1
|
Ward B, Pyr Dit Ruys S, Balligand JL, Belkhir L, Cani PD, Collet JF, De Greef J, Dewulf JP, Gatto L, Haufroid V, Jodogne S, Kabamba B, Lingurski M, Yombi JC, Vertommen D, Elens L. Deep Plasma Proteomics with Data-Independent Acquisition: Clinical Study Protocol Optimization with a COVID-19 Cohort. J Proteome Res 2024; 23:3806-3822. [PMID: 39159935 PMCID: PMC11385417 DOI: 10.1021/acs.jproteome.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Plasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time. We detect 1321 proteins on average per patient and 2031 unique proteins across the cohort. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification, identifying hundreds of differentially abundant proteins at biological concentrations as low as 47 ng/L in human plasma. Data are available via ProteomeXchange with the identifier PXD047901. In summary, this study introduces a streamlined, cost-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multiomics investigations in clinical settings. Our comparative analysis revealed that fractionation, whether the samples were pooled or separate postfractionation, significantly improved the number of proteins quantified. This underscores the value of fractionation in enhancing the depth of plasma proteome analysis, thereby offering a more comprehensive landscape for biomarker discovery in diseases such as COVID-19.
Collapse
Affiliation(s)
- Bradley Ward
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sébastien Pyr Dit Ruys
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Leïla Belkhir
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Patrice D Cani
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jean-François Collet
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Julien De Greef
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Joseph P Dewulf
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laurent Gatto
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Vincent Haufroid
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sébastien Jodogne
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Benoît Kabamba
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Maxime Lingurski
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jean Cyr Yombi
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Didier Vertommen
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Suski M, Olszanecka A, Stachowicz A, Kiepura A, Terlecki M, Madej J, Rajzer M, Olszanecki R. Alterations in plasma proteome during acute COVID-19 and recovery. Mol Med 2024; 30:131. [PMID: 39183264 PMCID: PMC11346252 DOI: 10.1186/s10020-024-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The severe course of COVID-19 causes cardiovascular injuries, although the mechanisms involved are still not fully recognized, linked, and understood. Their characterization is of great importance with the establishment of the conception of post-acute sequelae of COVID-19, referred to as long COVID, where blood clotting and endothelial abnormalities are believed to be the key pathomechanisms driving circulatory system impairment. METHODS The presented study investigates temporal changes in plasma proteins in COVID-19 patients during hospitalization due to SARS-CoV-2 infection and six months after recovery by targeted SureQuant acquisition using PQ500 panel. RESULTS In total, we identified 167 proteins that were differentially regulated between follow-up and hospitalization, which functionally aggregated into immune system activation, complement and coagulation cascades, interleukins signalling, platelet activation, and extracellular matrix organization. Furthermore, we found that temporal quantitative changes in acute phase proteins correlate with selected clinical characteristics of COVID-19 patients. CONCLUSIONS In-depth targeted proteome investigation evidenced substantial changes in plasma protein composition of patients during and recovering from COVID-19, evidencing a wide range of functional pathways induced by SARS-CoV-2 infection. In addition, we show that a subset of acute phase proteins, clotting cascade regulators and lipoproteins could have clinical value as potential predictors of long-term cardiovascular events in COVID-19 convalescents.
Collapse
Affiliation(s)
- Maciej Suski
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland.
| | - Agnieszka Olszanecka
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Anna Kiepura
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Michał Terlecki
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Józef Madej
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Marek Rajzer
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| |
Collapse
|
3
|
Viode A, Smolen KK, van Zalm P, Stevenson D, Jha M, Parker K, Levy O, Steen JA, Steen H. Longitudinal plasma proteomic analysis of 1117 hospitalized patients with COVID-19 identifies features associated with severity and outcomes. SCIENCE ADVANCES 2024; 10:eadl5762. [PMID: 38787940 PMCID: PMC11122669 DOI: 10.1126/sciadv.adl5762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by highly heterogeneous manifestations ranging from asymptomatic cases to death for still incompletely understood reasons. As part of the IMmunoPhenotyping Assessment in a COVID-19 Cohort study, we mapped the plasma proteomes of 1117 hospitalized patients with COVID-19 from 15 hospitals across the United States. Up to six samples were collected within ~28 days of hospitalization resulting in one of the largest COVID-19 plasma proteomics cohorts with 2934 samples. Using perchloric acid to deplete the most abundant plasma proteins allowed for detecting 2910 proteins. Our findings show that increased levels of neutrophil extracellular trap and heart damage markers are associated with fatal outcomes. Our analysis also identified prognostic biomarkers for worsening severity and death. Our comprehensive longitudinal plasma proteomics study, involving 1117 participants and 2934 samples, allowed for testing the generalizability of the findings of many previous COVID-19 plasma proteomics studies using much smaller cohorts.
