1
|
Panda S, Rout M, Mishra S, Turuk J, Pati S, Dehury B. Molecular docking and MD simulations reveal protease inhibitors block the catalytic residues in Prp8 intein of Aspergillus fumigatus: a potential target for antimycotics. J Biomol Struct Dyn 2023:1-16. [PMID: 38149850 DOI: 10.1080/07391102.2023.2298735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Resistance to azoles and amphotericin B especially in Aspergillus fumigatus is a growing concern towards the treatment of invasive fungal infection. At this critical juncture, intein splicing would be a productive, and innovative target to establish therapies against resistant strains. Intein splicing is the central event for the activation of host protein, essential for the growth and survival of various microorganisms including A. fumigatus. The splicing process is a four-step protease-like nucleophilic cascade. Thus, we hypothesise that protease inhibitors would successfully halt intein splicing and potentially restrict the growth of the aforementioned pathogen. Using Rosetta Fold and molecular dynamics simulations, we modelled Prp8 intein structure; resembling classic intein fold with horse shoe shaped splicing domain. To fully comprehend the active site of Afu Prp8 intein, C1, T62, H65, H818, N819 from intein sequences and S820, the first C-extein residue are selected. Molecular docking shows that two FDA-approved drugs, i.e. Lufotrelvir and Remdesivir triphosphate efficiently interact with Prp8 intein from the assortment of 212 protease inhibitors. MD simulation portrayed that Prp8 undergoes conformational change upon ligand binding, and inferred the molecular recognition and stability of the docked complexes. Per-residue decomposition analysis confirms the importance of F: block R802, V803, and Q807 binding pocket in intein splicing domain towards recognition of inhibitors, along with active site residues through strong hydrogen bonds and hydrophobic contacts. However, in vitro and in vivo assays are required to confirm the inhibitory action on Prp8 intein splicing; which may pave the way for the development of new antifungals for A. fumigatus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunita Panda
- Mycology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Jyotirmayee Turuk
- Mycology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Mycology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
2
|
Pasch T, Schröder A, Kattelmann S, Eisenstein M, Pietrokovski S, Kümmel D, Mootz HD. Structural and biochemical analysis of a novel atypically split intein reveals a conserved histidine specific to cysteine-less inteins. Chem Sci 2023; 14:5204-5213. [PMID: 37206380 PMCID: PMC10189870 DOI: 10.1039/d3sc01200j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
Protein trans-splicing mediated by a split intein reconstitutes a protein backbone from two parts. This virtually traceless autoprocessive reaction provides the basis for numerous protein engineering applications. Protein splicing typically proceeds through two thioester or oxyester intermediates involving the side chains of cysteine or serine/threonine residues. A cysteine-less split intein has recently attracted particular interest as it can splice under oxidizing conditions and is orthogonal to disulfide or thiol bioconjugation chemistries. Here, we report the split PolB16 OarG intein, a second such cysteine-independent intein. As a unique trait, it is atypically split with a short intein-N precursor fragment of only 15 amino acids, the shortest characterized to date, which was chemically synthesized to enable protein semi-synthesis. By rational engineering we obtained a high-yielding, improved split intein mutant. Structural and mutational analysis revealed the dispensability of the usually crucial conserved motif N3 (block B) histidine as an obvious peculiar property. Unexpectedly, we identified a previously unnoticed histidine in hydrogen-bond forming distance to the catalytic serine 1 as critical for splicing. This histidine has been overlooked so far in multiple sequence alignments and is highly conserved only in cysteine-independent inteins as a part of a newly discovered motif NX. The motif NX histidine is thus likely of general importance to the specialized environment in the active site required in this intein subgroup. Together, our study advances the toolbox as well as the structural and mechanistic understanding of cysteine-less inteins.
