosis, and the turnaround-time (TAT) have been recorded. Among 826 cases, 4.5% were second opinion biopsies and only 4% were suboptimal/inadequate for the diagnosis. Transmission electron microscopy (TEM) has been performed on 41% of cases, in 22% changing the final diagnosis, in the remaining 78% contributed to the better definition of the disease. For light microscopy and IF the median TAT was of 2 working days, with only 8.6% with a TAT longer than 5 days. For TEM, the average TAT was 26 days (IQR 6-64). In summary, we systematically reviewed the 6-years long nephropathological experience of an Italian renal pathology service, where digital pathology is a definitive standard of care for the routine diagnosis of glomerulonephritides.
Collapse
Affiliation(s)
- Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy.
| | - Virginia Brambilla
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Giorgio Cazzaniga
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Franco Ferrario
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Manuela Nebuloni
- Pathology Unit, ASST Sacco-Fatebenefratelli, University of Milan, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
12
|
Comparative proteomic analysis of renal proteins from IgA nephropathy model mice and control mice. Clin Exp Nephrol 2020; 24:666-679. [PMID: 32436031 DOI: 10.1007/s10157-020-01898-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND High-IgA ddY (HIGA) mice, an animal model of human IgA nephropathy (IgAN), spontaneously develop nephropathy with glomerular IgA deposition and markedly elevated serum IgA levels from 25 weeks of age. METHODS We performed a comparative proteomic analysis of the renal proteins collected from HIGA mice and control C57BL/6 mice at 5 or 38 weeks of age (the H5, H38, C5, and C38 groups) (n = 4 in each group). Proteins were extracted from the left whole kidney of each mouse and analyzed using nano-liquid chromatography-tandem mass spectrometry. The right kidneys were used for histopathological examinations. RESULTS Immunohistochemical examinations showed glomerular deposition of IgA and the immunoglobulin joining (J) chain, and increased numbers of interstitial IgA- and J-chain-positive plasma cells in the H38 group. In the proteomic analysis, > 5000 proteins were identified, and 33 proteins with H38/H5 ratios of > 5.0, H38/C38 ratios of > 5.0, and C38/C5 ratios of < 1.5 were selected. Among them, there were various proteins that are known to be involved in human IgAN and/or animal IgAN models. Immunohistochemical examinations validated the proteomic results for some proteins. Furthermore, two proteins that are known to be associated with kidney disease displayed downregulated expression (H38/H5 ratio: 0.01) in the H38 group. CONCLUSIONS The results of comparative proteomic analysis of renal proteins were consistent with previous histopathological and serological findings obtained in ddY and HIGA mice. Various proteins that are known to be involved in kidney disease, including IgAN, and potential disease marker proteins exhibited markedly altered levels in HIGA mice.
Collapse
|
13
|
Smith A, Iablokov V, Mazza M, Guarnerio S, Denti V, Ivanova M, Stella M, Piga I, Chinello C, Heijs B, van Veelen PA, Benediktsson H, Muruve DA, Magni F. Detecting Proteomic Indicators to Distinguish Diabetic Nephropathy from Hypertensive Nephrosclerosis by Integrating Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging with High-Mass Accuracy Mass Spectrometry. Kidney Blood Press Res 2020; 45:233-248. [PMID: 32062660 DOI: 10.1159/000505187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) and hypertensive nephrosclerosis (HN) represent the most common causes of chronic kidney disease (CKD) and many patients progress to -end-stage renal disease. Patients are treated primarily through the management of cardiovas-cular risk factors and hypertension; however patients with HN have a more favorable outcome. A noninvasive clinical approach to separate these two entities, especially in hypertensive patients who also have diabetes, would allow for targeted treatment and more appropriate resource allocation to those patients at the highest risk of CKD progression. Meth-ods: In this preliminary study, high-spatial-resolution matrix-assisted laser desorption/ion-ization (MALDI) mass spectrometry imaging (MSI) was integrated with high-mass accuracy MALDI-FTICR-MS and nLC-ESI-MS/MS analysis in order to detect tissue proteins within kidney biopsies to discriminate cases of DN (n = 9) from cases of HN (n = 9). RESULTS Differences in the tryptic peptide profiles of the 2 groups could clearly be detected, with these becoming even more evident in the more severe histological classes, even if this was not evident with routine histology. In particular, 4 putative proteins were detected and had a higher signal intensity within regions of DN tissue with extensive sclerosis or fibrosis. Among these, 2 proteins (PGRMC1 and CO3) had a signal intensity that increased at the latter stages of the disease and may be associated with progression. DISCUSSION/CONCLUSION This preliminary study represents a valuable starting point for a future study employing a larger cohort of patients to develop sensitive and specific protein biomarkers that could reliably differentiate between diabetic and hypertensive causes of CKD to allow for improved diagnosis, fewer biopsy procedures, and refined treatment approaches for clinicians.
