1
|
Kumar A, Singh PP, Tyagi S, Hari Kishan Raju K, Sahu SS, Rahi M. Vivax malaria: a possible stumbling block for malaria elimination in India. Front Public Health 2024; 11:1228217. [PMID: 38259757 PMCID: PMC10801037 DOI: 10.3389/fpubh.2023.1228217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Plasmodium vivax is geographically the most widely dispersed human malaria parasite species. It has shown resilience and a great deal of adaptability. Genomic studies suggest that P. vivax originated from Asia or Africa and moved to the rest of the world. Although P. vivax is evolutionarily an older species than Plasmodium falciparum, its biology, transmission, pathology, and control still require better elucidation. P. vivax poses problems for malaria elimination because of the ability of a single primary infection to produce multiple relapses over months and years. P. vivax malaria elimination program needs early diagnosis, and prompt and complete radical treatment, which is challenging, to simultaneously exterminate the circulating parasites and dormant hypnozoites lodged in the hepatocytes of the host liver. As prompt surveillance and effective treatments are rolled out, preventing primaquine toxicity in the patients having glucose-6-phosphate dehydrogenase (G6PD) deficiency should be a priority for the vivax elimination program. This review sheds light on the burden of P. vivax, changing epidemiological patterns, the hurdles in elimination efforts, and the essential tools needed not just in India but globally. These tools encompass innovative treatments for eliminating dormant parasites, coping with evolving drug resistance, and the development of potential vaccines against the parasite.
Collapse
Affiliation(s)
- Ashwani Kumar
- ICMR - Vector Control Research Centre, Puducherry, India
| | | | - Suchi Tyagi
- ICMR - Vector Control Research Centre, Puducherry, India
| | | | | | - Manju Rahi
- ICMR - Vector Control Research Centre, Puducherry, India
- Indian Council of Medical Research, Hqrs New Delhi, India
| |
Collapse
|
2
|
Aggarwal S, Selvaraj S, Subramanian JN, Vijayalakshmi MA, Patankar S, Srivastava S. Polyclonal Antibody Generation against PvTRAg for the Development of a Diagnostic Assay for Plasmodium vivax. Diagnostics (Basel) 2023; 13:diagnostics13050835. [PMID: 36899977 PMCID: PMC10001162 DOI: 10.3390/diagnostics13050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The World Health Organization (WHO) has set forth a global call for eradicating malaria, caused majorly by the protozoan parasites Plasmodium falciparum and Plasmodium vivax. The lack of diagnostic biomarkers for P. vivax, especially those that differentiate the parasite from P. falciparum, significantly hinders P. vivax elimination. Here, we show that P. vivax tryptophan-rich antigen (PvTRAg) can be a diagnostic biomarker for diagnosing P. vivax in malaria patients. We report that polyclonal antibodies against purified PvTRAg protein show interactions with purified PvTRAg and native PvTRAg using Western blots and indirect enzyme-linked immunosorbent assay (ELISA). We also developed an antibody-antigen-based qualitative assay using biolayer interferometry (BLI) to detect vivax infection using plasma samples from patients with different febrile diseases and healthy controls. The polyclonal anti-PvTRAg antibodies were used to capture free native PvTRAg from the patient plasma samples using BLI, providing a new expansion range to make the assay quick, accurate, sensitive, and high-throughput. The data presented in this report provides a proof of concept for PvTRAg, a new antigen, for developing a diagnostic assay for P. vivax identification and differentiation from the rest of the Plasmodium species and, at a later stage, translating the BLI assay into affordable, point-of-care formats to make it more accessible.
Collapse
Affiliation(s)
- Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel
| | - Selvamano Selvaraj
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, India
| | | | | | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Correspondence: ; Tel.: +91-(22)-2576-7779
| |
Collapse
|
3
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
4
|
Mascarenhas A, Chakrabarti R, Chery-Karschney L, White J, Skillman KM, Kanjee U, Babar PH, Patrapuvich R, Mohanty AK, Duraisingh MT, Rathod PK. International Center of Excellence for Malaria Research for South Asia and Broader Malaria Research in India. Am J Trop Med Hyg 2022; 107:118-123. [PMID: 36228906 PMCID: PMC9662211 DOI: 10.4269/ajtmh.22-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The Malaria Evolution in South Asia (MESA) International Center of Excellence for Malaria Research (ICEMR) conducted research studies at multiple sites in India to record blood-slide positivity over time, but also to study broader aspects of the disease. From the Southwest of India (Goa) to the Northeast (Assam), the MESA-ICEMR invested in research equipment, operational capacity, and trained personnel to observe frequencies of Plasmodium falciparum and Plasmodium vivax infections, clinical presentations, treatment effectiveness, vector transmission, and reinfections. With Government of India partners, Indian and U.S. academics, and trained researchers on the ground, the MESA-ICEMR team contributes information on malaria in selected parts of India.
Collapse
Affiliation(s)
- Anjali Mascarenhas
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa, India
| | - Rimi Chakrabarti
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa, India
| | | | - John White
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Kristen M. Skillman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Prasad H. Babar
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa, India
| | - Rapatbhorn Patrapuvich
- Drug Research Unit for Malaria, Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
5
|
Srivastava S. Proteomics-Based Investigations of Neglected and Tropical Diseases. Proteomics Clin Appl 2018; 12:e1800076. [DOI: 10.1002/prca.201800076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sanjeeva Srivastava
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| |
Collapse
|