Collapse
Affiliation(s)
- Tim Pasch
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Alexander Schröder
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Sabrina Kattelmann
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 Israel
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| |
Collapse
|
3
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Nanda A, Nasker SS, Kushwaha AK, Ojha DK, Dearden AK, Nayak SK, Nayak S. Gold Nanoparticles Augment N-Terminal Cleavage and Splicing Reactions in Mycobacterium tuberculosis SufB. Front Bioeng Biotechnol 2021; 9:773303. [PMID: 35004641 PMCID: PMC8735848 DOI: 10.3389/fbioe.2021.773303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Protein splicing is a self-catalyzed event where the intervening sequence intein cleaves off, joining the flanking exteins together to generate a functional protein. Attempts have been made to regulate the splicing rate through variations in temperature, pH, and metals. Although metal-regulated protein splicing has been more captivating to researchers, metals were shown to only inhibit splicing reactions that confine their application. This is the first study to show the effect of nanoparticles (NPs) on protein splicing. We found that gold nanoparticles (AuNPs) of various sizes can increase the splicing efficiency by more than 50% and the N-terminal cleavage efficiency by more than 45% in Mycobacterium tuberculosis SufB precursor protein. This study provides an effective strategy for engineering splicing-enhanced intein platforms. UV-vis absorption spectroscopy, isothermal titration calorimetry (ITC), and transmission electron microscopy (TEM) confirmed AuNP interaction with the native protein. Quantum mechanics/molecular mechanics (QM/MM) analysis suggested a significant reduction in the energy barrier at the N-terminal cleavage site in the presence of gold atom, strengthening our experimental evidence on heightened the N-terminal cleavage reaction. The encouraging observation of enhanced N-terminal cleavage and splicing reaction can have potential implementations from developing a rapid drug delivery system to designing a contemporary protein purification system.
Collapse
Affiliation(s)
- Ananya Nanda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Sourya Subhra Nasker
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Anoop K. Kushwaha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Deepak Kumar Ojha
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Albert K. Dearden
- Departments of Physics and Astronomy, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Saroj K. Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
5
|
Panda S, Nanda A, Nasker SS, Sen D, Mehra A, Nayak S. Metal effect on intein splicing: A review. Biochimie 2021; 185:53-67. [PMID: 33727137 DOI: 10.1016/j.biochi.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
Inteins are intervening polypeptides that interrupt the functional domains of several important proteins across the three domains of life. Inteins excise themselves from the precursor protein, ligating concomitant extein residues in a process called protein splicing. Post-translational auto-removal of inteins remain critical for the generation of active proteins. The perspective of inteins in science is a robust field of research, however fundamental studies centralized upon splicing regulatory mechanism are imperative for addressing more intricate issues. Controlled engineering of intein splicing has many applications; intein inhibition can facilitate novel drug design, while activation of intein splicing is exploited in protein purification. This paper provides a comprehensive review of the past and recent advances in the splicing regulation via metal-intein interaction. We compare the behavior of different metal ions on diverse intein systems. Though metals such as Zn, Cu, Pt, Cd, Co, Ni exhibit intein inhibitory effect heterogeneously on different inteins, divalent metal ions such as Ca and Mg fail to do so. The observed diversity in the metal-intein interaction arises mostly due to intein polymorphism and variations in atomic structure of metals. A mechanistic understanding of intein regulation by metals in native as well as synthetically engineered intein systems may yield potent intein inhibitors via direct or indirect approach.
Collapse
Affiliation(s)
- Sunita Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Ananya Nanda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sourya Subhra Nasker
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Debjani Sen
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Ashwaria Mehra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
6
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
7
|
Hoffmann S, Terhorst TME, Singh RK, Kümmel D, Pietrokovski S, Mootz HD. Biochemical and Structural Characterization of an Unusual and Naturally Split Class 3 Intein. Chembiochem 2020; 22:364-373. [PMID: 32813312 PMCID: PMC7891396 DOI: 10.1002/cbic.202000509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Indexed: 12/31/2022]
Abstract
Split inteins are indispensable tools for protein engineering because their ligation and cleavage reactions enable unique modifications of the polypeptide backbone. Three different classes of inteins have been identified according to the nature of the covalent intermediates resulting from the acyl rearrangements in the multistep protein‐splicing pathway. Class 3 inteins employ a characteristic internal cysteine for a branched thioester intermediate. A bioinformatic database search of non‐redundant protein sequences revealed the absence of split variants in 1701 class 3 inteins. We have discovered the first reported split class 3 intein in a metagenomics data set and report its biochemical, mechanistic and structural analysis. The AceL NrdHF intein exhibits low sequence conservation with other inteins and marked deviations in residues at conserved key positions, including a variation of the typical class‐3 WCT triplet motif. Nevertheless, functional analysis confirmed the class 3 mechanism of the intein and revealed excellent splicing yields within a few minutes over a wide range of conditions and with barely detectable cleavage side reactions. A high‐resolution crystal structure of the AceL NrdHF precursor and a mutagenesis study explained the importance and roles of several residues at the key positions. Tolerated substitutions in the flanking extein residues and a high affinity between the split intein fragments further underline the intein's future potential as a ligation tool.
