1
|
Latosinska A, Frantzi M, Siwy J. Peptides as "better biomarkers"? Value, challenges, and potential solutions to facilitate implementation. MASS SPECTROMETRY REVIEWS 2024; 43:1195-1236. [PMID: 37357849 DOI: 10.1002/mas.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023]
Abstract
Peptides carry important functions in normal physiological and pathophysiological processes and can serve as clinically useful biomarkers. Given the ability to diffuse passively across endothelial barriers, endogenous peptides can be examined in several body fluids, including among others urine, blood, and cerebrospinal fluid. This review article provides an update on the recently published literature that reports on investigating native peptides in body fluids using mass spectrometry-based platforms, specifically those studies that focus on the application of peptides as biomarkers to improve clinical management. We emphasize on the critical evaluation of their clinical value, how close they are to implementation, and the associated challenges and potential solutions to facilitate clinical implementation. During the last 5 years, numerous studies have been published, demonstrating the increased interest in mass spectrometry for the assessment of endogenous peptides as potential biomarkers. Importantly, the presence of few successful examples of implementation in patients' management and/or in the context of clinical trials indicates that the peptide biomarker field is evolving. Nevertheless, most studies still report evidence based on small sample size, while validation phases are frequently missing. Therefore, a gap between discovery and implementation still exists.
Collapse
Affiliation(s)
| | - Maria Frantzi
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Justyna Siwy
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
| |
Collapse
|
2
|
Millen JL, Luyten LJ, Dieu M, Bové H, Ameloot M, Bongaerts E, Demazy C, Fransolet M, Martens DS, Renard P, Reimann B, Plusquin M, Nawrot TS, Debacq-Chainiaux F. Alterations in the placental proteome in association with the presence of black carbon particles: A discovery study. ENVIRONMENTAL RESEARCH 2024; 263:120214. [PMID: 39442658 DOI: 10.1016/j.envres.2024.120214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date. OBJECTIVES We explored whether placental proteome differs between mothers exposed to either high or low BC levels throughout the entire pregnancy. METHODS We used placental tissue samples from the ENVIRONAGE birth cohort, of 20 non-smoking, maternal- and neonate characteristic-matched women exposed to high (n = 10) or low (n = 10) levels of ambient BC throughout pregnancy. We modeled prenatal BC exposure levels based on the mother's home address and measured BC levels in the fetal side of the placenta. The placental proteome was analyzed by nano-liquid chromatography Q-TOF mass spectrometry. PEAKS software was used for protein identification and label-free quantification. Protein-protein interaction and functional pathway enrichment analyses were performed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software. RESULTS The accumulation of BC particles in placenta was 2.19 times higher in the high versus low exposure group (20943.4 vs 9542.7 particles/mm³; p = 0.007). Thirteen proteins showed a ≥2-fold expression difference between the two exposure groups, all overexpressed in the placentas of women prenatally exposed to high BC levels. Three protein-protein interactions were enriched within this group, namely between TIMP3 and COL4A2, SERPINE2 and COL4A2, and SERPINE2 and GP1BB. Functional pathway enrichment analysis put forward pathways involved in extracellular matrix-receptor interaction, fibrin clot formation, and sodium ion transport regulation. DISCUSSION Prenatal BC exposure affects the placental proteome. Future research should focus on the potential consequences of these alterations on placental functioning, and health and disease during early childhood development.
Collapse
Affiliation(s)
- Joline L Millen
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Leen J Luyten
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Catherine Demazy
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Patricia Renard
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
3
|
Elguoshy A, Yamamoto K, Hirao Y, Uchimoto T, Yanagita K, Yamamoto T. Investigating and Annotating the Human Peptidome Profile from Urine under Normal Physiological Conditions. Proteomes 2024; 12:18. [PMID: 39051237 PMCID: PMC11270373 DOI: 10.3390/proteomes12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Examining the composition of the typical urinary peptidome and identifying the enzymes responsible for its formation holds significant importance, as it mirrors the normal physiological state of the human body. Any deviation from this normal profile could serve as an indicator of pathological processes occurring in vivo. Consequently, this study focuses on characterizing the normal urinary peptidome and investigating the various catalytic enzymes that are involved in generating these native peptides in urine. Our findings reveal that 1503 endogenous peptides, corresponding to 436 precursor proteins, were consistently identified robustly in at least 10 samples out of a total of 19 samples. Notably, the liver and kidneys exhibited the highest number of tissue-enriched or enhanced genes in the analyzed urinary peptidome. Furthermore, among the catalytic types, CTSD (cathepsin D) and MMP2 (matrix metalloproteinase-2) emerged as the most prominent peptidases in the aspartic and metallopeptidases categories, respectively. A comparison of our dataset with two of the most comprehensive urine peptidome datasets to date indicates a consistent relative abundance of core endogenous peptides for different proteins across all three datasets. These findings can serve as a foundational reference for the discovery of biomarkers in various human diseases.
Collapse
Affiliation(s)
- Amr Elguoshy
- Biofluid and Biomarker Center, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-2181, Japan; (A.E.); (K.Y.); (Y.H.); (T.U.); (K.Y.)
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Keiko Yamamoto
- Biofluid and Biomarker Center, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-2181, Japan; (A.E.); (K.Y.); (Y.H.); (T.U.); (K.Y.)
| | - Yoshitoshi Hirao
- Biofluid and Biomarker Center, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-2181, Japan; (A.E.); (K.Y.); (Y.H.); (T.U.); (K.Y.)
| | - Tomohiro Uchimoto
- Biofluid and Biomarker Center, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-2181, Japan; (A.E.); (K.Y.); (Y.H.); (T.U.); (K.Y.)
| | - Kengo Yanagita
- Biofluid and Biomarker Center, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-2181, Japan; (A.E.); (K.Y.); (Y.H.); (T.U.); (K.Y.)
| | - Tadashi Yamamoto
- Biofluid and Biomarker Center, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-2181, Japan; (A.E.); (K.Y.); (Y.H.); (T.U.); (K.Y.)
- Department of Clinical Laboratory, Shinrakuen Hospital, Niigata 950-2087, Japan
| |
Collapse
|
4
|
Carland C, Zhao L, Salman O, Cohen JB, Zamani P, Xiao Q, Dongre A, Wang Z, Ebert C, Greenawalt D, van Empel V, Richards AM, Doughty RN, Rietzschel E, Javaheri A, Wang Y, Schafer PH, Hersey S, Carayannopoulos LN, Seiffert D, Chang C, Gordon DA, Ramirez‐Valle F, Mann DL, Cappola TP, Chirinos JA. Urinary Proteomics and Outcomes in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e033410. [PMID: 38639358 PMCID: PMC11179922 DOI: 10.1161/jaha.123.033410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Although several studies have addressed plasma proteomics in heart failure with preserved ejection fraction, limited data are available on the prognostic value of urinary proteomics. The objective of our study was to identify urinary proteins/peptides associated with death and heart failure admission in patients with heart failure with preserved ejection fraction. METHODS AND RESULTS The study population included participants enrolled in TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial). The relationship between urine protein levels and the risk of death or heart failure admission was assessed using Cox regression, in both nonadjusted analyses and adjusting for urine creatinine levels, and the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score. A total of 426 (12.4%) TOPCAT participants had urinary protein data and were included. There were 40 urinary proteins/peptides significantly associated with death or heart failure admission in nonadjusted analyses, 21 of which were also significant adjusted analyses. Top proteins in the adjusted analysis included ANGPTL2 (angiopoietin-like protein 2) (hazard ratio [HR], 0.5731 [95% CI, 0.47-0.7]; P=3.13E-05), AMY2A (α amylase 2A) (HR, 0.5496 [95% CI, 0.44-0.69]; P=0.0001), and DNASE1 (deoxyribonuclease-1) (HR, 0.5704 [95% CI, 0.46-0.71]; P=0.0002). Higher urinary levels of proteins involved in fibrosis (collagen VI α-1, collagen XV α-1), metabolism (pancreatic α-amylase 2A/B, mannosidase α class 1A member 1), and inflammation (heat shock protein family D member 1, inducible T cell costimulatory ligand) were associated with a lower risk of death or heart failure admission. CONCLUSIONS Our study identifies several novel associations between urinary proteins/peptides and outcomes in heart failure with preserved ejection fraction. Many of these associations are independent of clinical risk scores and may aid in risk stratification in this patient population.
