Pouretedal HR, Amooshahi MM, Damiri S. Coupling of the optimized electro-Fenton-like process with pulsed laser ablation method to produce bimetallic nanoparticles of Fe°/Cu° and Fe°/Zn° in treatment of thiophene aqueous samples.
ENVIRONMENTAL TECHNOLOGY 2024;
45:221-234. [PMID:
35848283 DOI:
10.1080/09593330.2022.2103457]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, an electro-Fenton-like method in the presence of iron particles was used for degradation of toxic thiophene pollutant from aqueous samples with performance >99%. In an electrolytic reactor, the effect of current density, H2O2 dosage, and pH of the sample on the treatment efficiency was investigated and optimized using the response surface method in the experimental design methodology. The conditions were optimized in current density of 20 mA/cm2, H2O2 dosage 500 ppm and pH = 3.0. In this process, a laser pulse ablation was used to produce iron nanoparticles in the electro-Fenton reactor to decrease the treatment time. Also, two bimetallic iron-copper and iron-zinc were used to investigate the synergistic effect of bimetallic catalyst on degradation efficiency of thiophene. The removal of thiophene nearly 100% can be provided in the presence Fe0.5/Cu0.5, Fe0.5/Zn0.5 and Fe alone in 10, 15 and 20 min, respectively. Also, the effect of hydroxyl scavenger and the consumption of catalysts were studied in the proposed procedure. Techniques of gas chromatography-flame ionization detector (GC-FID), gas chromatography-sulphur chemiluminescence detector (GC-SCD) and total sulphur analyser were used to follow thiophene degradation. A thiophene petrochemical wastewater was treated by the proposed method, and the results showed a significant reduction in amounts of chemical oxygen demand (COD) and biochemical oxygen demand (BOD).
Collapse