Collapse
Affiliation(s)
- Simon Hoffmann
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| | - Tobias M E Terhorst
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| | - Rohit K Singh
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| | - Daniel Kümmel
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
8
|
Green CM, Li Z, Smith AD, Novikova O, Bacot-Davis VR, Gao F, Hu S, Banavali NK, Thiele DJ, Li H, Belfort M. Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. PLoS Biol 2019; 17:e3000104. [PMID: 31600193 PMCID: PMC6805012 DOI: 10.1371/journal.pbio.3000104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 10/22/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
The spliceosome is a large ribonucleoprotein complex that removes introns from pre-mRNAs. At its functional core lies the essential pre-mRNA processing factor 8 (Prp8) protein. Across diverse eukaryotes, this protein cofactor of RNA catalysis harbors a self-splicing element called an intein. Inteins in Prp8 are extremely pervasive and are found at 7 different sites in various species. Here, we focus on the Prp8 intein from Cryptococcus neoformans (Cne), a human fungal pathogen. We solved the crystal structure of this intein, revealing structural homology among protein splicing sequences in eukaryotes, including the Hedgehog C terminus. Working with the Cne Prp8 intein in a reporter assay, we find that the biologically relevant divalent metals copper and zinc inhibit intein splicing, albeit by 2 different mechanisms. Copper likely stimulates reversible modifications on a catalytically important cysteine, whereas zinc binds at the terminal asparagine and the same critical cysteine. Importantly, we also show that copper treatment inhibits Prp8 protein splicing in Cne. Lastly, an intein-containing Prp8 precursor model is presented, suggesting that metal-induced protein splicing inhibition would disturb function of both Prp8 and the spliceosome. These results indicate that Prp8 protein splicing can be modulated, with potential functional implications for the spliceosome.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Zhong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Aaron D. Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Valjean R. Bacot-Davis
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Fengshan Gao
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Saiyang Hu
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Nilesh K. Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hongmin Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America,* E-mail: (MB); (HL)
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America,* E-mail: (MB); (HL)
| |
Collapse
|
9
|
Pearson CS, Nemati R, Liu B, Zhang J, Scalabrin M, Li Z, Li H, Fabris D, Belfort M, Belfort G. Structure of an engineered intein reveals thiazoline ring and provides mechanistic insight. Biotechnol Bioeng 2018; 116:709-721. [PMID: 30450538 DOI: 10.1002/bit.26875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 11/08/2022]
Abstract
We have engineered an intein which spontaneously and reversibly forms a thiazoline ring at the native N-terminal Lys-Cys splice junction. We identified conditions to stablize the thiazoline ring and provided the first crystallographic evidence, at 1.54 Å resolution, for its existence at an intein active site. The finding bolsters evidence for a tetrahedral oxythiazolidine splicing intermediate. In addition, the pivotal mutation maps to a highly conserved B-block threonine, which is now seen to play a causative role not only in ground-state destabilization of the scissile N-terminal peptide bond, but also in steering the tetrahedral intermediate toward thioester formation, giving new insight into the splicing mechanism. We demonstrated the stability of the thiazoline ring at neutral pH as well as sensitivity to hydrolytic ring opening under acidic conditions. A pH cycling strategy to control N-terminal cleavage is proposed, which may be of interest for biotechnological applications requiring a splicing activity switch, such as for protein recovery in bioprocessing.