Collapse
Affiliation(s)
- Corinne Carland
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | - Oday Salman
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jordana B. Cohen
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Qing Xiao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Robert N. Doughty
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University Hospital and Ghent UniversityGhentBelgium
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | - Yixin Wang
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
5
|
Kumar R, Tyagi N, Nagpal A, Kaushik JK, Mohanty AK, Kumar S. Peptidome Profiling of Bubalus bubalis Urine and Assessment of Its Antimicrobial Activity against Mastitis-Causing Pathogens. Antibiotics (Basel) 2024; 13:299. [PMID: 38666975 PMCID: PMC11047597 DOI: 10.3390/antibiotics13040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 04/29/2024] Open
Abstract
Urinary proteins have been studied quite exhaustively in the past, however, the small sized peptides have remained neglected for a long time in dairy cattle. These peptides are the products of systemic protein turnover, which are excreted out of the body and hence can serve as an important biomarker for various pathophysiologies. These peptides in other species of bovine have been reported to possess several bioactive properties. To investigate the urinary peptides in buffalo and simultaneously their bioactivities, we generated a peptidome profile from the urine of Murrah Buffaloes (n = 10). Urine samples were processed using <10 kDa MWCO filter and filtrate obtained was used for peptide extraction using Solid Phase Extraction (SPE). The nLC-MS/MS of the aqueous phase from ten animals resulted in the identification of 8165 peptides originating from 6041 parent proteins. We further analyzed these peptide sequences to identify bioactive peptides and classify them into anti-cancerous, anti-hypertensive, anti-microbial, and anti-inflammatory groups with a special emphasis on antimicrobial properties. With this in mind, we simultaneously conducted experiments to evaluate the antimicrobial properties of urinary aqueous extract on three pathogenic bacterial strains: S. aureus, E. coli, and S. agalactiae. The urinary peptides observed in the study are the result of the activity of possibly 76 proteases. The GO of these proteases showed the significant enrichment of the antibacterial peptide production. The total urinary peptide showed antimicrobial activity against the aforementioned pathogenic bacterial strains with no significant inhibitory effects against a buffalo mammary epithelial cell line. Just like our previous study in cows, the present study suggests the prime role of the antimicrobial peptides in the maintenance of the sterility of the urinary tract in buffalo by virtue of their amino acid composition.
Collapse
Affiliation(s)
- Rohit Kumar
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Nikunj Tyagi
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anju Nagpal
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Jai Kumar Kaushik
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Ashok Kumar Mohanty
- ICAR-Indian Veterinary Research Institute, Mukteshwar 263138, Uttarakhand, India
| | - Sudarshan Kumar
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| |
Collapse
|
6
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Keller F, Beige J, Siwy J, Mebazaa A, An D, Mischak H, Schanstra JP, Mokou M, Perco P, Staessen JA, Vlahou A, Latosinska A. Urinary peptides provide information about the risk of mortality across a spectrum of diseases and scenarios. J Transl Med 2023; 21:663. [PMID: 37741989 PMCID: PMC10518109 DOI: 10.1186/s12967-023-04508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND There is evidence of pre-established vulnerability in individuals that increases the risk of their progression to severe disease or death, although the mechanisms causing this are still not fully understood. Previous research has demonstrated that a urinary peptide classifier (COV50) predicts disease progression and death from SARS-CoV-2 at an early stage, indicating that the outcome prediction may be partly due to vulnerabilities that are already present. The aim of this study is to examine the ability of COV50 to predict future non-COVID-19-related mortality, and evaluate whether the pre-established vulnerability can be generic and explained on a molecular level by urinary peptides. METHODS Urinary proteomic data from 9193 patients (1719 patients sampled at intensive care unit (ICU) admission and 7474 patients with other diseases (non-ICU)) were extracted from the Human Urinary Proteome Database. The previously developed COV50 classifier, a urinary proteomics biomarker panel consisting of 50 peptides, was applied to all datasets. The association of COV50 scoring with mortality was evaluated. RESULTS In the ICU group, an increase in the COV50 score of one unit resulted in a 20% higher relative risk of death [adjusted HR 1.2 (95% CI 1.17-1.24)]. The same increase in COV50 in non-ICU patients resulted in a higher relative risk of 61% [adjusted HR 1.61 (95% CI 1.47-1.76)], consistent with adjusted meta-analytic HR estimate of 1.55 [95% CI 1.39-1.73]. The most notable and significant changes associated with future fatal events were reductions of specific collagen fragments, most of collagen alpha I (I). CONCLUSION The COV50 classifier is predictive of death in the absence of SARS-CoV-2 infection, suggesting that it detects pre-existing vulnerability. This prediction is mainly based on collagen fragments, possibly reflecting disturbances in the integrity of the extracellular matrix. These data may serve as a basis for proteomics-guided intervention aiming towards manipulating/ improving collagen turnover, thereby reducing the risk of death.
Collapse
Affiliation(s)
- Felix Keller
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Joachim Beige
- Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
- Kuratorium for Dialysis and Transplantation, 04129, Leipzig, Germany
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659, Hannover, Germany
| | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care, Hôpital Lariboisière, AP-HP, 75010, Paris, France
| | - Dewei An
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, 2800, Mechelen, Belgium
| | | | - Joost P Schanstra
- Institute of Cardiovascular and Metabolic Disease, U1297, Institut National de la Santé et de la Recherche Médicale, 31432, Toulouse, France
- Université Toulouse III Paul-Sabatier, 31062, Toulouse, France
| | - Marika Mokou
- Mosaiques Diagnostics GmbH, 30659, Hannover, Germany
| | - Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Jan A Staessen
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, 2800, Mechelen, Belgium
| | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | | |
Collapse
|
8
|
Martucci LF, Eichler RA, Silva RN, Costa TJ, Tostes RC, Busatto GF, Seelaender MC, Duarte AJ, Souza HP, Ferro ES. Intracellular peptides in SARS-CoV-2-infected patients. iScience 2023; 26:107542. [PMID: 37636076 PMCID: PMC10448160 DOI: 10.1016/j.isci.2023.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological significance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results revealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the results of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, revealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the relative plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.
Collapse
Affiliation(s)
- Luiz Felipe Martucci
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
| | | | - Renée N.O. Silva
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
| | - Tiago J. Costa
- Department of Pharmacology, Ribeirao Preto Medical School, Ribeirão Preto 14049-900, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, Ribeirão Preto 14049-900, Brazil
| | - Geraldo F. Busatto
- Department of Psichiatry, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Marilia C.L. Seelaender
- Department of Surgery, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Alberto J.S. Duarte
- Department of Patology, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Heraldo P. Souza
- Department of Internal Medicine, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
- Department of Patology, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
- Department of Internal Medicine, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| |
Collapse
|
9
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
10
|
Marx D, Anglicheau D, Caillard S, Moulin B, Kochman A, Mischak H, Latosinska A, Bienaimé F, Prié D, Marquet P, Perrin P, Gwinner W, Metzger J. Urinary collagen peptides: Source of markers for bone metabolic processes in kidney transplant recipients. Proteomics Clin Appl 2023:e2200118. [PMID: 37365945 DOI: 10.1002/prca.202200118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Kidney transplant recipients (KTRs) are at an increased risk of fractures. Total urinary hydroxyproline excretion served as marker for bone resorption (BR) but was replaced by β-CrossLaps (CTX), a C-terminal collagen α-1(I) chain (COL1A1) telopeptide. We investigated the low-molecular-weight urinary proteome for peptides associated with changes in bone metabolism after kidney transplantation. METHODS Clinical and laboratory data including serum levels of CTX in 96 KTR from two nephrology centers were correlated with signal intensities of urinary peptides identified by capillary electrophoresis mass spectrometry. RESULTS Eighty-two urinary peptides were significantly correlated with serum CTX levels. COL1A1 was the predominant peptide source. Oral bisphosphonates were administered for decreased bone density in an independent group of 11 KTR and their effect was evaluated on the aforementioned peptides. Study of the peptides cleavage sites revealed a signature of Cathepsin K and MMP9. Seventeen of these peptides were significantly associated with bisphosphonate treatment, all showing a marked reduction in their excretion levels compared to baseline. DISCUSSION This study provides strong evidence for the presence of collagen peptides in the urine of KTR that are associated with BR and that are sensitive to bisphosphonate treatment. Their assessment might become a valuable tool to monitor bone status in KTR.
Collapse
Affiliation(s)
- David Marx
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM UMR-S1109, FMTS, Strasbourg, France
- Hospital of Sélestat, Sélestat, France
| | - Dany Anglicheau
- INSERM U1151, Paris, France
- Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Sophie Caillard
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Bruno Moulin
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Audrey Kochman
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
| | | | | | - Frank Bienaimé
- INSERM U1151, Paris, France
- Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
- Department of Physiology, Necker Hospital, AP-HP, Paris, France
| | - Dominique Prié
- INSERM U1151, Paris, France
- Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
- Department of Physiology, Necker Hospital, AP-HP, Paris, France
| | - Pierre Marquet
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
| | - Peggy Perrin
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
11
|
Catanese L, Siwy J, Mischak H, Wendt R, Beige J, Rupprecht H. Recent Advances in Urinary Peptide and Proteomic Biomarkers in Chronic Kidney Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24119156. [PMID: 37298105 DOI: 10.3390/ijms24119156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Biomarker development, improvement, and clinical implementation in the context of kidney disease have been a central focus of biomedical research for decades. To this point, only serum creatinine and urinary albumin excretion are well-accepted biomarkers in kidney disease. With their known blind spot in the early stages of kidney impairment and their diagnostic limitations, there is a need for better and more specific biomarkers. With the rise in large-scale analyses of the thousands of peptides in serum or urine samples using mass spectrometry techniques, hopes for biomarker development are high. Advances in proteomic research have led to the discovery of an increasing amount of potential proteomic biomarkers and the identification of candidate biomarkers for clinical implementation in the context of kidney disease management. In this review that strictly follows the PRISMA guidelines, we focus on urinary peptide and especially peptidomic biomarkers emerging from recent research and underline the role of those with the highest potential for clinical implementation. The Web of Science database (all databases) was searched on 17 October 2022, using the search terms "marker *" OR biomarker * AND "renal disease" OR "kidney disease" AND "proteome *" OR "peptid *" AND "urin *". English, full-text, original articles on humans published within the last 5 years were included, which had been cited at least five times per year. Studies based on animal models, renal transplant studies, metabolite studies, studies on miRNA, and studies on exosomal vesicles were excluded, focusing on urinary peptide biomarkers. The described search led to the identification of 3668 articles and the application of inclusion and exclusion criteria, as well as abstract and consecutive full-text analyses of three independent authors to reach a final number of 62 studies for this manuscript. The 62 manuscripts encompassed eight established single peptide biomarkers and several proteomic classifiers, including CKD273 and IgAN237. This review provides a summary of the recent evidence on single peptide urinary biomarkers in CKD, while emphasizing the increasing role of proteomic biomarker research with new research on established and new proteomic biomarkers. Lessons learned from the last 5 years in this review might encourage future studies, hopefully resulting in the routine clinical applicability of new biomarkers.