Collapse
Affiliation(s)
- Arthur Viode
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kinga K. Smolen
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
| | - Patrick van Zalm
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Stevenson
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Meenakshi Jha
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Kenneth Parker
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - IMPACC Network‡
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Ofer Levy
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Judith A. Steen
- Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Duijvelaar E, Gisby J, Peters JE, Bogaard HJ, Aman J. Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients. Nat Commun 2024; 15:744. [PMID: 38272877 PMCID: PMC10811341 DOI: 10.1038/s41467-024-44986-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The pathobiology of respiratory failure in COVID-19 consists of a complex interplay between viral cytopathic effects and a dysregulated host immune response. In critically ill patients, imatinib treatment demonstrated potential for reducing invasive ventilation duration and mortality. Here, we perform longitudinal profiling of 6385 plasma proteins in 318 hospitalised patients to investigate the biological processes involved in critical COVID-19, and assess the effects of imatinib treatment. Nine proteins measured at hospital admission accurately predict critical illness development. Next to dysregulation of inflammation, critical illness is characterised by pathways involving cellular adhesion, extracellular matrix turnover and tissue remodelling. Imatinib treatment attenuates protein perturbations associated with inflammation and extracellular matrix turnover. These proteomic alterations are contextualised using external pulmonary RNA-sequencing data of deceased COVID-19 patients and imatinib-treated Syrian hamsters. Together, we show that alveolar capillary barrier disruption in critical COVID-19 is reflected in the plasma proteome, and is attenuated with imatinib treatment. This study comprises a secondary analysis of both clinical data and plasma samples derived from a clinical trial that was registered with the EU Clinical Trials Register (EudraCT 2020-001236-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001236-10/NL ) and Netherlands Trial Register (NL8491, https://www.trialregister.nl/trial/8491 ).
Collapse
Affiliation(s)
- Erik Duijvelaar
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Jack Gisby
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - James E Peters
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Babačić H, Christ W, Araújo JE, Mermelekas G, Sharma N, Tynell J, García M, Varnaite R, Asgeirsson H, Glans H, Lehtiö J, Gredmark-Russ S, Klingström J, Pernemalm M. Comprehensive proteomics and meta-analysis of COVID-19 host response. Nat Commun 2023; 14:5921. [PMID: 37739942 PMCID: PMC10516886 DOI: 10.1038/s41467-023-41159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
COVID-19 is characterised by systemic immunological perturbations in the human body, which can lead to multi-organ damage. Many of these processes are considered to be mediated by the blood. Therefore, to better understand the systemic host response to SARS-CoV-2 infection, we performed systematic analyses of the circulating, soluble proteins in the blood through global proteomics by mass-spectrometry (MS) proteomics. Here, we show that a large part of the soluble blood proteome is altered in COVID-19, among them elevated levels of interferon-induced and proteasomal proteins. Some proteins that have alternating levels in human cells after a SARS-CoV-2 infection in vitro and in different organs of COVID-19 patients are deregulated in the blood, suggesting shared infection-related changes.The availability of different public proteomic resources on soluble blood proteome alterations leaves uncertainty about the change of a given protein during COVID-19. Hence, we performed a systematic review and meta-analysis of MS global proteomics studies of soluble blood proteomes, including up to 1706 individuals (1039 COVID-19 patients), to provide concluding estimates for the alteration of 1517 soluble blood proteins in COVID-19. Finally, based on the meta-analysis we developed CoViMAPP, an open-access resource for effect sizes of alterations and diagnostic potential of soluble blood proteins in COVID-19, which is publicly available for the research, clinical, and academic community.
Collapse
Affiliation(s)
- Haris Babačić
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - José Eduardo Araújo
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Mermelekas
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nidhi Sharma
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Janne Tynell
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marina García
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Renata Varnaite
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hilmir Asgeirsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hedvig Glans
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Molecular Medicine and Virology (MMV), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Maria Pernemalm
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Pagani L, Chinello C, Risca G, Capitoli G, Criscuolo L, Lombardi A, Ungaro R, Mangioni D, Piga I, Muscatello A, Blasi F, Favalli A, Martinovic M, Gori A, Bandera A, Grifantini R, Magni F. Plasma Proteomic Variables Related to COVID-19 Severity: An Untargeted nLC-MS/MS Investigation. Int J Mol Sci 2023; 24:ijms24043570. [PMID: 36834989 PMCID: PMC9962231 DOI: 10.3390/ijms24043570] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations.
Collapse
Affiliation(s)
- Lisa Pagani
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Clizia Chinello
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Correspondence: ; Tel.:+39-333-5905725
| | - Giulia Risca
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre—B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre—B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Lucrezia Criscuolo
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Riccardo Ungaro
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Davide Mangioni
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Isabella Piga
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Internal Medicine Department, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Andrea Favalli
- Istituto Nazionale di Genetica Molecolare (INGM), 20122 Milano, Italy
| | | | - Andrea Gori
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Infectious Diseases Unit, IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, 20122 Milano, Italy
| | - Renata Grifantini
- Istituto Nazionale di Genetica Molecolare (INGM), 20122 Milano, Italy
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| |
Collapse
|