Collapse
Affiliation(s)
- C Seth Pearson
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Reza Nemati
- Department of Chemistry, State University of New York, Albany, New York
| | - Binbin Liu
- Laboratory of Computational & Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jing Zhang
- Laboratory of Computational & Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Matteo Scalabrin
- Department of Chemistry, State University of New York, Albany, New York
| | - Zhong Li
- Laboratory of Computational & Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Hongmin Li
- Laboratory of Computational & Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, School of Public Health, Albany, State University of New York, Albany, New York
| | - Dan Fabris
- Department of Chemistry, State University of New York, Albany, New York
| | - Marlene Belfort
- Department of Biomedical Sciences, School of Public Health, Albany, State University of New York, Albany, New York.,Department of Biological Sciences, Albany, State University of New York, Albany, New York
| | - Georges Belfort
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
10
|
Kelley DS, Lennon CW, Li Z, Miller MR, Banavali NK, Li H, Belfort M. Mycobacterial DnaB helicase intein as oxidative stress sensor. Nat Commun 2018; 9:4363. [PMID: 30341292 PMCID: PMC6195587 DOI: 10.1038/s41467-018-06554-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
Inteins are widespread self-splicing protein elements emerging as potential post-translational environmental sensors. Here, we describe two inteins within one protein, the Mycobacterium smegmatis replicative helicase DnaB. These inteins, DnaBi1 and DnaBi2, have homology to inteins in pathogens, splice with vastly varied rates, and are differentially responsive to environmental stressors. Whereas DnaBi1 splicing is reversibly inhibited by oxidative and nitrosative insults, DnaBi2 is not. Using a reporter that measures splicing in a native intein-containing organism and western blotting, we show that H2O2 inhibits DnaBi1 splicing in M. smegmatis. Intriguingly, upon oxidation, the catalytic cysteine of DnaBi1 forms an intramolecular disulfide bond. We report a crystal structure of the class 3 DnaBi1 intein at 1.95 Å, supporting our findings and providing insight into this splicing mechanism. We propose that this cysteine toggle allows DnaBi1 to sense stress, pausing replication to maintain genome integrity, and then allowing splicing immediately when permissive conditions return.
Collapse
Affiliation(s)
- Danielle S Kelley
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA
| | - Christopher W Lennon
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, 12222, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA
| | - Michael R Miller
- Department of Chemistry, University at Albany, Albany, NY, 12222, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA
| | - Hongmin Li
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA.
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA.
| | - Marlene Belfort
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA.
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, 12222, USA.
| |
Collapse
|
11
|
Friedel K, Popp MA, Matern JCJ, Gazdag EM, Thiel IV, Volkmann G, Blankenfeldt W, Mootz HD. A functional interplay between intein and extein sequences in protein splicing compensates for the essential block B histidine. Chem Sci 2018; 10:239-251. [PMID: 30713635 PMCID: PMC6333167 DOI: 10.1039/c8sc01074a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Steric bulk can compensate for a catalytically critical histidine in an intein's active site and promote the N–S acyl shift.
Inteins remove themselves from a precursor protein by protein splicing. Due to the concomitant structural changes of the host protein, this self-processing reaction has enabled many applications in protein biotechnology and chemical biology. We show that the evolved M86 mutant of the Ssp DnaB intein displays a significantly improved tolerance towards non-native amino acids at the N-terminally flanking (–1) extein position compared to the parent intein, in the form of both an artificially trans-splicing split intein and the cis-splicing mini-intein. Surprisingly, side chains with increased steric bulk compared to the native Gly(–1) residue, including d-amino acids, were found to compensate for the essential block B histidine in His73Ala mutants in the initial N–S acyl shift of the protein splicing pathway. In the case of the M86 intein, large (–1) side chains can even rescue protein splicing activity as a whole. With the comparison of three crystal structures, namely of the M86 intein as well as of its Gly(–1)Phe and Gly(–1)Phe/His73Ala mutants, our data supports a model in which the intein's active site can exert a strain by varying mechanisms on the different angles of the scissile bond at the extein–intein junction to effect a ground-state destabilization. The compensatory mechanism of the block B histidine is the first example for the direct functional role of an extein residue in protein splicing. It sheds new light on the extein–intein interplay and on possible consequences of their co-evolution as well as on the laboratory engineering of improved inteins.