Collapse
Affiliation(s)
- Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | | | - Ralph Wendt
- Department of Nephrology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany
| | - Joachim Beige
- Department of Nephrology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, 06108 Halle/Saale, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 04129 Leipzig, Germany
| | - Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Massy ZA, Lambert O, Metzger M, Sedki M, Chaubet A, Breuil B, Jaafar A, Tack I, Nguyen-Khoa T, Alves M, Siwy J, Mischak H, Verbeke F, Glorieux G, Herpe YE, Schanstra JP, Stengel B, Klein J. Machine Learning-Based Urine Peptidome Analysis to Predict and Understand Mechanisms of Progression to Kidney Failure. Kidney Int Rep 2023; 8:544-555. [PMID: 36938091 PMCID: PMC10014385 DOI: 10.1016/j.ekir.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction The identification of patients with chronic kidney disease (CKD) at risk of progressing to kidney failure (KF) is important for clinical decision-making. In this study we assesed whether urinary peptidome (UP) analysis may help classify patients with CKD and improve KF risk prediction. Methods The UP was analyzed using capillary electrophoresis coupled to mass spectrometry in a case-cohort sample of 1000 patients with CKD stage G3 to G5 from the French CKD-Renal Epidemiology and Information Network (REIN) cohort. We used unsupervised and supervised machine learning to classify patients into homogenous UP clusters and to predict 3-year KF risk with UP, respectively. The predictive performance of UP was compared with the KF risk equation (KFRE), and evaluated in an external cohort of 326 patients. Results More than 1000 peptides classified patients into 3 clusters with different CKD severities and etiologies at baseline. Peptides with the highest discriminative power for clustering were fragments of proteins involved in inflammation and fibrosis, highlighting those derived from α-1-antitrypsin, a major acute phase protein with anti-inflammatory and antiapoptotic properties, as the most significant. We then identified a set of 90 urinary peptides that predicted KF with a c-index of 0.83 (95% confidence interval [CI]: 0.81-0.85) in the case-cohort and 0.89 (0.83-0.94) in the external cohort, which were close to that estimated with the KFRE (0.85 [0.83-0.87]). Combination of UP with KFRE variables did not further improve prediction. Conclusion This study shows the potential of UP analysis to uncover new pathophysiological CKD progression pathways and to predict KF risk with a performance equal to that of the KFRE.
Collapse
Affiliation(s)
- Ziad A. Massy
- Centre for Research in Epidemiology and Population Health, University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, Villejuif, France
- Department of Nephrology, CHU Ambroise Paré, APHP, Boulogne Billancourt Cedex, France
| | - Oriane Lambert
- Centre for Research in Epidemiology and Population Health, University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, Villejuif, France
| | - Marie Metzger
- Centre for Research in Epidemiology and Population Health, University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, Villejuif, France
| | - Mohammed Sedki
- Centre for Research in Epidemiology and Population Health, University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Methodology Pole, Villejuif, France
| | - Adeline Chaubet
- Institut National de la Santé et de la Recherche Médicale, Institute of Cardiovascular and Metabolic Disease, UMRS 1297, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale, Institute of Cardiovascular and Metabolic Disease, UMRS 1297, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Acil Jaafar
- Department of Clinical Physiology, Toulouse-Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Ivan Tack
- Department of Clinical Physiology, Toulouse-Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Thao Nguyen-Khoa
- Laboratory of Biochemistry, HU Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Université de Paris Cité, Paris, France
| | - Melinda Alves
- Institut National de la Santé et de la Recherche Médicale, Institute of Cardiovascular and Metabolic Disease, UMRS 1297, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | | | - Francis Verbeke
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Yves-Edouard Herpe
- Biobanque de Picardie, Biological Resource Center of the Amiens University Hospital, 1 rondpoint du Pr Christian Cabrol, Amiens Cedex, France
| | - Joost P. Schanstra
- Institut National de la Santé et de la Recherche Médicale, Institute of Cardiovascular and Metabolic Disease, UMRS 1297, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Bénédicte Stengel
- Centre for Research in Epidemiology and Population Health, University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, Villejuif, France
- Department of Nephrology, CHU Ambroise Paré, APHP, Boulogne Billancourt Cedex, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale, Institute of Cardiovascular and Metabolic Disease, UMRS 1297, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- Correspondence: Julie Klein, Institute of Metabolic and Cardiovascular disease, 1 avenue Jean-Poulhès, 31432 Toulouse Cedex 4, France.
| | | |
Collapse
|
13
|
Frantzi M, Culig Z, Heidegger I, Mokou M, Latosinska A, Roesch MC, Merseburger AS, Makridakis M, Vlahou A, Blanca-Pedregosa A, Carrasco-Valiente J, Mischak H, Gomez-Gomez E. Mass Spectrometry-Based Biomarkers to Detect Prostate Cancer: A Multicentric Study Based on Non-Invasive Urine Collection without Prior Digital Rectal Examination. Cancers (Basel) 2023; 15:cancers15041166. [PMID: 36831508 PMCID: PMC9954607 DOI: 10.3390/cancers15041166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
(1) Background: Prostate cancer (PCa) is the most frequently diagnosed cancer in men. Wide application of prostate specific antigen test has historically led to over-treatment, starting from excessive biopsies. Risk calculators based on molecular and clinical variables can be of value to determine the risk of PCa and as such, reduce unnecessary and invasive biopsies. Urinary molecular studies have been mostly focusing on sampling after initial intervention (digital rectal examination and/or prostate massage). (2) Methods: Building on previous proteomics studies, in this manuscript, we aimed at developing a biomarker model for PCa detection based on urine sampling without prior intervention. Capillary electrophoresis coupled to mass spectrometry was applied to acquire proteomics profiles from 970 patients from two different clinical centers. (3) Results: A case-control comparison was performed in a training set of 413 patients and 181 significant peptides were subsequently combined by a support vector machine algorithm. Independent validation was initially performed in 272 negative for PCa and 138 biopsy-confirmed PCa, resulting in an AUC of 0.81, outperforming current standards, while a second validation phase included 147 PCa patients. (4) Conclusions: This multi-dimensional biomarker model holds promise to improve the current diagnosis of PCa, by guiding invasive biopsies.
Collapse
Affiliation(s)
- Maria Frantzi
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
- Correspondence: ; Tel.: +49-511-5547-4429
| | - Zoran Culig
- Experimental Urology Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Isabel Heidegger
- Experimental Urology Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marika Mokou
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | - Agnieszka Latosinska
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | - Marie C. Roesch
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Axel S. Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Manousos Makridakis
- Systems Biology Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Antonia Vlahou
- Systems Biology Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Ana Blanca-Pedregosa
- Maimonides Biomedical Research Institute of Córdoba, Department of Urology, University of Cordoba, 14004 Cordoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Biomedical Research Institute of Córdoba, Department of Urology, University of Cordoba, 14004 Cordoba, Spain
| | - Harald Mischak
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow G12 8TA, UK
| | - Enrique Gomez-Gomez
- Maimonides Biomedical Research Institute of Córdoba, Department of Urology, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
14
|
de Beer D, Mels CMC, Schutte AE, Delles C, Mary S, Mullen W, Mischak H, Kruger R. A urinary peptidomics approach for early stages of cardiovascular disease risk: The African-PREDICT study. Hypertens Res 2023; 46:485-494. [PMID: 36396816 DOI: 10.1038/s41440-022-01097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease (CVD) affects individuals across the lifespan, with multiple cardiovascular (CV) risk factors increasingly present in young populations. The underlying mechanisms in early cardiovascular disease development are complex and still poorly understood. We therefore employed urinary proteomics as a novel approach to gain better insight into early CVD-related molecular pathways based on a CVD risk stratification approach. This study included 964 apparently healthy (no self-reported chronic illnesses, free from clinical symptoms of CVD) black and white men and women (aged 20-30 years old) from the African Prospective study on the Early Detection and Identification of Cardiovascular disease and Hypertension (African-PREDICT) study. Cardiovascular risk factors used for stratification included obesity, physical inactivity, tobacco use, high alcohol intake, hyperglycemia, dyslipidemia and hypertension. Participants were divided into low (0 risk factors), medium (1-2 risk factors) and high (≥3 risk factors) CV risk groups. We analyzed urinary peptidomics by capillary electrophoresis time-of-flight mass spectrometry. After adjusting for ethnicity, sex and age, 65 sequenced urinary peptides were differentially expressed between the CV risk groups (all q-values ≤ 0.01). These peptides included a lower abundance of collagen type I- and III-derived peptides in the high compared to the low CV risk group. With regard to noncollagen peptides, we found a lower abundance of alpha-1-antitrypsin fragments in the high compared to the low CV risk group (all q-values ≤ 0.01). Our findings indicate lower abundances of collagen types I and III in the high compared to the low CV risk group, suggesting potential early alterations in the CV extracellular matrix.