Collapse
Affiliation(s)
- Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Vadim Iablokov
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mariafrancesca Mazza
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Sonia Guarnerio
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Mariia Ivanova
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Stella
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hallgrimur Benediktsson
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel A Muruve
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy,
| |
Collapse
|
14
|
Sirolli V, Pieroni L, Di Liberato L, Urbani A, Bonomini M. Urinary Peptidomic Biomarkers in Kidney Diseases. Int J Mol Sci 2019; 21:E96. [PMID: 31877774 PMCID: PMC6982248 DOI: 10.3390/ijms21010096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
In order to effectively develop personalized medicine for kidney diseases we urgently need to develop highly accurate biomarkers for use in the clinic, since current biomarkers of kidney damage (changes in serum creatinine and/or urine albumin excretion) apply to a later stage of disease, lack accuracy, and are not connected with molecular pathophysiology. Analysis of urine peptide content (urinary peptidomics) has emerged as one of the most attractive areas in disease biomarker discovery. Urinary peptidome analysis allows the detection of short and long-term physiological or pathological changes occurring within the kidney. Urinary peptidomics has been applied extensively for several years now in renal patients, and may greatly improve kidney disease management by supporting earlier and more accurate detection, prognostic assessment, and prediction of response to treatment. It also promises better understanding of kidney disease pathophysiology, and has been proposed as a "liquid biopsy" to discriminate various types of renal disorders. Furthermore, proteins being the major drug targets, peptidome analysis may allow one to evaluate the effects of therapies at the protein signaling pathway level. We here review the most recent findings on urinary peptidomics in the setting of the most common kidney diseases.
Collapse
Affiliation(s)
- Vittorio Sirolli
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS.Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (V.S.); (L.D.L.)
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS.Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (V.S.); (L.D.L.)
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS.Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (V.S.); (L.D.L.)
| |
Collapse
|
15
|
L'Imperio V, Smith A, Pisani A, D'Armiento M, Scollo V, Casano S, Sinico RA, Nebuloni M, Tosoni A, Pieruzzi F, Magni F, Pagni F. MALDI imaging in Fabry nephropathy: a multicenter study. J Nephrol 2019; 33:299-306. [PMID: 31292888 DOI: 10.1007/s40620-019-00627-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The current study evaluates the application of histology and in situ proteomics (MALDI-MSI) in Fabry nephropathy (FN), showing investigative and classification role for this coupled approach. METHODS A retrospective series of 14 formalin fixed paraffin embedded (FFPE) renal biopsies with diagnosis of FN and 1 biopsy from a patient bearing a galactosidase-α (GLA) genetic variant of unknown significance (GVUS, c.376A>G) have been classified for clinical characteristics. Groups were compared for histological differences (following the ISGFN scoring system). Moreover, renal biopsies from these cases have been analyzed with MALDI-MSI as previously described to find proteomic signatures among different mutations and phenotypes. RESULTS Comparison of clinical features revealed lower mean 24 h proteinuria in females (225 mg/24 h) than in males (1477.5 mg/24 h, p = 0.006). As for clinical characteristics, females significantly differed from males only for lower arterial sclerosis, with a mean value of 0.82 vs. 1.05 (p = 0.001). Proteomic analysis demonstrated specific signatures in different subgroups of FN patients. Moreover, MALDI correctly classified cases with undetermined mutation or GVUS. CONCLUSIONS The present study demonstrated the feasible application of MALDI-MSI in the analysis of FN FFPE renal biopsies, allowing the detection of putative signatures for phenotypic distinction and demonstrating genetic classification capabilities.
Collapse
Affiliation(s)
- Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Monza, Italy
| | - Antonio Pisani
- Chair of Nephrology, University Federico II, Naples, Italy
| | - Maria D'Armiento
- Department of Biomorphological and Functional Sciences, Section of Anatomic Pathology, Federico II University, Naples, Italy
| | - Viviana Scollo
- Department of Medicine and Surgery, Nephrology Unit, University of Milano-Bicocca, Monza, Italy
| | - Stefano Casano
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Renato Alberto Sinico
- Department of Medicine and Surgery, Nephrology Unit, University of Milano-Bicocca, Monza, Italy
| | - Manuela Nebuloni
- Research Center for Renal Immunopathology, University of Milan, Milan, Italy.,Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Antonella Tosoni
- Research Center for Renal Immunopathology, University of Milan, Milan, Italy.,Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Federico Pieruzzi
- Department of Medicine and Surgery, Nephrology Unit, University of Milano-Bicocca, Monza, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy. .,Research Center for Renal Immunopathology, University of Milan, Milan, Italy.