Collapse
Affiliation(s)
- Kristina Friedel
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Monika A Popp
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany
| | - Julian C J Matern
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Emerich M Gazdag
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany
| | - Ilka V Thiel
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Gerrit Volkmann
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Wulf Blankenfeldt
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics , Technische Universität Braunschweig , Spielmannstraße 7 , 38106 Braunschweig , Germany
| | - Henning D Mootz
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| |
Collapse
|
12
|
Stevens AJ, Sekar G, Gramespacher JA, Cowburn D, Muir TW. An Atypical Mechanism of Split Intein Molecular Recognition and Folding. J Am Chem Soc 2018; 140:11791-11799. [PMID: 30156841 PMCID: PMC7232844 DOI: 10.1021/jacs.8b07334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Split inteins associate to trigger protein splicing in trans, a post-translational modification in which protein sequences fused to the intein pair are ligated together in a traceless manner. Recently, a family of naturally split inteins has been identified that is split at a noncanonical location in the primary sequence. These atypically split inteins show considerable promise in protein engineering applications; however, the mechanism by which they associate is unclear and must be different from that of previously characterized canonically split inteins due to unique topological restrictions. Here, we use a consensus design strategy to generate an atypical split intein pair (Cat) that has greatly improved activity and is amenable to detailed biochemical and biophysical analysis. Guided by the solution structure of Cat, we show that the association of the fragments involves a disorder-to-order structural transition driven by hydrophobic interactions. This molecular recognition mechanism satisfies the topological constraints of the intein fold and, importantly, ensures that premature chemistry does not occur prior to fragment complementation. Our data lead a common blueprint for split intein complementation in which localized structural rearrangements are used to drive folding and regulate protein-splicing activity.
Collapse
Affiliation(s)
- Adam J. Stevens
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Giridhar Sekar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Josef A. Gramespacher
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
14
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|
15
|
Kick LM, Harteis S, Koch MF, Schneider S. Mechanistic Insights into Cyclic Peptide Generation by DnaE Split-Inteins through Quantitative and Structural Investigation. Chembiochem 2017; 18:2242-2246. [DOI: 10.1002/cbic.201700503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Leonhard M. Kick
- Center for Integrated Protein Science; Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85748 Garching Germany
| | - Sabrina Harteis
- Center for Integrated Protein Science; Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85748 Garching Germany
| | - Maximilian F. Koch
- Center for Integrated Protein Science; Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85748 Garching Germany
| | - Sabine Schneider
- Center for Integrated Protein Science; Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
16
|
Minteer CJ, Siegart NM, Colelli KM, Liu X, Linhardt RJ, Wang C, Gomez AV, Reitter JN, Mills KV. Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N-Terminal Cleavage. Biochemistry 2017; 56:1042-1050. [PMID: 28165720 DOI: 10.1021/acs.biochem.6b00894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from Pyrococcus abyssi (Pab PolII intein) can promote protein splicing in vitro on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar "aspartic acid effects" have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology.
Collapse
Affiliation(s)
- Christopher J Minteer
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Nicolle M Siegart
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Kathryn M Colelli
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | | | | | | | - Alvin V Gomez
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Julie N Reitter
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| |
Collapse
|
17
|
Stevens AJ, Brown ZZ, Shah NH, Sekar G, Cowburn D, Muir TW. Design of a Split Intein with Exceptional Protein Splicing Activity. J Am Chem Soc 2016; 138:2162-5. [PMID: 26854538 PMCID: PMC4894280 DOI: 10.1021/jacs.5b13528] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein trans-splicing (PTS) by split inteins has found widespread use in chemical biology and biotechnology. Herein, we describe the use of a consensus design approach to engineer a split intein with enhanced stability and activity that make it more robust than any known PTS system. Using batch mutagenesis, we first conduct a detailed analysis of the difference in splicing rates between the Npu (fast) and Ssp (slow) split inteins of the DnaE family and find that most impactful residues lie on the second shell of the protein, directly adjacent to the active site. These residues are then used to generate an alignment of 73 naturally occurring DnaE inteins that are predicted to be fast. The consensus sequence from this alignment (Cfa) demonstrates both rapid protein splicing and unprecedented thermal and chaotropic stability. Moreover, when fused to various proteins including antibody heavy chains, the N-terminal fragment of Cfa exhibits increased expression levels relative to other N-intein fusions. The durability and efficiency of Cfa should improve current intein based technologies and may provide a platform for the development of new protein chemistry techniques.