Collapse
Affiliation(s)
- Dalene de Beer
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, University of New South Wales; The George Institute for Global Health, Sydney, NSW, Australia
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
15
|
Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022; 10:proteomes10030024. [PMID: 35893765 PMCID: PMC9326686 DOI: 10.3390/proteomes10030024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures. Furthermore, the routine clinical monitoring, based on urine volume, proteinuria, and serum creatinine, usually only detects alterations after graft histologic damage and does not differentiate between the diverse etiologies. Therefore, there is an urgent need for new biomarkers enabling to predict, with high sensitivity and specificity, the rejection processes and the underlying mechanisms obtained from minimally invasive procedures to be implemented in routine clinical surveillance. These new biomarkers should also detect the rejection processes as early as possible, ideally before the 78 clinical outputs, while enabling balanced immunotherapy in order to minimize rejections and reducing the high toxicities associated with these drugs. Proteomics of biofluids, collected through non-invasive or minimally invasive analysis, e.g., blood or urine, present inherent characteristics that may provide biomarker candidates. The current manuscript reviews biofluids proteomics toward biomarkers discovery that specifically identify subclinical, acute, and chronic immune rejection processes while allowing for the discrimination between cell-mediated or antibody-mediated processes. In time, these biomarkers will lead to patient risk stratification, monitoring, and personalized and more efficient immunotherapies toward higher graft survival and patient quality of life.
Collapse
|
16
|
A Model to Detect Significant Prostate Cancer Integrating Urinary Peptide and Extracellular Vesicle RNA Data. Cancers (Basel) 2022; 14:cancers14081995. [PMID: 35454901 PMCID: PMC9027643 DOI: 10.3390/cancers14081995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
There is a clinical need to improve assessment of biopsy-naïve patients for the presence of clinically significant prostate cancer (PCa). In this study, we investigated whether the robust integration of expression data from urinary extracellular vesicle RNA (EV-RNA) with urine proteomic metabolites can accurately predict PCa biopsy outcome. Urine samples collected within the Movember GAP1 Urine Biomarker study (n = 192) were analysed by both mass spectrometry-based urine-proteomics and NanoString gene-expression analysis (167 gene-probes). Cross-validated LASSO penalised regression and Random Forests identified a combination of clinical and urinary biomarkers for predictive modelling of significant disease (Gleason Score (Gs) ≥ 3 + 4). Four predictive models were developed: ‘MassSpec’ (CE-MS proteomics), ‘EV-RNA’, and ‘SoC’ (standard of care) clinical data models, alongside a fully integrated omics-model, deemed ‘ExoSpec’. ExoSpec (incorporating four gene transcripts, six peptides, and two clinical variables) is the best model for predicting Gs ≥ 3 + 4 at initial biopsy (AUC = 0.83, 95% CI: 0.77−0.88) and is superior to a standard of care (SoC) model utilising clinical data alone (AUC = 0.71, p < 0.001, 1000 resamples). As the ExoSpec Risk Score increases, the likelihood of higher-grade PCa on biopsy is significantly greater (OR = 2.8, 95% CI: 2.1−3.7). The decision curve analyses reveals that ExoSpec provides a net benefit over SoC and could reduce unnecessary biopsies by 30%.
Collapse
|
17
|
Albreht A, Hussain H, Jiménez B, Yuen AHY, Whiley L, Witt M, Lewis MR, Chekmeneva E. Structure Elucidation and Mitigation of Endogenous Interferences in LC-MS-Based Metabolic Profiling of Urine. Anal Chem 2022; 94:1760-1768. [PMID: 35026111 DOI: 10.1021/acs.analchem.1c04378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is the main workhorse of metabolomics owing to its high degree of analytical sensitivity and specificity when measuring diverse chemistry in complex biological samples. LC-MS-based metabolic profiling of human urine, a biofluid of primary interest for clinical and biobank studies, is not widely considered to be compromised by the presence of endogenous interferences and is often accomplished using a simple "dilute-and-shoot" approach. Yet, it is our experience that broad obscuring signals are routinely observed in LC-MS metabolic profiles and represent interferences that lack consideration in the relevant metabolomics literature. In this work, we chromatographically isolated the interfering metabolites from human urine and unambiguously identified them via de novo structure elucidation as two separate proline-containing dipeptides: N,N,N-trimethyl-l-alanine-l-proline betaine (l,l-TMAP) and N,N-dimethyl-l-proline-l-proline betaine (l,l-DMPP), the latter reported here for the first time. Offline LC-MS/MS, magnetic resonance mass spectrometry (MRMS), and nuclear magnetic resonance (NMR) spectroscopy were essential components of this workflow for the full chemical and spectroscopic characterization of these metabolites and for establishing the coexistence of cis and trans isomers of both dipeptides in solution. Analysis of these definitive structures highlighted intramolecular ionic interactions as responsible for slow interconversion between these isomeric forms resulting in their unusually broad elution profiles. Proposed mitigation strategies, aimed at increasing the quality of LC-MS-based urine metabolomics data, include modification of column temperature and mobile-phase pH to reduce the chromatographic footprint of these dipeptides, thereby reducing their interfering effect on the underlying metabolic profiles. Alternatively, sample dilution and internal standardization methods may be employed to reduce or account for the observed effects of ionization suppression on the metabolic profile.
Collapse
Affiliation(s)
- Alen Albreht
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.,Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Humma Hussain
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Beatriz Jiménez
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ada H Y Yuen
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Luke Whiley
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - Matthias Witt
- MRMS Solutions, Bruker Daltonics GmbH & Co. KG, MRMS Solutions, 28359 Bremen, Germany
| | - Matthew R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Elena Chekmeneva
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Latosinska A, Bruno RM, Pappaccogli M, Bacca A, Beauloye C, Boutouyrie P, Khettab H, Staessen JA, Taddei S, Toubiana L, Vikkula M, Mischak H, Persu A. Increased Collagen Turnover Is a Feature of Fibromuscular Dysplasia and Associated With Hypertrophic Radial Remodeling: A Pilot, Urine Proteomic Study. Hypertension 2021; 79:93-103. [PMID: 34788057 DOI: 10.1161/hypertensionaha.121.18146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fibromuscular dysplasia (FMD), a nonatherosclerotic, noninflammatory disease of medium-sized arteries, is an underdiagnosed disease. We investigated the urinary proteome and developed a classifier for discrimination of FMD from healthy controls and other diseases. We further hypothesized that urinary proteomics biomarkers may be associated with alterations in medium-sized, but not large artery geometry and mechanics. The study included 33 patients with mostly multifocal, renal FMD who underwent in depth arterial exploration using ultra-high frequency ultrasound. The cohort was separated in a training set of 23 patients with FMD from Belgium and an independent test set of 10 patients with FMD from Italy. For each set, controls matched 2:1 were selected from the Human Urinary Proteome Database. The specificity of the classifier was tested in 700 additional controls from general population studies, patients with chronic kidney disease (n=66) and coronary artery disease (n=31). Three hundred thirty-five urinary peptides, mostly related to collagen turnover, were identified in the training cohort and combined into a classifier. When applying in the test cohort, the area under the receiver operating characteristic curve was 1.00, 100% specificity at 100% sensitivity. The classifier maintained a high specificity in additional controls (98.3%), patients with chronic kidney (90.9%) and coronary artery (96.8%) diseases. Furthermore, in patients with FMD, the proteomic score was positively associated with radial wall thickness and wall cross-sectional area. In conclusion, a proteomic score has the potential to discriminate between patients with FMD and controls. If confirmed in a wider and more diverse cohort, these findings may pave the way for a noninvasive diagnostic test of FMD.
Collapse
Affiliation(s)
| | - Rosa Maria Bruno
- INSERM U970 Team 7, Paris Cardiovascular Research Centre - PARCC and Université de Paris, France (R.M.B., P.B.).,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacologie, France (R.M.B., P.B., H.K.)
| | - Marco Pappaccogli
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Turin, Italy (M.P.).,Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium (M.P.,C.B., A.P.)
| | | | - Christophe Beauloye
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium (M.P.,C.B., A.P.).,Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium (C.B., A.P.)
| | - Pierre Boutouyrie
- INSERM U970 Team 7, Paris Cardiovascular Research Centre - PARCC and Université de Paris, France (R.M.B., P.B.).,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacologie, France (R.M.B., P.B., H.K.)
| | - Hakim Khettab
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacologie, France (R.M.B., P.B., H.K.)
| | - Jan A Staessen
- Biomedical Sciences group, Faculty of Medicine, University of Leuven, Belgium (J.A.S.).,NPO Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium (J.A.S.)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.T.)
| | - Laurent Toubiana
- Sorbonne Université, Université Paris 13, Sorbonne Paris Cité, INSERM, UMR_S1142, LIMICS, IRSAN, France (L.T.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium (M.V.)