| |
Collapse
|
16
|
Smith A, L'Imperio V, Denti V, Mazza M, Ivanova M, Stella M, Piga I, Chinello C, Ajello E, Pieruzzi F, Pagni F, Magni F. High Spatial Resolution MALDI-MS Imaging in the Study of Membranous Nephropathy. Proteomics Clin Appl 2018; 13:e1800016. [PMID: 30548219 DOI: 10.1002/prca.201800016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/30/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technology has advanced rapidly during recent years with the development of instruments equipped with low-diameter lasers that are suitable for high spatial resolution imaging. This may provide significant advantages in certain fields of molecular pathology where more specific protein fingerprints of individual cell types are required, such as renal pathology. EXPERIMENTAL DESIGN Here MALDI-MSI analysis of a cohort of membranous nephropathy (MN) patients is performed among which patients either responded favorably (R; n = 6), or unfavorably (NR; n = 4), to immunosuppressive treatment (Ponticelli Regimen), employing a 10 µm laser spot diameter. RESULTS Specific tryptic peptide profiles of the different cellular regions within the glomerulus can be generated, similarly for the epithelial cells belonging to the proximal and distal tubules. Conversely, specific glomerular and sub-glomerular profiles cannot be obtained while using the pixel size performed in previous studies (50 µm). Furthermore, two proteins are highlighted, sonic hedgehog and α-smooth muscle actin, whose signal intensity and spatial localization within the sub-glomerular and tubulointerstitial compartments differ between treatment responders and non-responders. CONCLUSIONS AND CLINICAL RELEVANCE The present study exemplifies the advantage of using high spatial resolution MALDI-MSI for the study of MN and highlights that such findings have the potential to provide complementary support in the routine prognostic assessment of MN patients.
Collapse
Affiliation(s)
- Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, 20854, Italy
| | - Vincenzo L'Imperio
- San Gerardo Hospital, Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, Monza, 20900, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, 20854, Italy
| | - Mariafrancesca Mazza
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, 20854, Italy
| | - Mariia Ivanova
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, 20854, Italy
| | - Martina Stella
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, 20854, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, 20854, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, 20854, Italy
| | - Elena Ajello
- Department of Medicine and Surgery, Nephrology Unit, University of Milano-Bicocca, Monza, 20900, Italy
| | - Federico Pieruzzi
- Department of Medicine and Surgery, Nephrology Unit, University of Milano-Bicocca, Monza, 20900, Italy
| | - Fabio Pagni
- San Gerardo Hospital, Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, Monza, 20900, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, 20854, Italy
| |
Collapse
|
17
|
Liu YC, Chun J. Prospects for Precision Medicine in Glomerulonephritis Treatment. Can J Kidney Health Dis 2018; 5:2054358117753617. [PMID: 29449955 PMCID: PMC5808958 DOI: 10.1177/2054358117753617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Glomerulonephritis (GN) consists of a group of kidney diseases that are categorized based on shared histopathological features. The current classifications for GN make it difficult to distinguish the individual variability in presentation, disease progression, and response to treatment. GN is a significant cause of end-stage renal disease (ESRD), and improved therapies are desperately needed because current immunosuppressive therapies sometimes lack efficacy and can lead to significant toxicities. In recent years, the combination of high-throughput genetic approaches and technological advances has identified important regulators contributing to GN. Objectives: In this review, we summarize recent findings in podocyte biology and advances in experimental approaches that have opened the possibility of precision medicine in GN treatment. We provide an integrative basic science and clinical overview of new developments in GN research and the discovery of potential candidates for targeted therapies in GN. Findings: Advances in podocyte biology have identified many candidates for therapeutic targets and potential biomarkers of glomerular disease. The goal of precision medicine in GN is now being pursued with recent technological improvements in genetics, accessibility of biologic and clinical information with tissue biobanks, high-throughput analysis of large-scale data sets, and new human model systems such as kidney organoids. Conclusion: With advances in data collection, technologies, and experimental model systems, we now have vast tools available to pursue precision medicine in GN. We anticipate a growing number of studies integrating data from high-throughput analysis with the development of diagnostic tools and targeted therapies for GN in the near future.