Collapse
Affiliation(s)
- Adam J Stevens
- Department of Chemistry, Princeton University , Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Zachary Z Brown
- Department of Chemistry, Princeton University , Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Neel H Shah
- Department of Chemistry, Princeton University , Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Giridhar Sekar
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Tom W Muir
- Department of Chemistry, Princeton University , Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
18
|
Callahan BP, Wang C. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling. Cancers (Basel) 2015; 7:2037-53. [PMID: 26473928 PMCID: PMC4695875 DOI: 10.3390/cancers7040875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Chunyu Wang
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
19
|
Bachmann AL, Mootz HD. An Unprecedented Combination of Serine and Cysteine Nucleophiles in a Split Intein with an Atypical Split Site. J Biol Chem 2015; 290:28792-804. [PMID: 26453311 DOI: 10.1074/jbc.m115.677237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 11/06/2022] Open
Abstract
Protein splicing mediated by inteins is a self-processive reaction leading to the excision of the internal intein domain from a precursor protein and the concomitant ligation of the flanking sequences, the extein-N and extein-C parts, thereby reconstituting the host protein. Most inteins employ a splicing pathway in which the upstream scissile peptide bond is consecutively rearranged into two thioester or oxoester intermediates before intein excision and rearrangement into the new peptide bond occurs. The catalytically critical amino acids involved at the two splice junctions are cysteine, serine, or threonine. Notably, the only potential combination not observed so far in any of the known or engineered inteins corresponds to the transesterification from an oxoester to a thioester, which suggested that this formal uphill reaction with regard to the thermodynamic stability might be incompatible with intein-mediated catalysis. We show that corresponding mutations also led to inactive gp41-1 and AceL-TerL inteins. We report the novel GOS-TerL split intein identified from metagenomic databases as the first intein harboring the combination of Ser1 and Cys+1 residues. Mutational analysis showed that its efficient splicing reaction indeed follows the shift from oxoester to thioester and thus represents a rare diversion from the canonical pathway. Furthermore, the GOS-TerL intein has an atypical split site close to the N terminus. The Int(N) fragment could be shortened from 37 to 28 amino acids and exchanged with the 25-amino acid Int(N) fragment from the AceL-TerL intein, indicating a high degree of promiscuity of the Int(C) fragment of the GOS-TerL intein.
Collapse
Affiliation(s)
- Anne-Lena Bachmann
- From the Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, 48149 Münster, Germany
| | - Henning D Mootz
- From the Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, 48149 Münster, Germany
| |
Collapse
|
20
|
Pearson CS, Belfort G, Belfort M, Shekhtman A. Backbone assignments of mini-RecA intein with short native exteins and an active N-terminal catalytic cysteine. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:235-238. [PMID: 25281002 PMCID: PMC4385508 DOI: 10.1007/s12104-014-9581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/26/2014] [Indexed: 06/03/2023]
Abstract
The backbone resonance assignments of an engineered splicing-inactive mini-RecA intein based on triple resonance experiments with [(13)C,(15)N]-labeled protein are reported. The construct contains inactivating mutations specifically designed to retain most catalytic residues, especially those that are potentially metal-coordinating. The assignments are essential for protein structure determination of a precursor with an active N-terminal catalytic cysteine and for investigation of the atomic details of splicing.
Collapse
Affiliation(s)
- C Seth Pearson
- Howard P. Isermann Department of Chemical and Biological Engineering and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Marlene Belfort
- Department of Biological Sciences and The RNA Institute, University at Albany, Albany, NY, 12222, USA.