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany (A.L., H.M.).,Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.M.)
| | - Alexandre Persu
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium (M.P.,C.B., A.P.).,Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium (C.B., A.P.)
| |
Collapse
|
19
|
Abstract
Peptides play a crucial role in many vitally important functions of living organisms. The goal of peptidomics is the identification of the "peptidome," the whole peptide content of a cell, organ, tissue, body fluid, or organism. In peptidomic or proteomic studies, capillary electrophoresis (CE) is an alternative technique for liquid chromatography. It is a highly efficient and fast separation method requiring extremely low amounts of sample. In peptidomic approaches, CE is commonly combined with mass spectrometric (MS) detection. Most often, CE is coupled with electrospray ionization MS and less frequently with matrix-assisted laser desorption/ionization MS. CE-MS has been employed in numerous studies dealing with determination of peptide biomarkers in different body fluids for various diseases, or in food peptidomic research for the analysis and identification of peptides with special biological activities. In addition to the above topics, sample preparation techniques commonly applied in peptidomics before CE separation and possibilities for peptide identification and quantification by CE-MS or CE-MS/MS methods are discussed in this chapter.
Collapse
|
20
|
Helena H, Ivona V, Roman Ř, František F. Current applications of capillary electrophoresis-mass spectrometry for the analysis of biologically important analytes in urine (2017 to mid-2021): A review. J Sep Sci 2021; 45:305-324. [PMID: 34538010 PMCID: PMC9292318 DOI: 10.1002/jssc.202100621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
Capillary electrophoresis coupled online with mass detection is a modern tool for analyzing wide ranges of compounds in complex samples, including urine. Capillary electrophoresis with mass spectrometry allows the separation and identification of various analytes spanning from small ions to high molecular weight protein complexes. Similarly to the much more common liquid chromatography‐mass spectrometry techniques, the capillary electrophoresis separation reduces the complexity of the mixture of analytes entering the mass spectrometer resulting in reduced ion suppression and a more straightforward interpretation of the mass spectrometry data. This review summarizes capillary electrophoresis with mass spectrometry studies published between the years 2017 and 2021, aiming at the determination of various compounds excreted in urine. The properties of the urine, including its diagnostical and analytical features and chemical composition, are also discussed including general protocols for the urine sample preparation. The mechanism of the electrophoretic separation and the instrumentation for capillary electrophoresis with mass spectrometry coupling is also included. This review shows the potential of the capillary electrophoresis with mass spectrometry technique for the analyses of different kinds of analytes in a complex biological matrix. The discussed applications are divided into two main groups (capillary electrophoresis with mass spectrometry for the determination of drugs and drugs of abuse in urine and capillary electrophoresis with mass spectrometry for the studies of urinary metabolome).
Collapse
Affiliation(s)
- Hrušková Helena
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Voráčová Ivona
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Řemínek Roman
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Foret František
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
21
|
Rotbain Curovic V, Magalhães P, He T, Hansen TW, Mischak H, Rossing P. Urinary peptidome and diabetic retinopathy in the DIRECT-Protect 1 and 2 trials. Diabet Med 2021; 38:e14634. [PMID: 34228837 DOI: 10.1111/dme.14634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Given the association of diabetic retinopathy (DR) and kidney disease, we investigated the urinary peptidome to presence and deterioration of DR in a post hoc analysis of trials investigating the effect of candesartan on progression of DR in type 1 and type 2 diabetes, respectively. METHODS Baseline urinary peptidomic analysis was performed on a random selection of 783 and 792 subjects in two randomized controlled trials, DIRECT-Protect 1 and 2, respectively. End points were two-step (RET2) and three-step (RET3) change in Early Treatment of Diabetic Retinopathy Study protocol (ETDRS) defined level. Peptide levels were correlated to baseline EDTRS level in a discovery set of 2/3 of the participants from DIRECT-Protect 1. The identified peptides were then validated cross-sectionally in the remaining 1/3 from DIRECT-Protect 1. Thereafter, peptides identified in the discovery set were assessed in the entire DIRECT-Protect 1 and 2 cohorts and significant peptides were tested longitudinally. RESULTS Follow-up ranged 4.0-4.7 years. 24 peptides were associated with baseline DR in the discovery set. COL3A1 (seq: NTG~) and COL4A1 (seq: DGA~) were associated with baseline DR in the validation set (Rho: -.223, p < 0.001 and Rho: -.141, p = 0.024). Neither was significantly associated with end points. Assessing the 24 identified peptides in the entire cohorts, several collagen peptides were associated with baseline DR and end points; however, there was no overlap across diabetes types. CONCLUSIONS We identified several urinary peptides (mainly collagen) associated with the presence of DR, however they could not be conclusively associated with worsening of DR.
Collapse
Affiliation(s)
| | | | - Tianlin He
- Mosaiques Diagnostics, Hannover, Germany
- Institute for Molecular Cardiovascular Research, University of Aachen, Aachen, Germany
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Kumar R, Ali SA, Singh SK, Bhushan V, Kaushik JK, Mohanty AK, Kumar S. Peptide profiling in cow urine reveals molecular signature of physiology-driven pathways and in-silico predicted bioactive properties. Sci Rep 2021; 11:12427. [PMID: 34127704 PMCID: PMC8203733 DOI: 10.1038/s41598-021-91684-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 12/05/2022] Open
Abstract
Peptidomics allows the identification of peptides that are derived from proteins. Urinary peptidomics has revolutionized the field of diagnostics as the samples represent complete systemic changes happening in the body. Moreover, it can be collected in a non-invasive manner. We profiled the peptides in urine collected from different physiological states (heifer, pregnancy, and lactation) of Sahiwal cows. Endogenous peptides were extracted from 30 individual cows belonging to three groups, each group comprising of ten animals (biological replicates n = 10). Nano Liquid chromatography Mass spectrometry (nLC-MS/MS) experiments revealed 5239, 4774, and 5466 peptides in the heifer, pregnant and lactating animals respectively. Urinary peptides of <10 kDa size were considered for the study. Peptides were extracted by 10 kDa MWCO filter. Sequences were identified by scanning the MS spectra ranging from 200 to 2200 m/z. The peptides exhibited diversity in sequences across different physiological states and in-silico experiments were conducted to classify the bioactive peptides into anti-microbial, anti-inflammatory, anti-hypertensive, and anti-cancerous groups. We have validated the antimicrobial effect of urinary peptides on Staphylococcus aureus and Escherichia coli under an in-vitro experimental set up. The origin of these peptides was traced back to certain proteases viz. MMPs, KLKs, CASPs, ADAMs etc. which were found responsible for the physiology-specific peptide signature of urine. Proteins involved in extracellular matrix structural constituent (GO:0005201) were found significant during pregnancy and lactation in which tissue remodeling is extensive. Collagen trimers were prominent molecules under cellular component category during lactation. Homophilic cell adhesion was found to be an important biological process involved in embryo attachment during pregnancy. The in-silico study also highlighted the enrichment of progenitor proteins on specific chromosomes and their relative expression in context to specific physiology. The urinary peptides, precursor proteins, and proteases identified in the study offers a base line information in healthy cows which can be utilized in biomarker discovery research for several pathophysiological studies.
Collapse
Affiliation(s)
- Rohit Kumar
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Syed Azmal Ali
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Sumit Kumar Singh
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Vanya Bhushan
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Jai Kumar Kaushik
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Ashok Kumar Mohanty
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India
| | - Sudarshan Kumar
- ICAR-National Dairy Research Institute, Cell Biology and Proteomics Lab, Animal Biotechnology Center (ABTC), Karnal, Haryana, 132001, India.
| |
Collapse
|
23
|
Trindade F, Barros AS, Silva J, Vlahou A, Falcão-Pires I, Guedes S, Vitorino C, Ferreira R, Leite-Moreira A, Amado F, Vitorino R. Mining the Biomarker Potential of the Urine Peptidome: From Amino Acids Properties to Proteases. Int J Mol Sci 2021; 22:5940. [PMID: 34073067 PMCID: PMC8197949 DOI: 10.3390/ijms22115940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Native biofluid peptides offer important information about diseases, holding promise as biomarkers. Particularly, the non-invasive nature of urine sampling, and its high peptide concentration, make urine peptidomics a useful strategy to study the pathogenesis of renal conditions. Moreover, the high number of detectable peptides as well as their specificity set the ground for the expansion of urine peptidomics to the identification of surrogate biomarkers for extra-renal diseases. Peptidomics further allows the prediction of proteases (degradomics), frequently dysregulated in disease, providing a complimentary source of information on disease pathogenesis and biomarkers. Then, what does urine peptidomics tell us so far? In this paper, we appraise the value of urine peptidomics in biomarker research through a comprehensive analysis of all datasets available to date. We have mined > 50 papers, addressing > 30 different conditions, comprising > 4700 unique peptides. Bioinformatic tools were used to reanalyze peptide profiles aiming at identifying disease fingerprints, to uncover hidden disease-specific peptides physicochemical properties and to predict the most active proteases associated with their generation. The molecular patterns found in this study may be further validated in the future as disease biomarker not only for kidney diseases but also for extra-renal conditions, as a step forward towards the implementation of a paradigm of predictive, preventive and personalized (3P) medicine.