Collapse
Affiliation(s)
- Yulu Cherry Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Justin Chun
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Division of Nephrology, Department of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
18
|
Chen L, Su W, Chen H, Chen DQ, Wang M, Guo Y, Zhao YY. Proteomics for Biomarker Identification and Clinical Application in Kidney Disease. Adv Clin Chem 2018; 85:91-113. [PMID: 29655463 DOI: 10.1016/bs.acc.2018.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Treatment effectiveness for kidney disease is limited by lack of accuracy, sensitivity, specificity of diagnostic, prognostic, and therapeutic biomarkers. The gold standard test renal biopsy along with serum creatinine and proteinuria is often necessary to establish a diagnosis, particularly in glomerular disease. Proteomics has become a powerful tool for novel biomarker discovery in kidney disease. Novel proteomics offer earlier and more accurate diagnosis of renal pathology than possible with traditional biomarkers such as serum creatinine and urine protein. In addition, proteomic biomarkers could also be useful to choose the most suitable therapeutic targets. This review focuses on the current status of proteomic biomarkers from animal models (5/6 nephrectomy, unilateral ureteral obstruction, and diabetic nephropathy) and human studies (chronic kidney disease, glomerular diseases, transplantation, dialysis, acute and drug-induced kidney injury) to assess relevant findings and clinical usefulness. Current issues and problems related to the discovery, validation, and clinical application of proteomic biomarkers are discussed. We also describe several proteomic strategies highlighting technologic advancements, specimen selection, data processing and analysis. This review might provide help in future proteomic studies to improve the diagnosis and management of kidney disease.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China
| | - Wei Su
- Baoji Central Hospital, Baoji, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China
| | - Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China
| | - Yan Guo
- University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an, China.
| |
Collapse
|
19
|
Haas M. Glomerular Disease Pathology in the Era of Proteomics: From Pattern to Pathogenesis. J Am Soc Nephrol 2017; 29:2-4. [PMID: 29097622 DOI: 10.1681/asn.2017080881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
20
|
Capusa C, Mehedinti AM, Leh S, Marti HP. Nephropathology: A Cornerstone for Understanding and Estimation of Recent Advances in Glomerular Diseases. BANTAO JOURNAL 2017. [DOI: 10.1515/bj-2016-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The developments in the field of kidney pathology are major objectives for nephrology worldwide, since the histopathologic diagnosis is a cornerstone for all glomerulopathies (either primary or secondary related to systemic diseases-for tubulointerstitial and vascular lesions as well as renal allograft nephropathy). Moreover, the correct interpretation of kidney tissue samples is a challenge for pathologists too. Consequently, a new subspecialty - nephropathology, was accepted by many medical schools in various universities, while dedicated scientific meetings, journals and websites were also created. In the following few pages, a short overview on the history, classic and novel meanings of the renal pathology for the understanding of glomerular pathophysiology will be discussed.
Collapse
Affiliation(s)
- Cristina Capusa
- Nephrology Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest , Romania
- “Dr. Carol Davila” Teaching Hospital of Nephrology, Bucharest , Romania
| | | | - Sabine Leh
- Department of Clinical Medicine, Renal Research Group, Haukeland University Hospital, University of Bergen, Bergen , Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, Renal Research Group, Haukeland University Hospital, University of Bergen, Bergen , Norway
| |
Collapse
|
21
|
Abstract
Glomerulonephritis (GNs) are one of the most frequent causes of chronic kidney disease (CKD), a renal condition that often leads to end-stage renal failure, and a careful assessment of these diseases is essential for prognostic and therapeutic purposes. The application of MALDI-MSI directly on bioptic renal tissue represents a new stimulating perspective and facilitates the detection of specific proteomic indicators that are directly correlated with the pathological alterations that occur within the glomeruli during the development of glomerulonephritis. Here, we describe the standard workflow for the MALDI-MSI analysis of clinical fresh-frozen and FFPE renal biopsies and highlight how the obtained molecular information, when combined with histology, can be used to detect specific protein markers of GNs.
Collapse
|
22
|
Gutiérrez JM, Escalante T, Rucavado A, Herrera C, Fox JW. A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins (Basel) 2016; 8:toxins8100304. [PMID: 27782073 PMCID: PMC5086664 DOI: 10.3390/toxins8100304] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
Snake venom metalloproteinases (SVMPs) affect the extracellular matrix (ECM) in multiple and complex ways. Previously, the combination of various methodological platforms, including electron microscopy, histochemistry, immunohistochemistry, and Western blot, has allowed a partial understanding of such complex pathology. In recent years, the proteomics analysis of exudates collected in the vicinity of tissues affected by SVMPs has provided novel and exciting information on SVMP-induced ECM alterations. The presence of fragments of an array of ECM proteins, including those of the basement membrane, has revealed a complex pathological scenario caused by the direct action of SVMPs. In addition, the time-course analysis of these changes has underscored that degradation of some fibrillar collagens is likely to depend on the action of endogenous proteinases, such as matrix metalloproteinases (MMPs), synthesized as a consequence of the inflammatory process. The action of SVMPs on the ECM also results in the release of ECM-derived biologically-active peptides that exert diverse actions in the tissue, some of which might be associated with reparative events or with further tissue damage. The study of the effects of SVMP on the ECM is an open field of research which may bring a renewed understanding of snake venom-induced pathology.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Cristina Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Jay W Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22959, USA.
| |
Collapse
|