| | | |
Collapse
|
21
|
Cheriyan M, Chan SH, Perler F. Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine. J Mol Biol 2014; 426:4018-4029. [PMID: 25451033 DOI: 10.1016/j.jmb.2014.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/15/2014] [Accepted: 10/26/2014] [Indexed: 11/24/2022]
Abstract
Inteins self-catalytically cleave out of precursor proteins while ligating the surrounding extein fragments with a native peptide bond. Much attention has been lavished on these molecular marvels with the hope of understanding and harnessing their chemistry for novel biochemical transformations including coupling peptides from synthetic or biological origins and controlling protein function. Despite an abundance of powerful applications, the use of inteins is still hampered by limitations in our understanding of their specificity (defined as flanking sequences that permit splicing) and the challenge of inserting inteins into target proteins. We examined the frequently used Nostoc punctiforme Npu DnaE intein after the C-extein cysteine nucleophile (Cys+1) was mutated to serine or threonine. Previous studies demonstrated reduced rates and/or splicing yields with the Npu DnaE intein after mutation of Cys+1 to Ser+1. In this study, genetic selection identified extein sequences with Ser+1 that enabled the Npu DnaE intein to splice with only a 5-fold reduction in rate compared to the wild-type Cys+1 intein and without mutation of the intein itself to activate Ser+1 as a nucleophile. Three different proteins spliced efficiently after insertion of the intein flanked by the selected sequences. We then used this selected specificity to achieve traceless splicing in a targeted enzyme at a location predicted by primary sequence similarity to only the selected C-extein sequence. This study highlights the latent catalytic potential of the Npu DnaE intein to splice with an alternative nucleophile and enables broader intein utility by increasing insertion site choices.
Collapse
Affiliation(s)
- Manoj Cheriyan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Francine Perler
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
22
|
Eryilmaz E, Shah NH, Muir TW, Cowburn D. Structural and dynamical features of inteins and implications on protein splicing. J Biol Chem 2014; 289:14506-11. [PMID: 24695731 DOI: 10.1074/jbc.r113.540302] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein splicing is a posttranslational modification where intervening proteins (inteins) cleave themselves from larger precursor proteins and ligate their flanking polypeptides (exteins) through a multistep chemical reaction. First thought to be an anomaly found in only a few organisms, protein splicing by inteins has since been observed in microorganisms from all domains of life. Despite this broad phylogenetic distribution, all inteins share common structural features such as a horseshoe-like pseudo two-fold symmetric fold, several canonical sequence motifs, and similar splicing mechanisms. Intriguingly, the splicing efficiencies and substrate specificity of different inteins vary considerably, reflecting subtle changes in the chemical mechanism of splicing, linked to their local structure and dynamics. As intein chemistry has widespread use in protein chemistry, understanding the structural and dynamical aspects of inteins is crucial for intein engineering and the improvement of intein-based technologies.
Collapse
Affiliation(s)
- Ertan Eryilmaz
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Neel H Shah
- the Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544
| | - Tom W Muir
- the Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544
| | - David Cowburn
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
23
|
Abstract
Inteins are nature's escape artists; they facilitate their excision from flanking polypeptides (exteins) concomitant with extein ligation to produce a mature host protein. Splicing requires sequential nucleophilic displacement reactions catalyzed by strategies similar to proteases and asparagine lyases. Inteins require precise reaction coordination rather than rapid turnover or tight substrate binding because they are single turnover enzymes with covalently linked substrates. This has allowed inteins to explore alternative mechanisms with different steps or to use different methods for activation and coordination of the steps. Pressing issues include understanding the underlying details of catalysis and how the splicing steps are controlled.
Collapse
Affiliation(s)
- Kenneth V Mills
- From the Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Margaret A Johnson
- the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | | |
Collapse
|
24
|
Abstract
Inteins are auto-processing domains found in organisms from all domains of life. These proteins carry out a process known as protein splicing, which is a multi-step biochemical reaction comprised of both the cleavage and formation of peptide bonds. While the endogenous substrates of protein splicing are specific essential proteins found in intein-containing host organisms, inteins are also functional in exogenous contexts and can be used to chemically manipulate virtually any polypeptide backbone. Given this, protein chemists have exploited various facets of intein reactivity to modify proteins in myriad ways for both basic biological research as well as potential therapeutic applications. Here, we review the intein field, first focusing on the biological context and phylogenetic diversity of inteins, followed by a description of intein structure and biochemical function. Finally, we discuss prevalent inteinbased technologies, focusing on their applications in chemical biology, followed by persistent caveats of intein chemistry and approaches to alleviate these shortcomings. The findings summarized herein describe two and a half decades of research, leading from a biochemical curiosity to the development of powerful protein engineering tools.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, United States
| | - Tom W Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, United States
| |
Collapse
|