Collapse
Affiliation(s)
- Fábio Trindade
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - António S. Barros
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Jéssica Silva
- iBiMED—Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Inês Falcão-Pires
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Sofia Guedes
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Adelino Leite-Moreira
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
| | - Francisco Amado
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| | - Rui Vitorino
- UnIC—Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.S.B.); (I.F.-P.); (A.L.-M.)
- iBiMED—Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal;
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (S.G.); (R.F.); (F.A.)
| |
Collapse
|
24
|
Mavrogeorgis E, Mischak H, Beige J, Latosinska A, Siwy J. Understanding glomerular diseases through proteomics. Expert Rev Proteomics 2021; 18:137-157. [PMID: 33779448 DOI: 10.1080/14789450.2021.1908893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Chronic kidney disease is avery common and complex chronic disease. Uncovering the pathological patterns of CKD on the molecular level of bio-fluids and tissue appears to be both vital and promising for a more favorable outcome. We reviewed recently discovered proteomics biomarkers for CKD to provide new insight into disease pathology. AREAS COVERED We review the application of proteome analysis in the context of CKD with various etiologies within the last 5 years. Proteins and peptides associated with CKD as derived from multiple sources (urine, blood and tissue) are reported along with their various biological pathways. EXPERT OPINION A systematic and theoretical comprehension of the CKD pathology is essential for its successful management. The underlying complexity of the disease further requires specific conditions for reliable and interpretable results. In this context, clinical proteomics has resulted in first encouraging findings in CKD. A more complete understanding of the biological pathways related to the disease, based on the scope of a holistic proteomic approach, could improve substantially the management of CKD, especially when in conjunction with the current trend of personalized medicine.
Collapse
Affiliation(s)
| | - H Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - J Beige
- Division of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany.,Department of Internal Medicine 2 (Nephrology, Rheumatology, Endocrinology), Martin-Luther-University Halle, Wittenberg, Germany
| | | | - J Siwy
- Mosaiques Diagnostics GmbH, Hannover, Germany
| |
Collapse
|
25
|
Klein O. Proteomics in Kidney and Cardiovascular Clinical Research. Proteomics Clin Appl 2021; 15:e1900132. [PMID: 33458964 DOI: 10.1002/prca.201900132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Oliver Klein
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Augustenburger Platz 1, Berlin, 13353, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| |
Collapse
|
26
|
Latosinska A, Siwy J, Faguer S, Beige J, Mischak H, Schanstra JP. Value of Urine Peptides in Assessing Kidney and Cardiovascular Disease. Proteomics Clin Appl 2021; 15:e2000027. [PMID: 32710812 DOI: 10.1002/prca.202000027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Urinary peptides gained significant attention as potential biomarkers especially in the context of kidney and cardiovascular disease. In this manuscript the recent literature since 2015 on urinary peptide investigation in human kidney and cardiovascular disease is reviewed. The technology most commonly used in this context is capillary electrophoresis coupled mass spectrometry, in part owed to the large database available and the well-defined dataspace. Several studies based on over 1000 subjects are reported in the recent past, especially examining CKD273, a classifier for assessment of chronic kidney disease based on 273 urine peptides. Interestingly, the most abundant urinary peptides are generally collagen fragments, which may have gone undetected for some time as they are typically modified via proline hydroxylation. The data available suggest that urinary peptides specifically depict inflammation and fibrosis, and may serve as a non-invasive tool to assess fibrosis, which appears to be a key driver in kidney and cardiovascular disease. The recent successful completion of the first urinary peptide guided intervention trial, PRIORITY, is expected to further spur clinical application of urinary peptidomics, aiming especially at early detection of chronic diseases, prediction of progression, and prognosis of drug response.
Collapse
Affiliation(s)
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, Rotenburger Straße 20, 30659, Hannover, Germany
| | - Stanislas Faguer
- Département de Néphrologie et Transplantation d'organes, Centre de référence des maladies rénales rares, Centre Hospitalier Universitaire de Toulouse, 1, Avenue Jean Poulhes, Toulouse, 31059, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, 1 Avenue Jean Poulhès, BP 84225, Toulouse Cedex 4, 31432, France
- Université Toulouse III Paul-Sabatier, Route de Narbonne, Toulouse, 31330, France
| | - Joachim Beige
- Department of Nephrology and Kuratorium for Dialysis and Transplantation Renal Unit, Hospital St Georg, Delitzscher Str. 141, 04129, Leipzig, Germany
- Department of Nephrology, Martin-Luther-University Halle/Wittenberg, Universitätsplatz 10, 06108, Halle (Saale), Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Rotenburger Straße 20, 30659, Hannover, Germany
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, 1 Avenue Jean Poulhès, BP 84225, Toulouse Cedex 4, 31432, France
- Université Toulouse III Paul-Sabatier, Route de Narbonne, Toulouse, 31330, France
| |
Collapse
|
27
|
He T, Pejchinovski M, Mullen W, Beige J, Mischak H, Jankowski V. Peptides in Plasma, Urine, and Dialysate: Toward Unravelling Renal Peptide Handling. Proteomics Clin Appl 2021; 15:e2000029. [PMID: 32618437 DOI: 10.1002/prca.202000029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE The peptidomes of spent hemodialysate, urine, and plasma are investigated, to shed light on peptide handling in the kidney. EXPERIMENTAL DESIGN Fifteen plasma, 15 urine, and 13 spent hemodialysate samples are collected from age- and sex-matched subjects with chronic kidney disease. Peptide identification and quantification are performed with capillary electrophoresis-coupled mass spectrometry. RESULTS A total of 6278 urinary peptides, 1743 plasma peptides, and 1727 peptides from spent hemodialysate are detected. Of these, sequences can be assigned to 1580, 419, and 352 peptides, respectively. A strong correlation in peptide abundance between urine and spent hemodialysate (p = 3 × 10-21 , Rho = 0.52), a moderately strong correlation between spent hemodialysate and plasma (p = 4.5 × 10-5 , Rho = 0.30), and no significant correlation between urine and plasma (p = 0.11, Rho = 0.094) are found. Collagen and fibrinogen alpha peptides are highly abundant in all three body fluids. In spent hemodialysate, thymosin ß4 is one of the most abundant peptides, which is shown to be negatively associated with the estimated glomerular filtration rate (Rho = -0.39, p-value = 3.9 × 10-81 ). CONCLUSION AND CLINICAL RELEVANCE The correlation of peptide abundance in these three body fluids is lower than expected, supporting the hypothesis that tubular reabsorption has a major impact on urinary peptide content. Further investigation of thymosin ß4 in hemodialysis is thus warranted.
Collapse
Affiliation(s)
- Tianlin He
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), University of Aachen, Aachen, Germany
| | | | - William Mullen
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Joachim Beige
- Department of Nephrology and Kuratorium for Dialysis and Transplantation (KfH) Renal Unit, Hospital St. Georg, Leipzig, Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University of Aachen, Aachen, Germany
| |
Collapse
|
28
|
Comparison of the amniotic fluid and fetal urine peptidome for biomarker discovery in renal developmental disease. Sci Rep 2020; 10:21706. [PMID: 33303833 PMCID: PMC7729974 DOI: 10.1038/s41598-020-78730-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022] Open
Abstract
Production of amniotic fluid (AF) is view as predominately driven by excretion of fetal urine (FU). However, the origin of AF peptides, often considered as potential biomarkers of developmental diseases, has never been investigated. Here, we evaluated the FU origin of AF peptides and if the AF peptide content can be used as a surrogate of FU. The abundance of endogenous peptides was analyzed by capillary electrophoresis coupled to mass spectrometry in 216 AF and 64 FU samples. A total of 2668 and 3257 peptides was found in AF and FU respectively. The AF peptidome largely overlapped with the FU peptidome, ranging from 54% in the second pregnancy trimester to 65% in the third trimester. Examination of a subset of 16 paired AF and FU samples revealed that 67 peptides displayed a significant positively correlated abundance in AF and FU, strongly suggesting that their presence in AF was directly associated to FU excretion. As proof-of-concept we showed that measuring the AF abundance of these 67 peptides of FU origin allowed prediction of postnatal renal survival in fetuses with posterior urethral valves. These results demonstrate that the AF peptidome can be considered as a good surrogate of the FU peptidome.
Collapse
|
29
|
Bannaga AS, Metzger J, Kyrou I, Voigtländer T, Book T, Melgarejo J, Latosinska A, Pejchinovski M, Staessen JA, Mischak H, Manns MP, Arasaradnam RP. Discovery, validation and sequencing of urinary peptides for diagnosis of liver fibrosis-A multicentre study. EBioMedicine 2020; 62:103083. [PMID: 33160210 PMCID: PMC7648178 DOI: 10.1016/j.ebiom.2020.103083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background Liver fibrosis is a consequence of chronic inflammation and is associated with protein changes within the hepatocytes structure. In this study, we aimed to investigate if this is reflected by the urinary proteome and can be explored to diagnose liver fibrosis in patients with chronic liver disease. Methods In a multicentre combined cross-sectional and prospective diagnostic test validation study, 129 patients with varying degrees of liver fibrosis and 223 controls without liver fibrosis were recruited. Additionally, 41 patients with no liver, but kidney fibrosis were included to evaluate interference with expressions of kidney fibrosis. Urinary low molecular weight proteome was analysed by capillary electrophoresis coupled to mass spectrometry (CE-MS) and a support vector machine marker model was established by integration of peptide markers for liver fibrosis. Findings CE-MS enabled identification of 50 urinary peptides associated with liver fibrosis. When combined into a classifier, LivFib-50, it separated patients with liver fibrosis (N = 31) from non-liver disease controls (N = 123) in cross-sectional diagnostic phase II evaluation with an area under the curve (AUC) of 0.94 (95% confidence intervals (CI): 0.89–0.97, p<0.0001). When adjusted for age, LivFib-50 demonstrated an AUC of 0.94 (95% CI: 0.89–0.97, p<0.0001) in chronic liver disease patients with (N = 19) or without (N = 17) liver fibrosis progression. In this prospective diagnostic phase III validation set, age-adjusted LivFib-50 showed 84.2% sensitivity (95% CI: 60.4–96.6) and 82.4% specificity (95% CI: 56.6–96.2) for detection of liver fibrosis. The sequence-identified peptides are mainly fragments of collagen chains, uromodulin and Na/K-transporting ATPase subunit γ. We also identified ten putative proteolytic cleavage sites, eight were specific for matrix metallopeptidases and two for cathepsins. Interpretation In liver fibrosis, urinary peptides profiling offers potential diagnostic markers and leads to discovery of proteolytic sites that could be targets for developing anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ayman S Bannaga
- Department of Gastroenterology and Hepatology, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK.
| | | | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK; Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospital Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Torsten Voigtländer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thorsten Book
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jesus Melgarejo
- Department of Cardiovascular Sciences, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven, University of Leuven, Leuven, Belgium; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | | | - Jan A Staessen
- Department of Cardiovascular Sciences, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven, University of Leuven, Leuven, Belgium; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ramesh P Arasaradnam
- Department of Gastroenterology and Hepatology, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK; Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK; Faculty of Health and Life Sciences, Coventry University, Priory St, Coventry CV1 5FB, UK; School of Biological Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
30
|
Magalhães P, Zürbig P, Mischak H, Schleicher E. Urinary fetuin-A peptides as a new marker for impaired kidney function in patients with type 2 diabetes. Clin Kidney J 2020; 14:269-276. [PMID: 33564428 PMCID: PMC7857838 DOI: 10.1093/ckj/sfaa176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background The hepatokine fetuin-A, released by the human liver, promotes pro-inflammatory effects of perivascular fat. The involvement of inflammation in type 2 diabetes mellitus (T2DM) can affect the kidney and contribute to the development of diabetic kidney disease. Therefore we examined the association of urinary fetuin-A protein fragments with renal damage in T2DM patients. Methods Urinary peptides of 1491 individuals using proteome data available from the human urine proteome database were analysed. Prediction of proteases involved in urinary peptide generation was performed using the Proteasix tool. Results We identified 14 different urinary protein fragments that belong to the region of the connecting peptide (amino acid 301–339) of the total fetuin-A protein. Calpains (CAPN1 and CAPN2), matrix metalloproteinase and pepsin A-3 were identified as potential proteases that were partially confirmed by previous in vitro studies. Combined fetuin-A peptides (mean of amplitudes) were significantly increased in T2DM patients with kidney disease and to a lesser extent with cardiovascular risk. Furthermore, fetuin-A peptide levels displayed a significant negative correlation with baseline estimated glomerular filtration rate (eGFR) values (r = −0.316, P < 0.0001) and with the slope (%) of eGFR per year (r = −0.096, P = 0.023). A multiple regression model including fetuin-A peptide and albuminuria resulted in a significantly improved correlation with eGFR (r = −0.354, P < 0.0001) compared with albuminuria, indicating an added value of this novel biomarker. Conclusions The urinary proteome analysis demonstrated the association of fetuin-A peptides with impaired kidney function in T2DM patients. Furthermore, fetuin-A peptides displayed early signs of kidney damage before albuminuria appeared and therefore can be used as markers for kidney disease detection.
Collapse
Affiliation(s)
| | | | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Erwin Schleicher
- Institute for Clinical Chemistry and Pathobiochemistry/Central Laboratory, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Tübingen; Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Clark DJ, Zhang H. Proteomic approaches for characterizing renal cell carcinoma. Clin Proteomics 2020; 17:28. [PMID: 32742246 PMCID: PMC7391522 DOI: 10.1186/s12014-020-09291-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma is among the top 15 most commonly diagnosed cancers worldwide, comprising multiple sub-histologies with distinct genomic, proteomic, and clinicopathological features. Proteomic methodologies enable the detection and quantitation of protein profiles associated with the disease state and have been explored to delineate the dysregulated cellular processes associated with renal cell carcinoma. In this review we highlight the reports that employed proteomic technologies to characterize tissue, blood, and urine samples obtained from renal cell carcinoma patients. We describe the proteomic approaches utilized and relate the results of studies in the larger context of renal cell carcinoma biology. Moreover, we discuss some unmet clinical needs and how emerging proteomic approaches can seek to address them. There has been significant progress to characterize the molecular features of renal cell carcinoma; however, despite the large-scale studies that have characterized the genomic and transcriptomic profiles, curative treatments are still elusive. Proteomics facilitates a direct evaluation of the functional modules that drive pathobiology, and the resulting protein profiles would have applications in diagnostics, patient stratification, and identification of novel therapeutic interventions.
Collapse
Affiliation(s)
- David J. Clark
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231 USA
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231 USA
| |
Collapse
|
32
|
Smith A, Iablokov V, Mazza M, Guarnerio S, Denti V, Ivanova M, Stella M, Piga I, Chinello C, Heijs B, van Veelen PA, Benediktsson H, Muruve DA, Magni F. Detecting Proteomic Indicators to Distinguish Diabetic Nephropathy from Hypertensive Nephrosclerosis by Integrating Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging with High-Mass Accuracy Mass Spectrometry. Kidney Blood Press Res 2020; 45:233-248. [PMID: 32062660 DOI: 10.1159/000505187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) and hypertensive nephrosclerosis (HN) represent the most common causes of chronic kidney disease (CKD) and many patients progress to -end-stage renal disease. Patients are treated primarily through the management of cardiovas-cular risk factors and hypertension; however patients with HN have a more favorable outcome. A noninvasive clinical approach to separate these two entities, especially in hypertensive patients who also have diabetes, would allow for targeted treatment and more appropriate resource allocation to those patients at the highest risk of CKD progression. Meth-ods: In this preliminary study, high-spatial-resolution matrix-assisted laser desorption/ion-ization (MALDI) mass spectrometry imaging (MSI) was integrated with high-mass accuracy MALDI-FTICR-MS and nLC-ESI-MS/MS analysis in order to detect tissue proteins within kidney biopsies to discriminate cases of DN (n = 9) from cases of HN (n = 9). RESULTS Differences in the tryptic peptide profiles of the 2 groups could clearly be detected, with these becoming even more evident in the more severe histological classes, even if this was not evident with routine histology. In particular, 4 putative proteins were detected and had a higher signal intensity within regions of DN tissue with extensive sclerosis or fibrosis. Among these, 2 proteins (PGRMC1 and CO3) had a signal intensity that increased at the latter stages of the disease and may be associated with progression. DISCUSSION/CONCLUSION This preliminary study represents a valuable starting point for a future study employing a larger cohort of patients to develop sensitive and specific protein biomarkers that could reliably differentiate between diabetic and hypertensive causes of CKD to allow for improved diagnosis, fewer biopsy procedures, and refined treatment approaches for clinicians.
Collapse
Affiliation(s)
- Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Vadim Iablokov
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mariafrancesca Mazza
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Sonia Guarnerio
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Mariia Ivanova
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Stella
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hallgrimur Benediktsson
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel A Muruve
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy,
| |
Collapse
|
33
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
34
|
Clark DJ, Hu Y, Schnaubelt M, Fu Y, Ponce S, Chen SY, Zhou Y, Shah P, Zhang H. Simple Tip-Based Sample Processing Method for Urinary Proteomic Analysis. Anal Chem 2019; 91:5517-5522. [PMID: 30924636 PMCID: PMC6512789 DOI: 10.1021/acs.analchem.8b05234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mass spectrometry-based urinary proteomics is one of the most attractive strategies to discover proteins for diagnosis, prognosis, monitoring, or prediction of therapeutic responses of urological diseases involving the kidney, prostate, and bladder; however, interfering compounds found in urine necessitate sample preparation strategies that are currently not suitable for urinary proteomics in the clinical setting. Herein, we describe the C4-tip method, comprising a simple, automated strategy utilizing a reverse-phase resin tip-based format and "on-tip" digestion to examine the urine proteome. We first determined the optimal conditions for protein isolation and protease digestion on the C4-tip using the standard protein bovine fetuin. Next, we applied the C4-tip method to urinary proteomics, identifying a total of 813 protein groups using LC-MS/MS, with identified proteins from the C4-tip method displaying a similar distribution of gene ontology (GO) cellular component assignments compared to identified proteins from an ultrafiltration preparation method. Finally, we assessed the reproducibility of the C4-tip method, revealing a high Spearman correlation R-value for shared proteins identified across all tips. Together, we have shown the C4-tip method to be a simple, robust method for high-throughput analysis of the urinary proteome by mass spectrometry in the clinical setting.
Collapse
Affiliation(s)
- David J. Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yi Fu
- The Bradley Department of Electrical and Computer Engineering Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Sean Ponce
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Shao-Yung Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Yangying Zhou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Punit Shah
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
35
|
Semis M, Gugiu GB, Bernstein EA, Bernstein KE, Kalkum M. The Plethora of Angiotensin-Converting Enzyme-Processed Peptides in Mouse Plasma. Anal Chem 2019; 91:6440-6453. [PMID: 31021607 DOI: 10.1021/acs.analchem.8b03828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin-converting enzyme (ACE) converts angiotensin I into the potent vasoconstrictor angiotensin II, which regulates blood pressure. However, ACE activity is also essential for other physiological functions, presumably through processing of peptides unrelated to angiotensin. The goal of this study was to identify novel natural substrates and products of ACE through a series of mass-spectrometric experiments. This included comparing the ACE-treated and untreated plasma peptidomes of ACE-knockout (KO) mice, validation with select synthetic peptides, and a quantitative in vivo study of ACE substrates in mice with distinct genetic ACE backgrounds. In total, 244 natural peptides were identified ex vivo as possible substrates or products of ACE, demonstrating high promiscuity of the enzyme. ACE prefers to cleave substrates with Phe or Leu at the C-terminal P2' position and Gly in the P6 position. Pro in P1' and Iso in P1 are typical residues in peptides that ACE does not cleave. Several of the novel ACE substrates are known to have biological activities, including a fragment of complement C3, the spasmogenic C3f, which was processed by ACE ex vivo and in vitro. Analyses with N-domain-inactive (NKO) ACE allowed clarification of domain selectivity toward substrates. The in vivo ACE-substrate concentrations in WT, transgenic ACE-KO, NKO, and CKO mice correspond well with the in vitro observations in that higher levels of the ACE substrates were observed when the processing domain was knocked out. This study highlights the vast extent of ACE promiscuity and provides a valuable platform for further investigations of ACE functionality.
Collapse
Affiliation(s)
- Margarita Semis
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Gabriel B Gugiu
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States.,Mass Spectrometry & Proteomics Core Facility , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Ellen A Bernstein
- Departments of Biomedical Sciences, Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States
| | - Kenneth E Bernstein
- Departments of Biomedical Sciences, Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States.,Mass Spectrometry & Proteomics Core Facility , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| |
Collapse
|
36
|
Zhang Z, Nkuipou‐Kenfack E, Staessen JA. Urinary Peptidomic Biomarker for Personalized Prevention and Treatment of Diastolic Left Ventricular Dysfunction. Proteomics Clin Appl 2019; 13:e1800174. [PMID: 30632674 PMCID: PMC6519355 DOI: 10.1002/prca.201800174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Diastolic heart failure (DHF) is characterized by slow left ventricular (LV) relaxation, increased LV stiffness, interstitial deposition of collagen, and a modified extracellular matrix proteins. Among Europeans, the frequency of asymptomatic diastolic LV dysfunction (DD) is 25%. This constitutes a large pool of people at high risk of DHF. The goal of this review was to describe the discovery and the initial validation of new multidimensional urinary peptidomic biomarkers (UPB) indicative of DD, mainly consisting of collagen fragments, and to describe a roadmap for their introduction into clinical practice. The availability of new drugs creates a window of opportunity for mounting a randomized clinical trial consolidating the clinical applicability of UPB to screen for DD. If successfully completed, such trial will benefit ≈25% of all people older than 50 years and open a large market for a UPB diagnostic tool and the drug tested. Moreover, sequenced peptides making up UPB will generate novel insights in the pathophysiology of DD and facilitate personalized treatment of patients with DHF for whom prevention came too late. If proven cost-effective, the clinical application of UPB will contribute to the sustainability of health care in aging population in epidemiologic transition.
Collapse
Affiliation(s)
- Zhen‐Yu Zhang
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyKU Leuven Department of Cardiovascular SciencesUniversity of LeuvenLeuvenBelgium
| | | | - Jan A. Staessen
- Studies Coordinating CentreResearch Unit Hypertension and Cardiovascular EpidemiologyKU Leuven Department of Cardiovascular SciencesUniversity of LeuvenLeuvenBelgium
| |
Collapse
|
37
|
Ricci P, Magalhães P, Krochmal M, Pejchinovski M, Daina E, Caruso MR, Goea L, Belczacka I, Remuzzi G, Umbhauer M, Drube J, Pape L, Mischak H, Decramer S, Schaefer F, Schanstra JP, Cereghini S, Zürbig P. Urinary proteome signature of Renal Cysts and Diabetes syndrome in children. Sci Rep 2019; 9:2225. [PMID: 30778115 PMCID: PMC6379363 DOI: 10.1038/s41598-019-38713-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Renal Cysts and Diabetes Syndrome (RCAD) is an autosomal dominant disorder caused by mutations in the HNF1B gene encoding for the transcriptional factor hepatocyte nuclear factor-1B. RCAD is characterized as a multi-organ disease, with a broad spectrum of symptoms including kidney abnormalities (renal cysts, renal hypodysplasia, single kidney, horseshoe kidneys, hydronephrosis), early-onset diabetes mellitus, abnormal liver function, pancreatic hypoplasia and genital tract malformations. In the present study, using capillary electrophoresis coupled to mass spectrometry (CE-MS), we investigated the urinary proteome of a pediatric cohort of RCAD patients and different controls to identify peptide biomarkers and obtain further insights into the pathophysiology of this disorder. As a result, 146 peptides were found to be associated with RCAD in 22 pediatric patients when compared to 22 healthy age-matched controls. A classifier based on these peptides was generated and further tested on an independent cohort, clearly discriminating RCAD patients from different groups of controls. This study demonstrates that the urinary proteome of pediatric RCAD patients differs from autosomal dominant polycystic kidney disease (PKD1, PKD2), congenital nephrotic syndrome (NPHS1, NPHS2, NPHS4, NPHS9) as well as from chronic kidney disease conditions, suggesting differences between the pathophysiology behind these disorders.
Collapse
Affiliation(s)
- Pierbruno Ricci
- Sorbonne Université - CNRS - UMR7622 - Institut de Biologie Paris Seine (IBPS), Paris, France
| | - Pedro Magalhães
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Department of Pediatric Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | - Erica Daina
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri - Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica Bergamo, Italy
| | | | - Laura Goea
- Sorbonne Université - CNRS - UMR7622 - Institut de Biologie Paris Seine (IBPS), Paris, France
| | - Iwona Belczacka
- Mosaiques Diagnostics GmbH, Hannover, Germany
- University Hospital RWTH Aachen, Institute for Molecular Cardiovascular Research (IMCAR), Aachen, Germany
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri - Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica Bergamo, Italy
| | - Muriel Umbhauer
- Sorbonne Université - CNRS - UMR7622 - Institut de Biologie Paris Seine (IBPS), Paris, France
| | - Jens Drube
- Department of Pediatric Nephrology, Hannover Medical School, Hannover, Germany
| | - Lars Pape
- Department of Pediatric Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Stéphane Decramer
- Service de Néphrologie Pédiatrique, Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Centre De Référence des Maladies Rénales Rares du Sud Ouest (SORARE), Toulouse, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Franz Schaefer
- University Children Hospital, Pediatric Nephrology, Heidelberg, Germany
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Silvia Cereghini
- Sorbonne Université - CNRS - UMR7622 - Institut de Biologie Paris Seine (IBPS), Paris, France
| | | |
Collapse
|
38
|
Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2018; 40:79-112. [PMID: 30260009 DOI: 10.1002/elps.201800331] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Capillary electrophoresis (CE) offers fast and high-resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user-friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano-electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE-MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two-dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE-modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.
Collapse
Affiliation(s)
| | - Kevin Jooß
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Höcker
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jennifer Römer
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Johannes Schlecht
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|
39
|
Frantzi M, Latosinska A, Belczacka I, Mischak H. Urinary proteomic biomarkers in oncology: ready for implementation? Expert Rev Proteomics 2018; 16:49-63. [PMID: 30412678 DOI: 10.1080/14789450.2018.1547193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Biomarkers are expected to improve the management of cancer patients by enabling early detection and prediction of therapeutic response. Proteins reflect a molecular phenotype, have high potential as biomarkers, and also are key targets for intervention. Given the ease of collection and proximity to certain tumors, the urinary proteome is a rich source of biomarkers and several proteins have been already implemented. Areas covered: We examined the literature on urine proteins and proteome analysis in oncology from reports published during the last 5 years to generate an overview on the status of urine protein and peptide biomarkers, with emphasis on their actual clinical value. Expert commentary: A few studies report on biomarkers that are ready to be implemented in patient management, among others in bladder cancer and cholangiocarcinoma. These reports are based on multi-marker approaches. A high number of biomarkers, though, has been described in studies with low statistical power. In fact, several of them have been consistently reported across different studies. The latter should be the focus of attention and be tested in properly designed confirmatory and ultimately, prospective investigations. It is expected that multi-marker classifiers for a specific context-of-use, will be the preferred path toward clinical implementation.
Collapse
Affiliation(s)
- Maria Frantzi
- a Research and Development , Mosaiques Diagnostics GmbH , Hannover , Germany
| | | | - Iwona Belczacka
- a Research and Development , Mosaiques Diagnostics GmbH , Hannover , Germany
| | - Harald Mischak
- a Research and Development , Mosaiques Diagnostics GmbH , Hannover , Germany
| |
Collapse
|